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Abstract 

Background:  Bioactive peptides are important bioactive molecules composed 
of short-chain amino acids that play various crucial roles in the body, such as regulating 
physiological processes and promoting immune responses and antibacterial effects. 
Due to their significance, bioactive peptides have broad application potential in drug 
development, food science, and biotechnology. Among them, understanding their 
biological mechanisms will contribute to new ideas for drug discovery and disease 
treatment.

Results:  This study employs generative adversarial capsule networks (CapsuleGAN), 
gated recurrent units (GRU), and convolutional neural networks (CNN) as base classi-
fiers to achieve ensemble learning through voting methods, which not only obtains 
high-precision prediction results on the angiotensin-converting enzyme (ACE) inhibi-
tory peptides dataset and the anticancer peptides (ACP) dataset but also demonstrates 
effective model performance. For this method, we first utilized the protein language 
model—evolutionary scale modeling (ESM-2)—to extract relevant features for the ACE 
inhibitory peptides and ACP datasets. Following feature extraction, we trained three 
deep learning models—CapsuleGAN, GRU, and CNN—while continuously adjust-
ing the model parameters throughout the training process. Finally, during the voting 
stage, different weights were assigned to the models based on their prediction accu-
racy, allowing full utilization of the model’s performance. Experimental results show 
that on the ACE inhibitory peptide dataset, the balanced accuracy is 0.926, the Mat-
thews correlation coefficient (MCC) is 0.831, and the area under the curve is 0.966; 
on the ACP dataset, the accuracy (ACC) is 0.779, and the MCC is 0.558. The experimen-
tal results on both datasets are superior to existing methods, demonstrating the effec-
tiveness of the experimental approach.

Conclusion:  In this study, CapsuleGAN, GRU, and CNN were successfully employed 
as base classifiers to implement ensemble learning, which not only achieved good 
results in the prediction of two datasets but also surpassed existing methods. The abil-
ity to predict peptides with strong ACE inhibitory activity and ACPs more accurately 
and quickly is significant, and this work provides valuable insights for predicting other 
functional peptides. The source code and dataset for this experiment are publicly avail-
able at https://​github.​com/​Zhou-​Jianr​en/​bioac​tive-​pepti​des.
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Background
Bioactive peptides are molecules composed of short-chain amino acids, usually consist-
ing of 2–50 amino acid residues. They can interact with receptors in organisms through 
specific mechanisms, thereby regulating a variety of physiological functions, such as 
anti-inflammatory, hypoglycemic, antioxidant and anti-cancer [1]. Bioactive peptides are 
widely found in food, dairy products, marine organisms and plants, and can be obtained 
by enzymatic hydrolysis, fermentation or chemical synthesis. Among them, anticancer 
peptides (ACP) have been one of the hot topics of research in recent years, and have 
attracted attention because of their ability to induce tumor cell apoptosis, inhibit tumor 
growth and metastasis. At the same time, Angiotensin-Converting Enzyme (ACE) inhib-
itory peptides, as an important bioactive peptide, can effectively lower blood pressure, 
improve cardiovascular health, and are widely used in the prevention and treatment of 
hypertension and heart disease. However, traditional wet experimental methods have 
many defects in the screening and optimization of functional peptides [2]. These meth-
ods are usually time-consuming and labor-intensive, and require a large amount of rea-
gents and experimental samples, resulting in high costs [3]. In addition, the results of 
wet experiments are often affected by experimental conditions and operator skills, and 
have certain uncertainties [4]. In contrast, the use of computational methods and deep 
learning models can efficiently predict potential bioactive peptides, thereby improving 
screening efficiency and reducing costs, providing a more reliable and rapid alternative 
for the study of functional peptides [5].

At present, computational methods have achieved important success in the predic-
tion of bioactive peptides. In the prediction of bioactive peptides, existing computa-
tional methods mainly include sequence alignment, machine learning and deep learning 
techniques [6]. Sequence alignment methods, mainly based on similarity search, such 
as BLAST, can be used to identify peptides with potential bioactivity [7]. Machine 
learning-based methods mainly use a variety of machine learning algorithms, such as 
random forests and support vector machines, to classify and extract features of bioac-
tive peptides [8]. For example, methods such as AVPpred [9], PredAPP [10], AIPpred 
[11], and THPep [12] use SVM and RF algorithms based on various feature engineering 
techniques (including PSSM matrix, pseudo amino acid composition (PseAAC), phys-
icochemical properties, etc.) to identify peptides [13]. Although effective, traditional 
machine learning-based methods are usually difficult to generalize to other peptide data 
sets. In recent years, algorithmic models based on deep learning, such as convolutional 
neural networks (CNN) and recurrent neural networks (RNN), have been widely used in 
the functional prediction of peptides [14]. Compared with machine learning, deep learn-
ing algorithm models have the advantages of automatically extracting features and fully 
utilizing high-performance hardware [15]. Different deep learning frameworks are used 
to identify bioactive peptides [16–21], such as DeepAFP [5], Deep-AmPEP30 [22], and 
ITP-Pred [23].

