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Abstract 

Background: Identification of drug–target interactions is an indispensable part 
of drug discovery. While conventional shallow machine learning and recent deep learn-
ing methods based on chemogenomic properties of drugs and target proteins have 
pushed this prediction performance improvement to a new level, these methods are 
still difficult to adapt to novel structures. Alternatively, large-scale biological and phar-
macological data provide new ways to accelerate drug–target interaction prediction.

Methods: Here, we propose DrugMAN, a deep learning model for predicting 
drug–target interaction by integrating multiplex heterogeneous functional networks 
with a mutual attention network (MAN). DrugMAN uses a graph attention network-
based integration algorithm to learn network-specific low-dimensional features 
for drugs and target proteins by integrating four drug networks and seven gene/pro-
tein networks collected by a certain screening conditions, respectively. DrugMAN then 
captures interaction information between drug and target representations by a mutual 
attention network to improve drug–target prediction.

Results: DrugMAN achieved the best performance compared with cheminformation-
based methods SVM, RF, DeepPurpose and network-based deep learing methods 
DTINet and NeoDT in four different scenarios, especially in real-world scenarios. 
Compared with SVM, RF, deepurpose, DTINet, and NeoDT, DrugMAN showed the small-
est decrease in AUROC, AUPRC, and F1-Score from warm-start to Both-cold scenarios. 
This result is attributed to DrugMAN’s learning from heterogeneous data and indicates 
that DrugMAN has a good generalization ability. Taking together, DrugMAN spotlights 
heterogeneous information to mine drug–target interactions and can be a powerful 
tool for drug discovery and drug repurposing.

Keywords: Drug–target interaction, Drug discovery, Heterogeneous network, Self-
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Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you 
modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of 
it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise 
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted 
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy 
of this licence, visit http:// creat iveco mmons. org/ licen ses/ by- nc- nd/4. 0/.

RESEARCH

Zhang et al. BMC Bioinformatics          (2024) 25:361  
https://doi.org/10.1186/s12859-024-05976-3

BMC Bioinformatics

*Correspondence:   
wuxia200758@163.com; 
cjx@bucm.edu.cn; lip@sxau.
edu.cn

1 Shanxi Key Lab 
for Modernization of TCVM, 
College of Basic Sciences, 
Shanxi Agricultural University, 
Taigu 030801, China
2 School of Traditional 
Chinese Medicine, Beijing 
University of Chinese Medicine, 
Beijing 100029, China

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-024-05976-3&domain=pdf


Page 2 of 16Zhang et al. BMC Bioinformatics          (2024) 25:361 

Introduction
Elucidating mechanistic actions of drugs is one of the critical tasks in drug discovery, 
necessary to identify on-target drugs and new therapeutic targets, avoid unwanted 
off-target effects, and improve the success rate in clinical trials [1]. Identification 
of interactions between drugs and their biological targets is one of the core step of 
exploring drug mechanisms of action. In these years, both experimental and compu-
tational approaches are frequently employed to study drug–target interactions. For 
instance, direct biochemical assays label the protein or small molecule of interest and 
directly detect the binding affinity [2]. Molecular dynamics (MD) and docking simu-
lations model potential ligand-target binding configurations with low-energy states 
[3, 4]. Machine learning (ML) and artificial intelligence (AI) models learn molecular 
representation from chemical structures and capture the complex nonlinear relation-
ships between drugs and targets [5–9]. Till now, there have been many specialist data-
bases providing data on drug–target interactions, such as DrugBank [10], BindingDB 
[11], ChEMBL [12], and Comparative Toxicogenomics Database (CTD) [13]. These 
approaches or technologies highlight chemogenomic information to formalize bind-
ing interactions between chemicals and targets and neglect other biological informa-
tion for drugs and protein targets.

