
Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you 
modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of 
it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise 
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted 
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy 
of this licence, visit http:// creat iveco mmons. org/ licen ses/ by- nc- nd/4. 0/.

RESEARCH

Wang et al. BMC Bioinformatics          (2024) 25:355  
https://doi.org/10.1186/s12859-024-05975-4

BMC Bioinformatics

Robust double machine learning model 
with application to omics data
Xuqing Wang1†, Yahang Liu1†, Guoyou Qin1,2* and Yongfu Yu1,2* 

Abstract 

Background: Recently, there has been a growing interest in combining causal infer-
ence with machine learning algorithms. Double machine learning model (DML), 
as an implementation of this combination, has received widespread attention for their 
expertise in estimating causal effects within high-dimensional complex data. How-
ever, the DML model is sensitive to the presence of outliers and heavy-tailed noise 
in the outcome variable. In this paper, we propose the robust double machine learning 
(RDML) model to achieve a robust estimation of causal effects when the distribution 
of the outcome is contaminated by outliers or exhibits symmetrically heavy-tailed 
characteristics.

Results: In the modelling of RDML model, we employed median machine learning 
algorithms to achieve robust predictions for the treatment and outcome variables. 
Subsequently, we established a median regression model for the prediction residu-
als. These two steps ensure robust causal effect estimation. Simulation study show 
that the RDML model is comparable to the existing DML model when the data follow 
normal distribution, while the RDML model has obvious superiority when the data 
follow mixed normal distribution and t-distribution, which is manifested by having 
a smaller RMSE. Meanwhile, we also apply the RDML model to the deoxyribonucleic 
acid methylation dataset from the Alzheimer’s disease (AD) neuroimaging initiative 
database with the aim of investigating the impact of Cerebrospinal Fluid Amyloid β 42 
(CSF A β42) on AD severity.

Conclusion: These findings illustrate that the RDML model is capable of robustly 
estimating causal effect, even when the outcome distribution is affected by outliers 
or displays symmetrically heavy-tailed properties.

Keywords: Causal inference, Observational study, Double machine learning, Outlier, 
Heavy-tailed, Robustness

Background
Causal inference holds paramount importance in biomedical research. The gold stand-
ard for causal inference is typically the Randomized Controlled Trial (RCT) [3, 32]. 
However, the implementation of RCTs frequently encounters challenges related to ethi-
cal considerations, participant compliance, and time cost [32]. Consequently, research-
ers often explore causality through observational studies; nevertheless, these studies are 
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subject to confounding bias due to the lack of randomization. The propensity score (PS) 
method is widely employed in observational studies to adjust for measured confounders. 
Yet this method heavily depends on the correct specification of the model; any misspeci-
fication may lead to biased estimates. Furthermore, when dealing with datasets with 
high-dimensional covariates-such as omics data-the curse of dimensionality poses sig-
nificant issues, making PS estimation exceedingly complex. Therefore, addressing prob-
lems related to model misspecification and variable dimensionality while performing 
reliable causal inference on high-dimensional, complex biological information datasets 
remains a substantial challenge in observational studies.

Currently, there is a growing body of literature that explores the integration of 
machine learning techniques into causal inference to address the above issues [2, 23, 24]. 
Notably, the double machine learning (DML) model proposed by Chernozhukov et al. 
has garnered widespread attention [2]. Within the framework of a partially linear model, 
DML allows for the estimation of the average treatment effect. The estimation process 
can be decomposed into two stages: in the first stage, machine learning algorithms are 
employed to predict both treatment and outcome variables; in the second stage, a least 
squares regression model is constructed to estimate the treatment effect. The machine 
learning techniques introduced in the DML model are not only capable of handling com-
plex function forms for variables such as quadratic terms and interaction terms, but also 
of relaxing the constraint on variables dimensionality. This effectively solves the problem 
of model misspecification caused by complex function forms and the curse of dimen-
sionality associated with high-dimensional data. Furthermore, the cross-fitting tech-
nique adopted in the two-stage estimation process of DML eliminates the regularization 
bias introduced by machine learning techniques. At present, DML has been extended 
to more complex causal models to identify more intricate causal effects [6, 7, 21, 22]. 
For instance, Farbmacher et  al. [6] combined causal mediation analysis with DML to 
propose estimation methods for natural direct effect, natural indirect effect, and con-
trolled direct effect in contexts with numerous potential confounding variables. Bodory 
et al. [7] integrated dynamic analysis with DML method to measure the causal effects of 
multiple treatment variables over different periods and employed weighted estimation 
to assess dynamic treatment effects for specific subgroups, thus enhancing the dynamic 
quantification extension of DML models.