Among many experimental methods, the pLM4ACE method is used to detect the 
activity of ACE inhibitory peptides. In pLM4ACE, Du et al. [24]. established a state-of-
the-art dataset by manually collecting peptides that exhibit ACE inhibition and divided 
them into high-active and low-active/non-active groups based on half-maximal inhibi-
tory concentration (IC50). The pLM4ACE model was developed using the protein 
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language model (pLM)-evolutionary scaling model (ESM-2). They built an optimized 
model based on logistic regression (LR) combined with ESM-2 embedding. On the test 
dataset, pLM4ACE achieved a balanced accuracy (BACC) of 0.883 ± 0.017, a Matthews 
correlation coefficient (MCC) of 0.77 ± 0.032, and an area under the curve (AUC) of 
0.96 ± 0.009. In ACP prediction, Jiang et al. [25]. used the pre-trained model RoBERTa to 
predict ACPs. They fine-tuned the pre-trained model so that RoBERTa could better pre-
dict ACPs and ultimately achieved excellent performance. The accuracy (ACC) reached 
0.762 and the MCC was 0.528.

In existing research methods, single models are used. Although single models have 
excellent performance in certain environments, they also have certain limitations. Spe-
cifically, a single model can usually only capture a certain type of features in the data and 
cannot fully cover the diversity of the data. For example, the LR model is a linear model 
that is good at processing linear relationship features, but performs poorly for complex 
nonlinear patterns; while RoBERTa is good at processing sequence and language data, it 
may not be accurate enough when capturing spatial or local features in specific biologi-
cal sequences. In addition, single models are easily affected by data noise, and the pre-
diction results may not be stable enough. In order to overcome the limitations of a single 
model, ensemble learning methods can capture different information in the data more 
comprehensively by combining the advantages of multiple models. Using three models, 
generative adversarial capsule networks (CapsuleGAN), gated recurrent unit (GRU) and 
CNN, for voting integration can effectively integrate the strengths of each model: Cap-
suleGAN can capture the spatial hierarchy of the data, GRU is good at processing the 
temporal information in the sequence, and CNN can effectively extract local features. 
Through weighted average voting, different models play their respective advantages in 
the final prediction, thereby improving the accuracy and robustness of the overall model 
and reducing the bias and instability that may exist in a single model. The use of ensem-
ble learning not only improves the accuracy of predictions, but also enhances the adapt-
ability of the model to different types of data features. The main contributions of this 
work are as follows: 1) Introducing an integrated learning framework: A voting integra-
tion method based on CapsuleGAN, GRU and CNN improves the performance of pep-
tide function prediction. 2) Innovative use of CapsuleGAN: CapsuleGAN was applied to 
peptide prediction for the first time, and the feature extraction capability was enhanced 
by combining it with the attention mechanism. 3) Specialized optimization for bioactive 
peptides: This study combined the characteristics of deep learning models to design a 
model architecture optimized for the prediction tasks of ACE inhibitory peptides and 
ACPs, achieving efficient prediction of these bioactive peptides. 4) Comprehensive 
comparative analysis: Detailed experimental comparison with existing methods verifies 
the performance advantages of the new method. 5) Scalable framework: The proposed 
model framework has good scalability and can be applied to other biological sequence 
prediction tasks.

Material and methods
Benchmark datasets

For ACE inhibitory peptides, we used the same benchmark dataset created by Du et al. 
to test the experimental method [24]. This dataset contains 1020 experimentally verified 
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ACE inhibitory peptide sequences. Among them, positive samples are peptides that 
exhibit high ACE inhibitory activity, while negative samples are peptides that exhibit low 
and inactive ACE inhibitory activity. In the end, there were 394 positive samples and 626 
negative samples. Subsequently, all positive and negative samples were randomly divided 
into training datasets and independent test datasets in a ratio of 8:2. For the ACP data-
set, we obtain it from the study of Jiang et al. In the ACP dataset [25], the number of pos-
itive and negative samples is the same, and the training set and test set are also divided 
in a ratio of 8:2. The distribution of the number of peptide sequences in the two datasets 
is shown in Table 1, the distribution of peptide sequence lengths is shown in Fig. 1, and 
the amino acid composition is shown in Fig. 2.