Different from chemogenomic-based models, network-based models encode drug and 
target representations by integrating heterogeneous information from multiplex func-
tional interaction networks, such as inducible gene expression, drug side effects, related 
diseases, and genetic associations [14]. Intuitively, network-based methods that integrate 
more information for both drugs and targets could be adept at mining drug–target inter-
actions. In recent years, various network-based methods have been developed based 
on heterogeneous biological networks to mine drug–target interactions and achieved 
promising results. For example, DTINet combines Random walk with restart (RWR) and 
diffusion component analysis (DCA) to learn low-dimensional drug and target represen-
tations from heterogeneous networks and predict drug–target interactions using induc-
tive matrix completion [15]. NeoDTI integrates different networks and automatically 
learns topology-preserving representations of drugs and targets to facilitate drug–target 
prediction [16].

Despite these promising effects, two challenges remain for network-based methods. 
(i) An excellent graph embedding method to learn drug and target features. Biological 
interaction networks from real-world biomedical high-through data inevitably have 
varied false positives and -negatives while preserving meaningful functional links. A 
solid graph embedding method should be scalable in both the size and quantity of input 
networks and learn low-dimensional node features that can reflect the functional and 
topological properties of all heterogeneous networks. (ii) An embedded module to con-
nect the interaction information between drug and target representations. The network-
specific features characterize drug and target proteins in the existing biological big data 
resources. It should be emphasized to learn the interaction patterns between drugs and 
targets bridged by these underlying functional media. A simple concatenation of drug 
and target features is quite inefficient. This problem is similar to the natural language 
processing (NLP) problem of integrating multiple word embedding into a sentence rep-
resentation, which has been broken through by the attention mechanism [17].
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To address these limitations, we here present a novel deep learning model, termed Drug-
MAN, which extracts accurate network-specific features of drugs and target proteins by a 
scalable graph attention network-based integration algorithm and captures interaction pat-
terns between drugs and targets by a mutual attention network to improve drug–target pre-
diction. We have evaluated the performance of DrugMAN and other five baseline models 
in real-world applications and found that DrugMAN outperforms both chemoinformatics 
(SVM, RF and DeepPurpose) and network-based methods (DTINet and NeoDTI) for pre-
dicting drug–target interactions under different distributions of test and training datasets. 
DrugMAN shows a good performance in learning and mining the potential drug–target 
interaction patterns from heterogeneous information and improves the drug–target inter-
action prediction. DrugMAN promises to be a powerful tool for drug discovery and drug 
repositioning.

Methods
DrugMAN architecture

Extract drug and target representations from heterogeneous networks

We adopt BIONIC (Biological Network Integration using Convolutions), a scalable deep 
learning framework for network integration to learn the accurate and comprehensive 
representations of drugs and protein targets from different types of drug and target net-
works, respectively [18]. Each network is represented by its adjacency matrix A where 
Aij = Aij > 0 if node i and node j share an edge and Aij = Aij = 0 otherwise. BIONIC 
encodes each input network using three graph attention networks (GAT) to sequentially 
extract the three-order neighbors of each node. Each GAT encoder has 10 heads with a hid-
den dimension of 68 per head. The GAT block formulation is then given by:

where W (l)
g  and b(l)g  are the layer-specific learnable weight matrix and bias vector of GAT, 

A is the adjacency matrix for network g, and Hl
d is the l th hidden node representation 

with H0
d = HP , Hp is the initial node feature of one-hot encoded so that each node is 

uniquely identified. σ is a nonlinear function (here is LeakyReLU).
The final network-specific features learned by the GAT block can retain both local and 

global features of the network. The network-specific node features for each network are 
combined through a weighted and stochastically masked summation to produce com-
bined node features Hcombined . Then, BIONIC maps Hcombined to a low-dimensional space F 
through a learned linear transformation. In F, each row corresponds to a node with learned 
features of 512 dimensions. BIONIC reconstructs the network Â = F · FT and minimize 
the discrepancy between the reconstruction and input networks to obtain a high-quality F. 
Finally, we use the BIONIC framework to learn drug and target representations Fd and Ft 
from four types of drug networks and seven gene/protein networks, respectively.