However, the existing research based on DML model mostly use traditional machine 
learning techniques for prediction, which can achieve satisfactory prediction results 
when the data is free from outliers and follows normal distribution. In the field of bio-
informatics, the observational data collected frequently contains outliers [27–29]. An 
outlier, or outlying observation, is one that appears to deviate markedly from other 
members of the sample in which it occurs [25, 26]. In our real data application, we used 
the Alzheimer’s disease neuroimaging initiative (ADNI) dataset to explore the impact 
of Cerebrospinal Fluid Amyloid β 42 (CSF A β42) on AD severity, with AD severity serv-
ing as the outcome variable and being measured by 11-item Alzheimer’s Disease Assess-
ment Scale (ADAS-11) cognitive scores. Nevertheless, we have detected some potential 
outliers in the ADAS-11 cognitive scores through residual analysis, as shown in Fig. 3. 
In such a case, the sensitivity of traditional machine learning models to outliers in the 
outcome variable can hinder achieving satisfactory prediction results within the DML 
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framework. Fuhr et al. [1] conducted simulation experiments comparing multiple DML 
models based on different machine learning techniques, finding that smaller predic-
tion errors in the first stage correlated with superior estimation performance in the sec-
ond stage. Therefore, poor prediction performance caused by outliers impacts the final 
causal effect estimation of DML. In addition, many bioinformatics data such as genomic 
data exhibit heavy-tailed distribution [34]. Heavy-tailed distribution has thicker tails 
compared to normal distribution, which can accommodate outliers in the data [35]. 
Thus, applying DML model to datasets with heavy-tailed noise in the outcome varia-
ble may also lead to unreliable estimate of treatment effect. Owing to the fact that the 
median regression model demonstrates a certain degree of robustness to outliers and 
heavy-tailed noise [30], combining machine learning models with median regression 
can enhance the robustness of machine learning models to outliers heavy-tailed noise, 
improve prediction accuracy, and further obtain more reliable causal effect estimate. In 
this paper, to reduce the impact of outliers and heavy-tailed noise in the outcome vari-
able on the causal effect estimation of DML model, we propose a robust double machine 
learning (RDML) model within the framework of partially linear regression model. Our 
proposal differs from the DML proposed by Chernozhukov et al. [2] in that it employs 
median machine learning methods instead of traditional machine learning methods for 
predicting treatment and outcome variables in the first stage, and in the second stage, 
it uses linear median regression model instead of an ordinary least squares regression 
model to estimate treatment effect. Simulation results indicate that when the outcome 
variable follows a standard normal distribution, our proposed model is comparable to 
general DML model. However, when the outcome variable follows a mixture of normal 
distributions or t-distribution, our proposal demonstrates significant advantages over 
general DML model, as evidenced by a smaller mean squared error.

This paper is organized as follows. First, we begin with a brief introduction to the 
DML model and propose the new model of RDML. Next, several numerical simulations 
are implemented to illustrate the superior performance of our proposal. Then, we apply 
the RDML model to the deoxyribonucleic acid methylation dataset from the Alzheimer’s 
disease (AD) neuroimaging initiative database to investigating the impact of Cerebrospi-
nal Fluid Amyloid β 42 (CSF A β42) on AD severity. Finally, we conduct some discussion.

Methods
Double machine learning

In this section, we review the double machine learning model [2]. Considering the fol-
lowing partial linear regression (PLR) model,

where D represents the continuous treatment variable and Y denotes the continuous out-
come variable. The vector (X1, . . . ,Xp)

T comprises p-dimensional observable confound-
ing variables, while U and V are disturbance terms and follow symmetric distribution. 
We assume that the functional forms m(·) and g(·) , which describe the effects of X on D 
and Y, respectively, are unknown. Additionally, we posit that the effect of D on Y is linear. 

(1)Y =Dθ0 + g0(X)+U ,E[U |X ,D] = 0,

(2)D =m0(X)+ V ,E[V |X] = 0
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Our main interest is to estimate the average treatment effect of D on Y, i.e., θ0 , where 
θ0 is a scalar. The DML model proposed by Chernozhukov et  al. [2] serves as a novel 
method for estimating θ0 . This approach leverages machine learning algorithms to relax 
assumptions about functional forms and constraints on variable dimensionality, thereby 
enabling the flexible handling of high-dimensional complex datasets. Additionally, it 
incorporates the cross-fitting technique to eliminate regularization bias introduced by 
machine learning algorithms. The specific estimation steps of this model are as follows: 
Firstly, randomly divide the dataset into K subsamples. Secondly, for each K-th subsam-
ple, use the remaining K-1 samples to train two machine learning models for D and Y 
with respect to X. Thirdly, apply the trained machine learning models to predict the 
conditional expectation of D given X, E(D|X) and the conditional expectation of Y given 
X, E(Y|X) for the K-th subsample. Next, obtain the residuals of D and Y by subtracting 
the predicted values from their actual values. Then, fit a ordinary least squares model of 
the residuals of Y on the residuals of D, i.e., Y − Ê(Y |X) = [D − Ê(D|X)]θ0 +U  , define 
score function

It has been proved in Chernozhukov et al. [2] that θ0 satisfies both the moment condition 
Eψ(W ; θ0, η0) = 0 , and the orthogonality condition ∂ηEψ(W ; θ0, η0)[η − η0] = 0 where 
η0 = (g0,m0) , g0(X) = E(Y |X) and m0(X) = E(D|X) . Based on the moment condition, 
we can solve for θ0 using the K-th subsample. Finally, average these K estimates to obtain 
the final causal effect estimate.

Robust double machine learning

Existing DML model employs traditional machine learning algorithms to predict E(D|X) 
and E(Y|X) in the first stage. When the data follows a normal distribution and free from 
outliers, machine learning algorithms can flexibly handle high-dimensional complex 
data structures, achieving satisfactory predictive performance. However, if the data is 
contaminated by outliers or heavy-tailed noise, the predictive accuracy of traditional 
machine learning models is compromised. Therefore, in order to avoid the impact of 
inaccurate predictions of D and Y in the first stage on the estimation of regression coef-
ficient in the second stage, we propose a robust double machine learning model.

The first phase

Considering the robustness of median regression in machine learning models against 
outliers and heavy-tailed noise, we employs machine learning median regression models 
such as Median Regression Forests model [36] and eXtreme Gradient Boosting Median 
Regression model [37] instead of traditional machine learning models in the first phase 
of our RDML framework. In this phase, we make predictions for conditional medians 
of D and Y with respect to X, obtaining prediction results denoted as Q̂0.5(D|X) and 
Q̂0.5(Y |X) respectively.