Feature representation method

In this study, we mainly use protein language models for feature extraction work. The 
protein language model is a deep learning-based tool that can automatically extract rich 
feature information from protein sequences [26]. Compared with traditional feature 
extraction methods, protein language models have significant advantages. Traditional 
methods often rely on manually designed features, which may not fully capture complex 

Table 1  Distribution of datasets

Dataset Positive Negative Train data Test data

ACE inhibitory peptides 394 626 816 204

ACP 861 861 1378 344

Fig. 1  Sequence length distribution, the X-axis represents the length of the peptide sequence, and the 
y-axis represents the number of corresponding sequences. A Sequence length distribution of ACE inhibitory 
peptide dataset. B Sequence length distribution of ACP dataset

Fig. 2  Amino acid composition. A Amino acid composition of ACE inhibitory peptide sequences. B Amino 
acid composition of ACP sequences
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sequence information and contextual relationships [27]. By training massive sequence 
data, protein language models can learn potential patterns and semantic associations in 
sequences, thereby extracting more comprehensive and accurate features. This model 
can not only handle diverse amino acid sequences, but also identify potential functional 
domains and important biological information, improving the accuracy of peptide clas-
sification and functional prediction. In this study, the protein language model used is 
ESM-2.

The ESM-2 model [28], released by the Meta AI Research (FAIR) Protein team in 
2022, represents a further development in their work on language models. ESM-2 dem-
onstrates a good understanding of protein sequences and has a faster inference speed 
compared to AlphaFold2 [29]. The ESM-2 used in this study is a pLM with 320 output 
embeddings. The pre-trained pLM along with its implementation code are available at 
https://​github.​com/​faceb​ookre​search/​esm. ESM-2 is a protein language model improved 
based on the Bidirectional Encoder Representations from Transformers (BERT) archi-
tecture [30]. It uses a large number of protein sequences for fine-tuning. The last hidden 
state of the ESM-2 model is its output. In this context, the feature dimensions generated 
by the model typically do not vary with the length of the peptide sequence [3]. Every 
peptide sequence is depicted by a vector of identical dimensions, with features incor-
porating information from neighboring residues as well as the overall sequence context. 
Therefore, features derived from ESM-2 can be regarded as employing a global descrip-
tion strategy, guaranteeing a consistent feature dimension irrespective of the peptide’s 
length [31].

Performance evaluation methods

This experiment uses the test set to evaluate the effectiveness and robustness of the 
model. At the same time, ACC, BACC, MCC, sensitivity (Sn) and specificity (Sp) are 
used to evaluate the performance of the model. The parameters are calculated using the 
counts of true positives (TP), false positives (FP), false negatives (FN) and true negatives 
(TN), as shown in the following formula:

The AUC is determined using the “auc” function available in the Sklearn library [32]. 
The AUC quantifies the area under the receiver operating characteristic (ROC) curve. 

(1)ACC = TP + TN

TP + FP + TN + FN

(2)Sn = TP

TP + FN

(3)Sp = TN

TN + FP

(4)BACC = 0.5 ∗ Sn+ 0.5 ∗ Sp

(5)MCC = (TP ∗ TN )− (FN ∗ FP)√
(TP + FN ) ∗ (TP + FP) ∗ (TN + FP) ∗ (TN + FN )

https://github.com/facebookresearch/esm
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This curve illustrates the model’s capacity to differentiate between positive and negative 
instances across various threshold settings.

Model

Overview of DeepBP

The purpose of this experimental method is to identify functional peptides, mainly to 
detect the activity of ACE inhibitory peptides and detect ACPs. The dataset is derived 
from the studies of Ref [24] and Ref [25]. (Fig. 3A). This experimental method mainly 
consists of two parts: feature extraction module and classification module (Fig. 3B). In 
the feature extraction module, the protein language model used is mainly ESM-2, and 
the features with a dimension of (n × 320) are obtained through the 6-layer BERT model. 
In the classification module, three different models are mainly used: CapsuleGAN, CNN, 
and GRU. In CapsuleGAN, the attention mechanism-convolutional block attention 
module (CBAM) is added to improve the accuracy (Fig. 3C). The CNN model can bet-
ter capture local features and increase the robustness of the model (Fig. 3D). The GRU 
model is a model that specializes in processing sequence data (Fig. 3E). By using the gat-
ing mechanism, it can better capture the medium and long-range information in the 

Fig. 3  Overall experimental process of DeepBP. A Dataset collection and processing. B Overall experimental 
process. Including feature extraction module and classification module. The feature extraction module is 
mainly composed of ESM-2, and its main content is to extract high-quality peptide representations from 
primary sequences. The classification module is composed of CapsuleGAN, GRU, and CNN models, and the 
classification method adopts the voting method. C CapsuleGAN model structure diagram. D CNN model 
structure diagram. E GRU model structure diagram. F GRULayer internal structure design
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features (Fig. 3F). By training these three models and testing the test set, the prediction 
results of different models on the test set are obtained, and then these prediction results 
are weighted averaged as the final prediction results of the test set.