Mutual attention network

We further use the self-attention framework to capture pairwise interactions between 
drug and target features. As input to the mutual attention network, the network-specific 
drug and target representations Fd and Ft are combined into a new matrix Fdt:

(1)Hl+1

d = σ

(

GAT
(

A,W (l)
g , b(l)g ,H

(l)
d

))
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Fdt has a shape of 2× 512 , where the first and second rows are the drug and target rep-
resentation with 512-dimensional features, respectively. Fdt is fed into sequential trans-
former encoder units [17] to effectively learn the interrelated information between drug 
and target features:

where each layer l corresponds to a transformer encoder unit and consists of a self-
attention layer and feed-forward neural network layer. W and b are learnable weight 
matrices and bias vectors in the l th transformer encoder unit. Fl

dt is the l th hidden fea-
ture matrix and F0

dt is the initial matrix from the network encoder. σ is the activation 
function ReLU.

In Fdt , the updated drug and target representations Fd and Ft are directly concatenated 
into the joint drug–target pair representation Fpair with a dimension of 1024. Fpair is 
then inputted into a classification layer which is a fully connected linear layer connected 
by a sigmoid output function:

Wl and bl are learnable weight matrix and bias vector in linear layers. Wo and bo are 
learnable weight matrix and bias vector in the sigmoid layer. p represents the drug–
target interaction probability. The binary classification is optimized by minimizing the 
cross-entropy function as follows:

where yi is the ground-truth label of the ith drug–target pair, pi is its output probability 
by the model.

Experimental setting

Construction of drug–target interaction dataset

The success of mechanism-based drug discovery depends on the definition of the drug 
target. To improve the accuracy and reliability of drug discovery, we selected the known 
drug–target pairs that have been rigorously validated through experiments or supported 
by extensive literature as the gold-standard data. Drug–target interaction data are col-
lected from five public sources including, Drugbank [10], map of Molecular Targets of 
Approved drugs (MTA) [19], CTD [13], ChEMBL [12] and BindingDB [11]. MTA is a 
manually curated dataset that contains 1578 US FDA-approved drugs and 893 human 
and pathogen-derived biomolecules, of which 667 human-genome-derived proteins tar-
geted by 1194 drugs for human diseases are used in the present analysis. We first collect 
all drug–target pairs from the Drugbank and MTA. Drugs in the form of inorganic salts 

(2)Fdt = concat(Fd , Ft , axis = 0)

(3)Fl+1

dt = σ

(

atten
(

Fl
dt ,W

l
, bl

))

(4)Fl+1
pair = σ

(

WlFl
pair + bl

)

)

(5)p = sigmoid
(

WoFpair + bo
)

(6)loss = −
∑

i

(yilog(pi)+
(

1− yi
)

log(1− pi))
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are removed. Then we collate drug–target pairs in CTD, ChEMBL and BindingDB cor-
responding to drugs in Drugbank and MTA. All these data are combined and further 
filtered by the kinetic constants Ki, Kd, IC50 and EC50. Finally, we choose thresholds 
of ≤  103 nM to obtain 20,565 drug–target binding data, corresponding to 5135 drugs and 
2894 protein targets. All drug compound SMILES and amino acid sequences of targets 
are obtained from PubChem and UniProt, respectively. The PubChem CID and the gene 
Entrez ID are used as the unique identifiers for drugs and targets, respectively. When 
datasets are used for evaluating models in the prediction of drug–target interactions, 
they are balanced with validated positive interactions and an equal number of negative 
samples randomly obtained from unseen pairs. The dataset is randomly divided into 
training, validation and test sets with a 7:1:2 ratio.

Construction of cold start dataset

We set up drug cold-start, target cold-start and both cold-start scenarios to evaluate 
the performance of the model in the real-world drug–target interaction prediction. For 
cold-start scenarios, each dataset is also randomly divided into training, validation and 
test sets with a 7:1:2 ratio similar to warm-start.