(3)
ψ(W ; θ , η) := −

1

2

d
{
Y − Ê(Y |X)−

[
D − Ê(D|X)

]
θ

}2

dθ

=
{
Y − Ê(Y |X)−

[
D − Ê(D|X)

]
θ

}[
D − Ê(D|X)

]

=
{
Y − g(X)− [D −m(X)]θ

}
[D −m(X)], η = (g ,m).
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The second phase

For the prediction results Q̂0.5(D|X) and Q̂0.5(Y |X) obtained in the first phase, sub-
tracting the predicted values from the true values yields residuals V̂D = D − Q̂0.5(D|X) 
and V̂Y = Y − Q̂0.5(Y |X) , respectively. Subsequently, fit a median regression model of 
V̂Y  on V̂D . The causal effect estimate, denoted as θ̂0 , is then derived by minimizing the 
following equation:

The detailed steps of the RDML model can be found in Algorithm 1.

Simulations
In this section, to evaluate the performance of the proposed RDML model, we con-
ducted the following simulation study.

Data generation process 1

We first consider the following data generation process (DGP):

where X = (X1,X2,X3,X4) are randomly generated from a multivariate normal dis-
tribution with mean 0 and covariance � , denoted as N (0,�) , � = AAT , A is a four-
dimensional column vector, with each element randomly generated from the normal 
distribution N(0, 0.5). In addition, we set α1 = α2 = 0.5 , δj = γj = t, j = 1, 2, 3, 4, 5 rep-
resent the magnitude of the confounding coefficient, and the sample size is denoted as n. 

(4)θ̂0 = arg min
θ0

�V̂Y − θ0V̂D�1.

(5)D =α1 + δ1X1 + δ2X
2
2 + δ3X1X2 + δ4|X3| + δ5X

3
4 +U

(6)Y =α2 + Dθ + γ1X1 + γ2X
2
2 + γ3X1X2 + γ4|X3| + γ5X

3
4 + V
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For t and n, we consider the following three combinations: (t, n) = (0.3, 200) , (0.6, 200), 
and (0.3, 500).

In order to fully explore the robustness of the proposed model to the presence of outli-
ers and symmetrically heavy-tailed noise in the outcome variable, we set the noise term 
U to follow a standard normal distribution, but for the noise term V, consider the follow-
ing three scenarios:

Scenario 1

In Scenario 1, we postulate that the noise term V follows a standard normal distribution, 
specifically N(0, 1). Consequently, both the treatment variable D and the outcome vari-
able Y exhibit symmetric and light-tailed distributions, resulting in a low probability of 
outlier generation.

Scenario 2

In Scenario 2, to assess the robustness of the proposed model in the presence of outliers 
in the outcome variable, we specify that the noise term V follows a mixture of normal 
distributions. This mixture is constructed by combining several distinct normal distribu-
tions with specific weights. In our simulation study, we focus on a mixture consisting of 
two normal distributions, both with a mean of 0, but with variances of 1 and 100, respec-
tively. The incorporation of a component with a significantly larger variance alongside 
the standard normal distribution introduces a long-tail behavior, which is more suscep-
tible to outlier generation. Recognizing that higher mixing proportions elevate the likeli-
hood of outlier occurrence, we systematically vary the mixing weights to 0.1, 0.2, and 
0.3, aiming to explore their influence on the estimation of causal effect within our mod-
eling framework.

Scenario 3

In Scenario 3, we assume that V follows a t-distribution. When the degree of freedom 
(df) at a low level, the t-distribution exhibits heavier tail compared to standard normal 
distribution, thereby increasing the probability of extreme values occurring. As the df 
increase, the t-distribution gradually approaches the standard normal distribution. In 
our simulations, we set df of t-distribution to be 1.5 and 3.

Regarding the simulated data generated, we have constructed two robust DML mod-
els utilizing Median Regression Forest (MRF) and eXtreme Gradient Boosting Median 
Regression (MXGBoost) as the respective machine learning algorithms, which aim to 
predict the treatment variable D and outcome variables Y. To facilitate comparison 
with robust DML models, we have further developed two corresponding general DML 
models, employing Random Forest (RF) and eXtreme Gradient Boosting (XGBoost) 
Regression as predictors. The chosen predictors, namely RF and XGBoost are ensemble 
learning algorithms that are widely recognized in the field of machine learning. They 
operate by generating multiple weak learners and subsequently combining them to 
enhance the model’s accuracy and generalization capability. All four DML models adopt 
two-fold cross-fitting technique to mitigate the regularization bias inherent in machine 
learning algorithms. Each machine learning algorithm utilized default hyperparameters, 
and the DGP is replicated 100 times for each model. For the purpose of comparing and 
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analyzing the performance of these models, our study used relative bias and root mean 
square error (RMSE) as the primary evaluation metrics.

Data generation process 2

To further investigate the impact of the number of confounding variables on model per-
formance, we consider the following second DGP.

where δj = γj = t/j, j = 1, 2, ..., p represent the confounding coefficients, whose value 
decrease as j increase. Two combinations are considered for the sample size (n) and vari-
able dimensions (p): (n, p) = (200, 20) and (500, 50). For the generation of the noise term 
V, in order to investigate the robustness of models to outliers in the outcome variable, 
we also consider three different generating distributions for V: normal, mixture of nor-
mal and, t-distribution. Additionally, the generation of other variables and the setting of 
parameters remain consistent with those described in the previous subsection.

Scenario 4

In Scenario 4, we assume that V follows a standard normal distribution, implying that 
the distribution of the outcome variable Y exhibits symmetry and light tails, thereby 
resulting in a low likelihood of generating outliers.

Scenario 5

In Scenario 5, with the aim of investigating the robustness of different models to the 
presence of outliers in the outcome variable Y, we model V as a mixture of normal distri-
butions, with the mixture ratios set to 0.1, 0.2, and 0.3.