Generative adversarial capsule networks

In this study, we used the CapsuleGAN model [33]. This model is a generative adver-
sarial network (GAN) based on the capsule network, which can effectively capture the 
spatial information of the input data and the complex relationship between features [34]. 
CapsuleGAN reduces the possibility of feature loss by maintaining the interdependence 
of information in the feature dimension. It can better characterize the local structure 
and global information in the sequence data, thereby improving the generalization abil-
ity of the model.

The CapsuleGAN model primarily consists of two components: the generator and the 
discriminator [33]. In the generator, a random vector (noise) is provided as input, and 
through a neural network, it generates synthetic data of the same dimensionality as the 
real data [35]. In the discriminator, both the synthetic data samples generated by the 
generator and real data samples are inputted, and the discriminator attempts to differen-
tiate between them, thereby enhancing the model’s learning ability with respect to real 
data [36]. In the process of the generator generating fake peptide vectors, the discrimi-
nator strengthens the model’s understanding of peptide characteristics by identifying 
"real peptide vectors" and "fake peptide vectors". This adversarial learning mechanism 
aims to enhance the generalization ability of the model and make it more accurate in 
predicting active peptides.

In this study, the generator follows the architecture of GAN to learn data representa-
tion. It initially takes a random noise vector as input and employs fully connected layers 
and batch normalization layers to generate an initial data representation. Subsequently, 
the quality of the generated data is enhanced through upsampling. This process involves 
two layers of convolution and activation, followed by batch normalization operations. 
Finally, the generator employs 3 × 3 convolutional kernels and a tanh activation function 
to produce synthetic data of the same size as the real data.

In the discriminator part, a combination of CNN and Capsule Neural Network [37, 
38] structure is employed, along with the integration of residual connections and CBAM 
[39] to enhance performance. Initially, both real and synthetic data inputs into the dis-
criminator undergo two layers of convolution and activation, followed by batch normali-
zation operations, before being fed into the capsule network structure.

The capsule network structure comprises two main components: the Primarycaps 
layer and the Digitcaps layer [40]. In the Primarycaps layer, input features are received 
and represented in the form of capsules, with each capsule associated with a specific 
feature [41]. The Digitcaps layer receives capsules as input and employs the "dynamic 
routing" algorithm to determine the connection weights between the Primarycaps and 
Digitcaps [42]. In this study, the dynamic routing process is repeated three times to 
enhance the model’s learning capability. Residual connections and CBAM modules are 
added to the obtained output to adjust the weights between features and enhance the 
model’s capability, followed by classification using a Sigmoid activation function.
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Gated recurrent unit

GRU [43] is an improved RNN specifically designed to process sequence data. Compared 
with traditional RNN, GRU can effectively solve the long-term dependency problem by 
introducing a gating mechanism, thereby better capturing long-distance information in 
the sequence.

In this study, the preprocessed feature data is processed by GRU. The processed fea-
tures are regularized by a Dropout layer to avoid overfitting. Subsequently, the features 
are further abstracted and processed by GRU again. Finally, the output features are flat-
tened for the final classification task.

In this model, GRU is the most important. Specifically, GRU contains two main gates: 
reset gate and update gate. When data is input, the GRU model will gradually process 
the input of each time step. For each time step t , the reset gate and update gate need to 
be calculated. The reset gate rt determines how to combine the previous hidden state 
ht−1 with the current input xt:

where Wr is the weight matrix of the reset gate and xt is the feature vector. The update 
gate zt controls the degree of update of the current hidden state:

where Wz is the weight matrix of the update gate. Then the candidate hidden state is cal-
culated based on the reset gate and the current input:

Finally, the final hidden state ht of the GRU can be obtained:

The final hidden state ht can be used as a representation of the entire sequence.
In this process, the reset gate controls how much previous information the model 

retains in the current time step, while the update gate determines the degree of fusion of 
the current input with past information [44]. This design gives GRU a stronger memory 
capacity and faster convergence speed when processing tasks such as time series, lan-
guage modeling, and biological sequences. Due to its relatively simple structure, GRU is 
also superior to the more complex long short-term memory network (LSTM) in compu-
tational efficiency, so it is widely used in practical applications, especially in fields such 
as bioinformatics and natural language processing [45].