Evaluation criteria

We curate drug–target interaction data that meet the rigorous standards from five com-
mon sources including DrugBank, map of Molecular Targets of Approved drugs (MTA), 
CTD, ChEMBL, and BindingDB. To train the model, the dataset is randomly divided 
into training, validation, and test sets with a 7:1:2 ratio. The training set is used to fit 
the model, and the test set is used to evaluate the model’s performance. It should be 
noted that in real-world scenarios, drug–target pairs that need to be predicted are often 
unseen and dissimilar to any pairs in the training data. To evaluate the performance of 
the model in real-world applications, we set three different scenarios to simulate the 
real-world prediction for drug–target interactions: (i) scenario of drug cold-start (drug-
cold), in which drugs from the test set are absent in the training data, (ii) scenario of tar-
get cold-start (target-cold), where targets from the test set are not present in the training 
data, and (iii) both cold-start (both-cold), where both drugs and targets from the test set 
are missing in the training data.

The area under the receiver operating characteristic curve (AUROC), the area under 
the precision-recall curve (AUPRC), and F1-score are used as the major metrics to eval-
uate the model classification performance. For each experiment, the best-performing 
model is the one with the best AUROC on the validation set. We conduct five inde-
pendent runs with different random seeds for each dataset split. The average value of 
AUROC, AUPRC, and F1-score of five runs are used as indicators for model evalua-
tion. To evaluate the performance of DrugMAN prediction, we introduced the AUROC, 
AUPRC and F1-Score evaluation metrics. Since the drug–target interaction prediction is 
regarded as a binary classification problem in the study, the sample can assign positive 
and negative label, and the prediction value can assign true and false label. We can com-
pute True Positive Rate (TPR), False Positive Rate (FPR), Precision and Recall as follows:
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where TP is the number of positive samples correctly predicted, FP is the number of 
positive samples incorrectly predicted, TN  is the number of negative samples correctly 
predicted, and FN  is the number of negative samples incorrectly predicted. The receiver 
operating characteristic curve (ROC) is obtained by taking TPR and FPR as the verti-
cal and horizontal axes, respectively and the AUROC is the area value under the ROC 
curve. The PR is obtained by taking Presision and Recall as the vertical and horizon-
tal axes, respectively, and AUPRC is the area under PR curve. The higher score of the 
AUROC and AUPRC values means a more accurate prediction model. The F1-Score is a 
weighted average of precision and recall and is calculated as follows:

Precision reflects the discrimination ability of the model to negative samples. The 
higher the Precision, the stronger the discrimination ability of the model to nega-
tive samples. Recall reflects the ability of the model to identify positive samples. The 
higher the Recall, the stronger the ability of the model to identify positive samples. 
The F1-Score is a synthesis of both, and a higher F1-Score indicates a more robust 
model.

Baseline

We compare the performance of DrugMAN with that of the five baseline models includ-
ing SVM, RF, DeepPurpose [6], DTINet [15] and NeoDTI [16]. Two shallow machine 
learning methods, SVM and RF, are applied using the drug–target pair representation 
concatenated by the drug ECFP4 fingerprint and target protein AAC features. DeepPur-
pose models drug–target interaction using CNN to encode drug molecular graphs and 
protein sequences. The learned drug and protein representation vectors are combined 
with a simple concatenation and processed by a binary classification layer [6]. DTINet 
is a network-based model by combining restarted random walk and diffusion compo-
nent analysis to learn low-dimensional feature representations of drugs and targets from 
heterogeneous networks and predicts drug–target interaction using inductive matrix 
completion [15]. NeoDTI is an end-to-end network-based model to integrates diverse 
heterogeneous networks and automatically learns topology-preserving representations 
of drugs and targets to predict drug–target interactions [16].

(7)TPR =
TP

TP + FN

(8)FPR =
FP

TN + FP
,

(9)Precision =
TP

TP + FP

(10)Recall =
FP

TP + FN

(11)F1 = 2×
Precision× Recall

Precision+ Recall
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Result
DrugMAN architecture

DrugMAN contains two main networks. The first network intends to learn accurate and 
comprehensive representations for drugs and protein targets from heterogeneous drug 
and gene/protein networks by the network integration algorithm BIONIC (Biological 
Network Integration using Convolutions), which outperforms the existing state-of-the-
art network embedding methods [18]. The core idea of BIONIC is to characterize the 
neighborhoods of network nodes through sequential graph attention networks (GAT) 
to learn network-specific integrated features. The second network captures the relevant 
information in a drug–target pair and learns the predictive score for drug–target inter-
action. We treat the drug and target in a drug–target pair as words in a sentence. The 
drug and target representations are processed by the mutual attention network that uti-
lizes a series of transformer encoders to apprehend interaction information between 
the drug and target. The updated drug and target features are concatenated to form 
the drug–target pair representation, which is then run through a sequence of fully con-
nected classification layers to obtain the predictive score, indicating the probability of 
drug–target interaction (Fig. 1).