Scenario 6

In Scenario 6, to examine the robustness of various models against heavy-tailed noise, 
we model the noise term V as a t-distribution while considering two cases for the degrees 
of freedom parameter: 1.5 and 3.

Simulation results

We have summarized all computational results of the four models under different set-
tings in Tables 1, 2, 3, 4, 5, 6 and 7, and plotted box plots of the causal effect estimates 
from 100 simulations for some settings in Figs. 1 and 2.

Regarding DGP1, all results are shown in Tables  1, 2 and 3. From Table  1, which 
shows the results for six data distributions with n=200 and t=0.3, when both D and 
Y follow a standard normal distribution, the four models of Dml_RF, Dml_XGBoost, 
RDml_RF, and RDml_XGBoost all exhibit relatively small biases and RMSE values. 

(7)D =α1 +

p∑

j=1

δjX
2
j + U

(8)Y =α2 + Dθ +

p∑

j=1

γjX
2
j + V
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When the noise term V is drawn from a mixed normal distribution, the RMSE values 
of two general DML models increase significantly compared to those obtained under 
the standard normal distribution. Furthermore, as the mixing proportion gets larger, 
the extent of RMSE value increment becomes greater. Specifically, at a mixing ratio 
of 0.3, compare with a mixing ratio of 0, the RMSE values increase from 0.1556 and 
0.1898 to 0.4860 and 0.4734, respectively for the Dml_RF and Dml_XGBoost models. 
This indicates that general DML models are not robust to outliers in the outcome 
variable. While the RMSE values of the two robust DML models also increase to some 
extent, the increment is slight. At a mixing ratio of 0.3, the RMSE values of two robust 
DML models are close to half of those of the corresponding general DML models. 
When the noise term V follows a t-distribution, as the degree of freedom decrease, 
the RMSE values of the two general DML models increase by 165.31% and 161.20%, 
respectively. However, the two robust DML models maintain relatively robust perfor-
mance, exhibiting no significant changes in both bias and RMSE metrics. To provide 
a more intuitive presentation of the estimation results from different models, we have 
plotted box plots for each scenario under DGP1 with n=200 and t=0.3 in Fig. 1. It can 

Table 1 Simulation results from DGP 1 with n=200 and t=0.3

Notations: The minimum Bias and RMSE have been indicated in bold. RMSE is calculated as 
√

1

M

∑
M

m=1
(θ̂m

0
− θ0)2  , where M 

denotes the number of simulations; Bias(% ) refers to Relative Bais is calculated as 
(

1

M

∑
M

m=1
θ̂m
0

− θ0

)/
θ0 × 100%

Distributions Methods Estimate Bias(%) RMSE

N(0, 1) Dml_RF 1.0483 4.8291 0.1556

Dml_XGBoost 1.0659 6.5887 0.1898

RDml_MRF 1.0230 2.3019 0.1431
RDml_MXGBoost 1.0020 0.2038 0.1636

0.9N(0, 1)+ 0.1N(0, 102) Dml_RF 1.0221 2.2104 0.3338

Dml_XGBoost 1.0580 5.8013 0.3250

RDml_MRF 1.0086 0.8597 0.1524
RDml_MXGBoost 0.9980 −0.1971 0.1684

0.8N(0, 1)+ 0.2N(0, 102) Dml_RF 1.0189 1.8889 0.4229

Dml_XGBoost 1.0768 7.6789 0.4251

RDml_MRF 0.9937 −0.6287 0.1830
RDml_MXGBoost 0.9826 −1.7397 0.1849

0.7N(0, 1)+ 0.3N(0, 102) Dml_RF 0.9819 −1.8113 0.4860

Dml_XGBoost 1.0254 2.5400 0.4734

RDml_MRF 0.9931 −0.6901 0.2360
RDml_MXGBoost 0.9899 −1.0102 0.2459

t(3) Dml_RF 1.0616 6.1591 0.2070

Dml_XGBoost 1.0701 7.0124 0.2237

RDml_MRF 1.0420 4.1956 0.1855
RDml_MXGBoost 1.0302 3.0224 0.1875

t(1.5) Dml_RF 1.0770 7.6975 0.5492

Dml_XGBoost 1.1257 12.5715 0.5843

RDml_MRF 1.0331 3.3131 0.2392

RDml_MXGBoost 1.0361 3.6095 0.2167
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be clearly observed that, except for cases where the data follow a standard normal 
distribution or a t-distribution with 3 degrees of freedom, the general DML models 
exhibit unstable estimation results characterized by high variance. In contrast, RDML 
models demonstrate small variance across all scenarios. These findings are consistent 
with those presented in Table 1. For Table 2, the simulation results are shown with 
all other settings kept the same as in Table 1, but with the confounding coefficients 
increased from 0.3 to 0.6. From these results, we can draw similar conclusions as 
those from Table 1. Additionally, a comparison between Tables 1 and 2 reveals that as 
the confounding coefficient increases, both bias and RMSE for the four models gen-
erally exhibit an upward trend in most settings. Table 3 shows the simulation results 
when the sample size is increased to 500 while keeping the confounding coefficient at 
0.3. Comparing Tables 1 and 3 indicates that for robust DML models, an increase in 
sample size leads to a reduction in RMSE values across all settings.