Convolutional neural networks

CNN [46] is a deep learning model widely used in image processing and sequence data 
analysis. CNN can effectively extract local features from input data through local con-
nections and weight sharing. In this experiment, the CNN architecture is used to pro-
cess the sequence features extracted from ESM-2. The model mainly consists of multiple 
convolutional layers, pooling layers and fully connected layers. Through the gradual 

(6)rt = σ(Wr · [ht−1, xt ])

(7)zt = σ(Wz · [ht−1, xt ])

(8)ĥt = tanh(Wh · [rt ∗ ht−1, xt ])

(9)ht = (1− zt) ∗ ht−1 + zt ∗ ĥt
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extraction and dimensionality reduction of sequence features, the model can effectively 
capture the local pattern of features and use them for classification tasks.

In the CNN model, the input data is the preprocessed data of the sequence features 
extracted by ESM-2, with a dimension of (n, 1, 320). Through the convolution layer, the 
local pattern of the feature is extracted and reduced to (n, 1, 64), which helps to reduce 
redundant information and enhance the capture of local correlation. The subsequent 
pooling operation further reduces the complexity of the feature, prevents the model 
from overfitting and improves the generalization ability. The combined operation of 
convolution and pooling is repeatedly applied, and finally the feature is processed into 
a vector with 64 dimensions. After feature extraction, the flattening operation maps the 
multi-dimensional features into a one-dimensional vector and enters the fully connected 
layer. This step maps the extracted features to 32 neurons through linear combination to 
further refine the high-level feature representation. Finally, the classification layer out-
puts the 32-dimensional vector into two categories, representing the high and low ACE 
inhibitory activity of the peptide.

The advantage of this CNN architecture is that it can effectively process sequence data 
through convolution operations and extract local patterns with biological significance 
[47]. The superposition structure of multi-layer convolution and pooling enhances the 
model’s perception of patterns at different scales, making it perform well when process-
ing complex sequence data [48]. Finally, the combination of flattening and fully con-
nected layers provides a more refined feature representation for classification, ensuring 
the classification performance of the model.

Results
Performance evaluation of single classifier and ensemble learning

In the classification study of functional peptides, choosing a suitable classifier is crucial 
to improving the prediction performance of the model. Although traditional single clas-
sifiers perform well in some cases, they often have difficulty processing complex bio-
logical data, which may lead to overfitting or insufficient generalization of the model. 
To solve this problem, this study uses an ensemble learning method to combine the pre-
diction results of multiple base learners in order to improve classification accuracy and 
stability [49].

This study systematically evaluated the performance difference between single classi-
fiers and ensemble learning for ACE inhibitory peptides and ACPs datasets. Specifically, 
we first preprocessed and extracted features for the dataset, then applied different single 
classifiers (CapsuleGAN, GRU, CNN) and recorded their performance indicators. Sub-
sequently, the prediction results of multiple base classifiers were fused through ensemble 
learning methods to further improve the classification effect. In addition, in ensemble 
learning, we used two different methods for testing and comparison, mainly voting and 
stacking. By comparing the performance of the two methods, the method with the best 
performance was obtained.

Experimental results on ACE inhibitory peptide dataset

We evaluated the classification performance of different methods on the ACE inhibi-
tory peptide dataset, and the results are shown in Table 2. As can be seen from the 
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table, the ensemble learning methods (Voting and Stacking) performed well in most 
indicators, surpassing single classifiers. In multiple indicators such as Sn, Sp, BACC, 
MCC and AUC, the Voting method performed particularly well, achieving a BACC 
of 0.926 and an AUC of 0.966, demonstrating its advantages in functional peptide 
classification.

Among the single classifiers, the GRU model performed best, with an AUC of 0.965, 
followed by the CNN model with an AUC of 0.963. Although CapsuleGAN performed 
slightly worse in sensitivity, achieving an AUC of 0.937, its overall performance is still 
competitive.

The performance differences of different methods can be intuitively seen from the 
ROC and PR curves (Fig. 4). The ROC curve shows that the curves of the GRU, Voting 
and Stacking methods are almost close to the ideal state, indicating that they can main-
tain a high true positive rate with a low false positive rate. Similarly, the PR curve also 
shows the excellent performance of the GRU and ensemble methods, especially when 
the recall rate is high, they still maintain a high precision.