Fig. 1 Box plots of the estimates of θ for 100 simulations under DGP 1 with n=200 and t=0.3. The solid red 
line and dashed blue line represent the median and mean of 100 estimates, respectively, while the black dots 
signify outliers
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Concerning DGP 2, we vary the data generation process while augmenting the 
number of confounding variables. The simulation results are summarized in Tables 4, 
5, 6 and 7, and Fig. 2 corresponds to the estimated results of Table 4. Tables 4 and 
5 are related to the settings of (n, p) = (200, 20) , from Table 4, we observe that while 
the biases in the causal effect estimates of Dml_RF and Dml_XGBoost remain low, 
there is a considerable increase in RMSE compared to a standard normal distribu-
tion, particularly when the mixture ratio set to 0.3. As the coefficient of confounding 
increases, Table 5 indicates that the general DML models exhibit poor performance 
in both bias and RMSE metrics. Furthermore, when the noise term V adheres to a 
t-distribution and the degree of freedom vary from 3 to 1.5, regardless of whether 
the confounding coefficient is set to 0.3 or 0.6, the bias and RMSE values of the gen-
eral DML models increase to some extent, particularly in terms of RMSE. Above 
analyses reaffirm that the general DML models are not robust to outliers in the out-
come variables. In contrast, the robust DML models, when the noise term V follows 
a mixed normal distribution or a t-distribution, generally demonstrate smaller biases 
and RMSE values compared to the general DML models. Similar conclusions can 
be drawn for the setting of (n, p) = (500, 50) from the results presented in Tables  6 
through 7.

Table 2 Simulation results from DGP 1 with n=200 and t=0.6

Notations: The minimum Bias and RMSE have been indicated in bold. RMSE is calculated as 
√

1

M

∑
M

m=1
(θ̂m

0
− θ0)2  , where M 

denotes the number of simulations; Bias(% ) refers to Relative Bais is calculated as 
(

1

M

∑
M

m=1
θ̂m
0

− θ0

)/
θ0 × 100%

Distributions Methods Estimate Bias(%) RMSE

N(0, 1) Dml_RF 1.1098 10.9843 0.2268

Dml_XGBoost 1.1553 15.5257 0.2926

RDml_MRF 1.0524 5.2364 0.1681
RDml_MXGBoost 1.0731 7.3140 0.2388

0.9N(0, 1)+ 0.1N(0, 102) Dml_RF 1.0941 9.4077 0.3642

Dml_XGBoost 1.1435 14.3508 0.3858

RDml_MRF 1.0470 4.7039 0.1860
RDml_MXGBoost 1.0581 5.8104 0.2169

0.8N(0, 1)+ 0.2N(0, 102) Dml_RF 1.0923 9.2261 0.4405

Dml_XGBoost 1.1616 16.1625 0.4716

RDml_MRF 1.0346 3.4556 0.2105
RDml_MXGBoost 1.0291 2.9127 0.2367

0.7N(0, 1)+ 0.3N(0, 102) Dml_RF 1.0562 5.6168 0.4921

Dml_XGBoost 1.1132 11.3185 0.5184

RDml_MRF 1.0350 3.5049 0.2476
RDml_MXGBoost 1.0331 3.3094 0.2635

t(3) Dml_RF 1.1298 12.9794 0.2674

Dml_XGBoost 1.1661 16.6110 0.3225

RDml_MRF 1.0808 8.0813 0.2191

RDml_MXGBoost 1.0885 8.8548 0.2643

t(1.5) Dml_RF 1.1404 14.0365 0.5486

Dml_XGBoost 1.1984 19.8380 0.6100

RDml_MRF 1.0745 7.4501 0.2755
RDml_MXGBoost 1.0983 9.8318 0.2881
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Real data application
In this section, we apply both the proposed robust double machine learning model 
and the general double machine learning model to the ADNI dataset with the aim of 
evaluating the impact of Cerebrospinal Fluid Amyloid β 42 (CSF A β42) on AD severity. 
It has been shown that one of the central neuropathological features of Alzheimer’s 
disease (AD) is the accumulation of β-amyloid (Aβ ) containing neuriticplaques [10]. 
And the impaired clearance of A β is believed to accounts for 99% of sporadic AD [8]
[9]. As a type of A β , CSF A β 42 containing 42 amino acid residues and present in cer-
ebrospinal fluid, is an important biomarker of AD. As such, exploring the intrinsic 
connection between CSF A β 42 and AD severity, observing changes in the level of CSF 
A β 42 can not only help in the early diagnosis of AD, but also monitor the progress of 
AD patients.

We considered CSF A β 42 level at baseline as an exposure variable and explored 
its causal effect on the outcome variable, AD severity at month 24. For the measure-
ment of outcome variable, we utilized the well-recognized 11-item Alzheimer’s Dis-
ease Assessment Scale (ADAS-11) cognitive score to assess the severity of AD. The 
ADAS-11 scores span from 0 to 70, with higher scores indicating more severe symp-
toms. In addition, to reduce confounding bias, we selected age, gender, educational 

Table 3 Simulation results from DGP 1 with n=500 and t=0.3

Notations: The minimum Bias and RMSE have been indicated in bold. RMSE is calculated as 
√

1

M

∑
M

m=1
(θ̂m

0
− θ0)2  , where M 

denotes the number of simulations; Bias(% ) refers to Relative Bais is calculated as 
(

1

M

∑
M

m=1
θ̂m
0

− θ0

)/
θ0 × 100%

Distributions Methods Estimate Bias(%) RMSE

N(0, 1) Dml_RF 1.0395 3.9460 0.1119

Dml_XGBoost 1.0556 5.5612 0.1575

RDml_MRF 1.0166 1.6626 0.0860
RDml_MXGBoost 1.0094 0.9420 0.1041

0.9N(0, 1)+ 0.1N(0, 102) Dml_RF 1.0219 2.1853 0.2169

Dml_XGBoost 1.0254 2.5400 0.2186

RDml_MRF 1.0187 1.8686 0.0976
RDml_MXGBoost 1.0025 0.2485 0.1081

0.8N(0, 1)+ 0.2N(0, 102) Dml_RF 1.0375 3.7542 0.2763

Dml_XGBoost 1.0245 2.4462 0.2693

RDml_MRF 1.0205 2.0479 0.1172
RDml_MXGBoost 1.0291 2.9127 0.2367

0.7N(0, 1)+ 0.3N(0, 102) Dml_RF 1.0562 5.6168 0.4921

Dml_XGBoost 1.1132 11.3185 0.5184

RDml_MRF 1.0350 3.5049 0.2476

RDml_MXGBoost 0.9979 -0.2124 0.1214
t(3) Dml_RF 1.0242 2.4212 0.1481

Dml_XGBoost 1.0314 3.1431 0.1625

RDml_MRF 1.0082 0.8238 0.0980
RDml_MXGBoost 0.9978 -0.2162 0.1208

t(1.5) Dml_RF 1.0421 4.2147 0.5865

Dml_XGBoost 1.0417 4.1695 0.4773

RDml_MRF 1.0126 1.2557 0.1232

RDml_MXGBoost 0.9998 -0.0203 0.1020
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attainment, and genome-wide CpG sites as candidate covariates for control. Zhang 
et al. found that the epigenetic changes linked to various pathological processes differ 
between cognitively normal individuals (some of whom may later develop Alzheimer’s 
disease) and patients with Alzheimer’s disease [11]. Furthermore, they identified a 
variety of novel associations between DNAm at multiple CpG sites in blood and CSF 
biomarkers, including CSF A β42, suggesting that changes in various pathological pro-
cesses in the CSF are reflected in the blood epigenome [11]. In total, we collected data 
from 321 participants containing the above variables, with all covariates measured at 
baseline.

For data preprocessing, we first performed following operations on the DNAm data: 
(i) discarding probes with a P-value greater than 0.05; (ii) excluding probes associ-
ated with gender; (iii) removing probes containing SNPs at CpG sites; (iv) eliminat-
ing cross-reactive probes, and (v) averaging the DNAm levels for samples that were 
measured multiple times [12]. Following this pre-processing procedure, we retained 
865,859 CpG sites as candidate covariates for further analysis. Due to the excessive 
dimensionality of the variables, we then performed epigenome-wide association 
study (EWAS) analyses and chose the leading 100 CpG sites according to the Bon-
ferroni-adjusted P values for each site. In addition, controlling for all confounders in 

Table 4 Simulation results from DGP 2 with n=200, p=20, and t=0.3

Notations: The minimum Bias and RMSE have been indicated in bold. RMSE is calculated as 
√

1

M

∑
M

m=1
(θ̂m

0
− θ0)2  , where M 

denotes the number of simulations; Bias(% ) refers to Relative Bais is calculated as 
(

1

M

∑
M

m=1
θ̂m
0

− θ0

)/
θ0 × 100%

Distributions Methods Estimate Bias(%) RMSE

N(0, 1) Dml_RF 1.0306 3.0586 0.1058

Dml_XGBoost 1.0396 3.9575 0.1139

RDml_MRF 1.0172 1.7187 0.1220

RDml_MXGBoost 0.9759 −2.4059 0.1046

0.9N(0, 1)+ 0.1N(0, 102) Dml_RF 1.0152 1.5211 0.2850

Dml_XGBoost 1.0383 3.8332 0.2895

RDml_MRF 1.0128 1.2791 0.1440

RDml_MXGBoost 0.9893 −1.0707 0.1382

0.8N(0, 1)+ 0.2N(0, 102) Dml_RF 0.9797 −2.0260 0.4523

Dml_XGBoost 1.0261 2.6105 0.4148

RDml_MRF 1.0027 0.2701 0.1828

RDml_MXGBoost 0.9944 −0.5585 0.1681

0.7N(0, 1)+ 0.3N(0, 102) Dml_RF 0.9644 −3.5630 0.5770

Dml_XGBoost 1.0112 1.1245 0.5008

RDml_MRF 0.9915 −0.8470 0.2543

RDml_MXGBoost 0.9879 −1.2094 0.2256
t(3) Dml_RF 1.0447 4.4656 0.1891

Dml_XGBoost 1.0542 5.4169 0.1873

RDml_MRF 1.0294 2.9362 0.1570

RDml_MXGBoost 0.9865 −1.3482 0.1312
t(1.5) Dml_RF 1.0590 5.8990 0.6889

Dml_XGBoost 1.0799 7.9932 0.5932

RDml_MRF 1.0013 0.1277 0.1988

RDml_MXGBoost 0.9864 −1.3567 0.1702
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observational studies is crucial to obtaining unbiased estimate of treatment effect, but 
adding instrumental covariates except for confounders might reduce the efficiency 
of the estimation and incorporating prognostic covariates can enhance estimation 
efficiency [17–20]. Therefore, we subsequently applied the generalized median adap-
tive lasso (GMAL) method to perform variable selection on the 100 CpG sites after 
dimensionality reduction, along with three covariates: age, gender, and education 
level [17]. Ultimately, we selected 44 CpG sites, as shown in Table 8.

Before establishing models to estimate the treatment effect, we first identify potential 
outliers in the outcome variable ADAS-11. In regression analysis, an outlier is typically 
identified when the standardized residual exceeds a given threshold c [32]. Therefore, 
we begin by constructing an ordinary least squares regression model of the outcome 
variable ADAS-11 on the treatment variable CSF A β 42 and covariates selected via the 
GMAL method. Subsequently, we calculate the standardized residuals for each sample 

Fig. 2 Box plots of the estimates of θ for 100 simulations under DGP 2 with n=200, p=20, and t=0.3. The 
solid red line and dashed blue line represent the median and mean of 100 estimates, respectively, while the 
black dots signify outliers
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observation, as illustrated in Fig. 3. In our study, we set c = 2.5 [33]; six observations 
with standardized residuals exceeding this threshold are marked in red and identified as 
outliers. Consequently, it is justifiable to investigate the causal effect of CSF A β 42 on AD 
severity using our proposed RDML model due to its robustness against outliers. For the 
selection of the machine learning model, the tuning of the parameters and the number 
of folds for cross-fitting, we are consistent with the simulation section.