We also visualized the loss function of the model and plotted the loss curves of the 
three base classifiers (CapsuleGAN, CNN, and GRU), as shown in Fig.  5. As can be 
seen from the figure, during the training process, the loss values of all models gradu-
ally decreased with the increase in the number of training rounds, and tended to stabi-
lize near the end of the training, without a significant upward trend, indicating that the 
model did not have obvious overfitting. These loss curves can further verify the stability 
of the model during the training process, and the final convergence state is relatively 
ideal.

Table 2  Performance evaluation of each method in the ACE inhibitory peptide dataset

Bold values indicate the highest values for each respective indicator

The stacking method uses CapsuleGAN, GRU, and CNN as base classifiers and LR as meta-classifier to get the highest 
predicted value. The weight ratio of GRU, CNN, and CapsuleGAN in the voting method is 6:3:1

Method BACC​ Sn Sp MCC AUC​

GRU​ 0.913 0.949 0.877 0.802 0.965

CNN 0.911 0.949 0.874 0.799 0.963

CapsuleGAN 0.887 0.916 0.859 0.748 0.937

Stacking 0.919 0.971 0.866 0.805 0.964

Voting 0.926 0.960 0.891 0.831 0.966

Fig. 4  Model performance on ACE inhibitory peptides. A ROC curve. B PR curve
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Experimental results on ACP dataset

We also evaluated the classification performance of different methods on the ACP data-
set, and the results are shown in Table 3. As can be seen from the table, the ensemble 
learning methods (Voting and Stacking) still perform well in terms of performance indi-
cators. In multiple indicators such as Sn, Sp, ACC, and MCC, the Voting method per-
formed well, achieving an ACC of 0.779 and an MCC of 0.558. Among single classifiers, 
the CapsuleGAN model performed best, with an ACC of 0.75 and an MCC of 0.501. It 
can be intuitively seen from the ROC and PR curves (Fig. 6) that the Voting and Stack-
ing methods still maintain high accuracy in the ROC curve and PR curve. Among them, 
Vote performed particularly well, with an AUC of 0.8325 and an AUPR of 0.8517.

Similar to the ACE inhibitory peptide dataset, we also visualized the loss function 
of the model on the ACP dataset. As shown in Fig. 7. As can be seen from the curves, 
the loss values ​​of the three models gradually decreased with the training iterations and 
tended to stabilize near the end of training. The loss value of the CapsuleGAN model 
decreased rapidly in the first few iterations and then entered a stable stage. The loss 

Fig. 5  Loss function of the model training on the ACE inhibitory peptide dataset. A Loss function of the 
CapsuleGAN model. B Loss function of the CNN model. C Loss function of the GRU model

Table 3  Performance evaluation of each method in the ACP dataset

Bold values indicate the highest values for each respective indicator

The stacking method uses CapsuleGAN, GRU, and CNN as base classifiers and CNN as meta-classifier to obtain the highest 
prediction value. The weight ratio of GRU, CNN, and CapsuleGAN in the voting method is 1:7:2

Method ACC​ Sn Sp MCC

GRU​ 0.733 0.728 0.740 0.467

CNN 0.740 0.753 0.730 0.482

CapsuleGAN 0.750 0.753 0.749 0.501

Stacking 0.776 0.791 0.762 0.553

Voteing 0.779 0.786 0.773 0.558

Fig. 6  Model performance on the ACP dataset. A ROC curve. B PR curve
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curve of the CNN model has an obvious downward trend, which gradually stabilized 
after 50 iterations. There were slight fluctuations, but the overall trend remained con-
vergent. The GRU model also showed a gradual downward trend, with a lower fluctua-
tion amplitude in the final stage. Overall, the loss curves of the three models showed 
good convergence, without obvious overfitting or loss value recovery. This shows that 
the model maintains stability during the training process on the ACP dataset and suc-
cessfully avoided the overfitting problem caused by the complexity of the model.

Comprehensive analysis

A comprehensive analysis of different methods is conducted on the two data sets. Fig-
ure 8 shows the performance of different methods under multiple performance indica-
tors on the ACE inhibitory peptide and ACP datasets, including AUC, BACC, MCC, 
Sn and Sp. According to the performance comparison analysis, the ensemble learn-
ing method shows obvious advantages on both datasets. Whether it is on core perfor-
mance indicators such as AUC, BACC or MCC, Stacking and Voting are significantly 
better than a single classifier. In particular, Voting effectively improves the accuracy 
and robustness of classification by combining the results of multiple classifiers. These 
results demonstrate that ensemble learning methods have significant application pros-
pects in the functional peptide classification task of ACE inhibitory peptides and ACP 
datasets. In addition, although GRU and CNN perform better on some indicators as a 

Fig. 7  Loss function of model training on the ACP dataset. A Loss function of the CapsuleGAN model. B Loss 
function of the CNN model. C Loss function of the GRU model

Fig. 8  Model performance analysis. A Performance of each model on the ACE inhibitory peptide dataset. B 
Performance of each model on the ACP dataset
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single classifier, they still cannot surpass the comprehensive effect of ensemble learning 
in terms of overall performance.

Evaluate the effectiveness of experimental methods

In order to verify the effectiveness of this experimental method, we collected some exist-
ing experimental methods for predicting ACPs and the activity of ACE inhibitory pep-
tides, and compared them with our experimental results.

Performance comparison on ACE inhibitory peptide dataset

The first is the prediction of ACE inhibitory peptide activity. The experimental results 
are shown in Table 4 and Fig. 9. In Table 4 and Fig. 9, we compare the proposed ensem-
ble learning method (DeepBP) with the existing pLM4ACE method (including three 
variants of LR, SVM and MLP). The overall results show that DeepBP shows clear 
advantages on multiple key performance indicators.

The ensemble learning model surpasses existing methods in core indicators such as 
BACC, Sn, MCC and AUC. The improvement in BACC and Sn indicators is particularly 
significant, indicating that ensemble learning can handle data imbalance and identify 
positive samples. Have better performance. Although the LR variant of pLM4ACE has a 
slight advantage in Sp, DeepBP still shows stronger robustness performance.

Table 4  Comparison with existing methods on ACE inhibitory peptide dataset

Bold values indicate the highest values for each respective indicator
# Indicates that the experimental results come from Ref. [24]

Method BACC​ Sn Sp MCC AUC​

pLM4ACE (LR)# 0.883 0.845 0.920 0.770 0.960

pLM4ACE (SVM)# 0.867 0.825 0.910 0.740 0.955

pLM4ACE (MLP)# 0.855 0.815 0.895 0.711 0.951

DeepBP 0.926 0.960 0.891 0.831 0.966

Fig. 9  Comparison with existing methods on ACE inhibitory peptide dataset
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Performance comparison on ACP dataset

The experimental comparison of the ACP data set is shown in Table  5 and Fig.  10. 
Table  5 and Fig.  10 show the comparison between DeepBP and various existing algo-
rithms on the ACP dataset. Through these results, we can see that DeepBP shows supe-
riority in multiple indicators, especially in important indicators such as ACC, Sn and 
MCC, which are superior to existing methods.

On the ACC and Sn metrics, DeepBP achieves scores of 0.779 and 0.786, respectively, 
which are higher than most existing algorithms. Especially when compared with the 
better-performing AntiCP_2.0 (ACC = 0.754, Sn = 0.775) and ACP-NLP (ACC = 0.762, 
Sn = 0.732), DeepBP shows significant performance improvement. This shows that 
DeepBP has higher accuracy and sensitivity in identifying positive samples, further val-
idating its effectiveness in ACP identification tasks. On the MCC index, DeepBP also 
achieves outstanding results (MCC = 0.558), which is significantly better than most com-
parison methods. This result shows that the ensemble learning model has advantages in 
handling sample imbalance and providing more balanced classification results. Although 

Table 5  Comparison with existing methods on the ACP dataset

Bold values indicate the highest values for each respective indicator
# Indicates that the experimental results come from Ref. [25]

Method ACC​ Sn Sp MCC

AntiCP_2.0# 0.754 0.775 0.734 0.510

AntiCP# 0.506 1.000 0.012 0.070

ACPred# 0.535 0.856 0.214 0.090

ACPred-FL# 0.448 0.671 0.225 -0.120

ACPred-Fuse# 0.689 0.692 0.686 0.380

AEPred-Suite# 0.535 0.331 0.738 0.080

iACP# 0.551 0.779 0.322 0.110

RoBERTa# 0.762 0.732 0.800 0.528

DeepBP 0.779 0.786 0.773 0.558

Fig. 10  Comparison with existing methods on the ACP dataset
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some existing algorithms (such as AntiCP and AEPred-Suite) have advantages in spe-
cific tasks in terms of Sp indicators, DeepBP is more stable in overall performance based 
on various indicators. DeepBP can ensure high sensitivity while also taking into account 
classification accuracy and robustness, providing strong support for the prediction of 
ACP functional peptides. Through this comparison, the advantages of ensemble learning 
are further verified on the ACP dataset, demonstrating its broad applicability in func-
tional peptide prediction tasks.