The causal effect estimates and the corresponding 95% confidence intervals (95% 
CIs) for the different models are presented in Table  9. These CIs were calculated 
using bootstrapping with 200 replications. As shown in Table  9, there is a nega-
tive correlation between CSF A β 42 levels and AD scores. This relationship can be 
attributed to the tendency of A β 42 to form plaques in the brains of patients with 
Alzheimer’s disease, resulting in lower concentrations of A β 42 in the CSF. When 
comparing the robust double machine learning model to the general double machine 
learning model, it is evident that the estimate of causal effect from two robust dou-
ble machine learning models are smaller.

Table 5 Simulation results from DGP 2 with n=200, p=20, and t=0.6

Notations: The minimum Bias and RMSE have been indicated in bold. RMSE is calculated as 
√

1

M

∑
M

m=1
(θ̂m

0
− θ0)2  , where M 

denotes the number of simulations; Bias(% ) refers to Relative Bais is calculated as 
(

1

M

∑
M

m=1
θ̂m
0

− θ0

)/
θ0 × 100%

Distributions Methods Estimate Bias(%) RMSE

N(0, 1) Dml_RF 1.0974 9.7404 0.1606

Dml_XGBoost 1.1489 14.8916 0.2222

RDml_MRF 1.0472 4.7156 0.1299
RDml_MXGBoost 1.0538 5.3753 0.1447

0.9N(0, 1)+ 0.1N(0, 102) Dml_RF 1.0796 7.9598 0.2958

Dml_XGBoost 1.1395 13.9486 0.3243

RDml_MRF 1.0458 4.5779 0.1649

RDml_MXGBoost 1.0514 5.1447 0.1632

0.8N(0, 1)+ 0.2N(0, 102) Dml_RF 1.0484 4.8408 0.4542

Dml_XGBoost 1.1330 13.3049 0.4282

RDml_MRF 1.0333 3.3320 0.2023
RDml_MXGBoost 1.0596 5.9632 0.2037

0.7N(0, 1)+ 0.3N(0, 102) Dml_RF 1.0292 2.9197 0.5611

Dml_XGBoost 1.1148 11.4752 0.4997

RDml_MRF 1.0307 3.0722 0.2668

RDml_MXGBoost 1.0579 5.7886 0.2483
t(3) Dml_RF 1.1145 11.4548 0.2218

Dml_XGBoost 1.1604 16.0408 0.2521

RDml_MRF 1.0592 5.9213 0.1651
RDml_MXGBoost 1.0692 6.9174 0.1816

t(1.5) Dml_RF 1.1214 12.1413 0.6805

Dml_XGBoost 1.1850 18.5015 0.5720

RDml_MRF 1.0310 3.1003 0.2008

RDml_MXGBoost 1.0648 6.4836 0.1899
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Discussion
In our article, we have improved the general double machine learning model and 
proposed a robust double machine learning model. Different from the general DML 
model, our proposal employs the median machine learning algorithms in the first 
stage to predict the treatment variable D and the outcome variable Y, and then uti-
lizes the median regression model in the second stage to estimate the causal effect. 
Our proposed model achieves a robust causal effect estimation for outcome varia-
ble with outliers and heavy-tailed noise. Simulation results show that when the data 
follows a mixed normal distribution or a t-distribution, our proposed RDML model 
always performs better than the general DML model. As the mixing proportion in 
the mixed normal distribution increases or the degree of freedom parameter in the 
t-distribution decreases, indicating a longer-tailed or thicker-tailed distribution, the 
probability of generating outliers increases. In such cases, the general DML model 
provides unsatisfactory estimates of causal effect, manifesting as a significant increase 
in RMSE values. However, our proposed model exhibits greater robustness. One pos-
sible explanation is that traditional machine learning algorithms tend to have poor 
generalization performance when outliers exist in the data, which further impacts 

Table 6 Simulation results from DGP 2 with n=500, p=50, and t=0.3

Notations: The minimum Bias and RMSE have been indicated in bold. RMSE is calculated as 
√

1

M

∑
M

m=1
(θ̂m

0
− θ0)2  , where M 

denotes the number of simulations; Bias(% ) refers to Relative Bais is calculated as 
(

1

M

∑
M

m=1
θ̂m
0

− θ0

)/
θ0 × 100%

Distributions Methods Estimate Bias(%) RMSE

N(0, 1) Dml_RF 1.0160 1.6031 0.0665

Dml_XGBoost 1.0215 2.1506 0.0705

RDml_MRF 1.0146 1.4619 0.0775

RDml_MXGBoost 0.9955 -0.4511 0.0589

0.9N(0, 1)+ 0.1N(0, 102) Dml_RF 1.0350 3.4966 0.2187

Dml_XGBoost 1.0187 1.8669 0.2040

RDml_MRF 1.0013 0.1328 0.0888

RDml_MXGBoost 0.9947 −0.5319 0.0793

0.8N(0, 1)+ 0.2N(0, 102) Dml_RF 1.0489 4.8871 0.2846

Dml_XGBoost 1.0288 2.8781 0.2509

RDml_MRF 1.0040 0.4037 0.1044

RDml_MXGBoost 0.9976 −0.2408 0.0938

0.7N(0, 1)+ 0.3N(0, 102) Dml_RF 1.0757 7.5656 0.3328

Dml_XGBoost 1.0548 5.4756 0.2953

RDml_MRF 1.0092 0.9164 0.1339

RDml_MXGBoost 1.0053 0.5279 0.1249
t(3) Dml_RF 1.0218 2.1848 0.1147

Dml_XGBoost 1.0331 3.3080 0.1146

RDml_MRF 1.0096 0.9633 0.1017

RDml_MXGBoost 1.0045 0.4471 0.0818
t(1.5) Dml_RF 0.9095 −9.0519 0.6393

Dml_XGBoost 0.9142 −8.5839 0.5011

RDml_MRF 1.0047 0.4681 0.1099

RDml_MXGBoost 0.9809 −1.9064 0.0980
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the estimation of causal effects in the second stage. Additionally, the ordinary least 
squares regression model in the second stage is also susceptible to the influence of 
outliers. In contrast, our proposed model employs both the median machine learning 

Table 7 Simulation results from DGP 2 with n=500, p=50, and t=0.6

Notations: The minimum Bias and RMSE have been indicated in bold. RMSE is calculated as 
√

1

M

∑
M

m=1
(θ̂m

0
− θ0)2  , where M 

denotes the number of simulations; Bias(% ) refers to Relative Bais is calculated as 
(

1

M

∑
M

m=1
θ̂m
0

− θ0

)/
θ0 × 100%

Distributions Methods Estimate Bias(%) RMSE

N(0, 1) Dml_RF 1.0666 6.6558 0.1107

Dml_XGBoost 1.1202 12.0234 0.1684

RDml_MRF 1.0277 2.7734 0.0811
RDml_MXGBoost 1.0510 5.1043 0.0967

0.9N(0, 1)+ 0.1N(0, 102) Dml_RF 1.0866 8.6573 0.2359

Dml_XGBoost 1.1157 11.5734 0.2462

RDml_MRF 1.0181 1.8117 0.0932
RDml_MXGBoost 1.0450 4.4992 0.1003

0.8N(0, 1)+ 0.2N(0, 102) Dml_RF 1.1020 10.1969 0.2934

Dml_XGBoost 1.1312 13.1221 0.2842

RDml_MRF 1.0184 1.8399 0.1086
RDml_MXGBoost 1.0427 4.2716 0.1099

0.7N(0, 1)+ 0.3N(0, 102) Dml_RF 1.1310 13.0978 0.3405

Dml_XGBoost 1.1549 15.4864 0.3247

RDml_MRF 1.0256 2.5594 0.1336

RDml_MXGBoost 1.0477 4.7657 0.1181
t(3) Dml_RF 1.0723 7.2263 0.1500

Dml_XGBoost 1.1306 13.0592 0.2001

RDml_MRF 1.0268 2.6771 0.1056
RDml_MXGBoost 1.0588 5.8769 0.1176

t(1.5) Dml_RF 0.9605 −3.9480 0.6331

Dml_XGBoost 1.0024 0.2350 0.4992

RDml_MRF 1.0241 2.4114 0.1133
RDml_MXGBoost 1.0489 4.8950 0.1350

Table 8 The CpG sites selected by GMAL method

cg21464891 cg06201680 cg25250374 cg03159926

cg17332016 cg11944093 cg10493585 cg08967134

cg07542043 cg04426031 cg10455672 cg20208633

cg03778029 cg19772847 cg14143728 cg03801758

cg08155817 cg21904271 cg04933176 cg02830555

cg10260572 cg05880455 cg13109095 cg01195881

cg02564761 cg15664161 cg20210263 cg20901246

cg26372998 cg17318529 cg12974637 cg00382930

cg14825116 cg13296755 cg08339744 cg00267207

cg16390418 cg05499127 cg10263181 cg18302890

cg09850632 cg05214708 cg12551751 cg25181751
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algorithms and the median regression model, which perform more robustly against 
outliers.

However, in our simulation study, we did not consider the robustness of the model 
to skewed distributions. Given this limitation, it would be worthwhile to investigate the 
robustness of the model to the presentation of skewed distributions for the outcome 
variable in future studies. Furthermore, in our analysis of the ADNI study, we encoun-
tered a challenge: numerous CpG sites were still present after pre-processing. To address 
this, we first performed an EWAS analysis to reduce the dimensionality of the variables. 
Subsequently, we used the GWAL method for variable selection and finally built both 
general DML and robust DML models. Among the various methods we considered, we 
acknowledge that there may be other more suitable dimension reduction methods worth 
exploring. Additionally, within the framework of our research method, it is possible to 
extend median regression to more flexible quantile regression. This extension allows for 
the estimation of quantile treatment effects and enables us to capture the impact of the 
treatment variable on the entire conditional distribution of the outcome variable.

Abbreviations
DML  Double machine learning
RDML  Robust double machine learning
AD  Alzheimer’s disease
CSF A β42  Cerebrospinal Fluid Amyloid β42
RCT   Randomized Controlled Trial
PS  Propensity score
ADNI  Alzheimer’s disease neuroimaging initiative

Table 9 Causal estimator and corresponding 95% CIs using four models

Methods Estimate 95%CI

Dml_RF −0.0470 [−0.0600, −0.0313]

Dml_XGBoost −0.0403 [−0.0575, −0.0230]

RDml_MRF −0.0323 [−0.0454, −0.0127]

RDml_MXGBoost −0.0274 [−0.0436, −0.0136]

Fig. 3 The standardized residuals for 321 observations. Points with standardized residuals exceeding the 
threshold c=2.5, marked in red, are considered as outliers
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ADAS-11  11-Item Alzheimer’s Disease Assessment Scale
PLR  Partial linear regression
DGP  Data generation process
df  Degree of freedom
MRF  Median Regression Forest
MXGBoost  EXtreme Gradient Boosting Median Regression
RF  Random Forest
XGBoost  EXtreme Gradient Boosting
RMSE  Root mean square error
GMAL  Generalized median adaptive lasso
CI  Confidence intervals
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