Discussion
Bioactive peptides refer to small molecule fragments generated during protein decom-
position. They play an important role in regulating physiological functions, enhancing 
immunity, antibacterial, anticancer and lowering blood pressure. Among them, ACE 
inhibitory peptides are a class of bioactive peptides that can inhibit the activity of ACE. 
They mainly block ACE from converting angiotensin I into angiotensin II with a pressor 
effect in the body, thereby playing a role in lowering blood pressure. ACPs are a class 
of bioactive peptides that work by inhibiting the proliferation of cancer cells or induc-
ing apoptosis of cancer cells. These peptides usually inhibit tumor growth and spread by 
destroying cancer cell membranes or interfering with intracellular signal transduction 
pathways.

The significance of this study is to use modern deep learning and ensemble learning 
technologies to develop a new algorithm model that can effectively predict peptides. 
Peptide molecules have broad application potential in the field of biomedicine, but due 
to their wide variety and complex functions, traditional experimental screening methods 
are time-consuming and labor-intensive, and difficult to carry out on a large scale. By 
introducing computational models, especially feature extraction methods based on pro-
tein language models (such as ESM-2), this study greatly improved the accuracy and effi-
ciency of prediction. This can not only accelerate the discovery of functional peptides, 
but also provide important theoretical support and technical guarantees for related 
drug development and disease treatment. In addition, this study also has certain clinical 
relevance, mainly reflected in the practical application of peptide function prediction. 
Through the accurate prediction of ACE inhibitory peptide activity and ACPs, the study 
provides important support for the development of new drugs. ACE inhibitory pep-
tides have potential application value in the treatment of hypertension, while ACPs may 
become an auxiliary tool for cancer treatment. Accurately predicting the active func-
tions of these peptides can accelerate the new drug screening and development process, 
reduce experimental costs, and improve the efficiency of drug development. Therefore, 
this study has important academic value and application prospects in the fields of bioin-
formatics and drug development.

Although this study significantly improved the prediction accuracy of functional pep-
tides through ensemble learning and deep learning methods, there are still some limita-
tions. First, the dataset used is relatively limited, especially the sample size of peptides 
(such as ACE inhibitory peptides and ACPs) may be insufficient, which to some extent 
affects the generalization ability of the model. The model may show a decrease in pre-
diction performance when dealing with new or under-characterized peptides. Second, 
the protein language model (such as ESM-2) used in this study is mainly trained based 
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on existing large-scale protein sequence databases, so the performance of the model 
depends on the quality and coverage of the training data. For some peptides that have 
not been widely studied or whose functional properties are not yet clear, the model 
may not be able to effectively extract features or make accurate predictions. In addition, 
although the ensemble learning method showed good prediction results in this study, 
its complexity also brings about an increase in computational costs. Large-scale data 
training and model optimization require high computing resources, which may become 
a bottleneck in practical applications, especially in resource-constrained environments. 
Finally, although the model in this study performed well in many performance indica-
tors, its prediction of the biological activity of peptides is still based on sequence infor-
mation, and fails to fully consider the structural information of peptides and the actual 
performance in experimental environments. Therefore, future research may need to 
combine more biological characteristics and experimental data to further improve the 
reliability and practicality of the model.

Conclusion
This study used an ensemble learning method to systematically analyze and evaluate 
the prediction of peptides. By combining multiple deep learning models (such as GRU, 
CNN, CapsuleGAN) and ensemble strategies such as voting, the study verified the effec-
tiveness of ensemble learning in processing functional peptide prediction tasks. Exper-
imental results show that the ensemble learning method has achieved good results in 
multiple performance indicators. On the ACE inhibitory peptide dataset, the BACC is 
0.926, the MCC is 0.831, and the AUC is 0.966. On the ACP dataset, the ACC is 0.779 
and the MCC is 0.558. All are better than the existing experimental methods.

In addition, this experiment also made full use of the features extracted by the protein 
language model-ESM-2 to further improve the prediction ability of the model. By com-
paring the existing prediction methods, the ensemble model proposed in this study has 
shown superior performance in terms of accuracy, sensitivity, specificity, etc., proving 
the practicality and effectiveness of this method in peptide screening.

In general, the ensemble learning method used in this study not only provides an effi-
cient and accurate way to predict functional peptides, but also provides new ideas and 
methods for future research on peptide molecules in the biomedical field.
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