Evaluation of DrugMAN and baselines

We first compare the performance of DrugMAN with three chemoinformatic baseline 
models, support vector machine (SVM), random forest (RF), and DeepPurpose. As 

Fig. 1 DrugMAN framework. DrugMAN contains two main parts. The first part encodes network-specific 
drug and target features from heterogeneous drug and gene/protein networks through sequential graph 
attention networks (GAT). The combined drug and target features  (Fdt) are fed into the second part to learn 
the updated  Fdt by the five transformer encoders. The updated  Fdt captures interaction information between 
the drug and the target. Then the drug and target features in the updated  Fdt are concatenated to drug–
target pair representation  (Fpair), which is input to the fully connected classification layer to calculate the 
drug–target binding probability score
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shown in Fig. 2, DrugMAN consistently outperforms the three chemoinformatic base-
lines in terms of AUROC, AUPRC, and F1-score. To discern whether the superiority of 
DrugMAN over these chemoinformatic methods is due to its additional heterogene-
ous network information, two classical network-based models DTINet and NeoDTI are 
introduced with the same network data as DrugMAN. We find that DTINet and NeoDTI 
only perform better than SVM but underperform both RF and DeepPurpose. The results 
indicate integrating more information cannot necessarily guarantee better performance 
in predicting drug–target interactions for network-based models compared to chemo-
informatic methods [20]. More importantly, the comparison between network-based 
methods demonstrates that DrugMAN yields superior performance than the two state-
of-the-art models. Specifically, it outperforms DTINet and NeoDTI by 16.6% and 7.1% 
in AUROC, 12.8% and 8.1% in AUPRC, and 18.3% and 8.3% in F1-score, respectively. 
The results show that DrugMAN better integrates data from different types of networks 
and captures relevant information in drug–target pairs.

We further evaluate the stability of DrugMAN in three different real-world scenarios. 
As expected, compared to the normal random (warm-start) condition, the performance 
of all models drops significantly due to less information overlap between training and 
test data in cold-start scenarios. Even so, DrugMAN still achieves the best performance 
against other state-of-the-art baselines including chemoinformatic and network-based 
models in drug-cold (AUROC = 0.910, AUPRC = 0.921 and F1-score = 0.835), target-cold 
(AUROC = 0.922, AUPRC = 0.931 and F1-score = 0.846) and both-cold (AUROC = 0.850, 
AUPRC = 0.861 and F1-score = 0.776). To our surprise, DrugMAN showed the smallest 
decrease in three evaluation metrics (AUROC, AUPRC and F1-Score) compared with 
other methods under the warm-start and both-cold scenarios, which was attributed to 
its learning from heterogeneous data. This result demonstrates the notable strengths of 
DrugMAN in learning from heterogeneous networks. The results confirm the good gen-
eralization ability of DrugMAN in the drug–target interaction prediction.

Evaluation of different network embedding methods

The network integration algorithm is the essential part of DrugMAN for extracting 
drug and target features from heterogeneous networks. Although BIONIC has been 
proven to perform better than other established network integration methods in vari-
ous benchmarks as a whole, for a fair comparison in drug–target interaction prediction 
task, we compare BIONIC with two classical network integration approaches, deepNF 
a deep learning multi-modal autoencoder [21] and multi-node2vec a multi-network 
extension of the node2vec model [22] by directly replacing BIONIC in the DrugMAN 
framework. When DrugMAN uses the drug and target representations learned from 
deepNF and multi-node2vec, we observe an overall drop in performance in terms of 
AUROC, AUPRC, and F1-score across all scenarios (Fig. 3). Especially, we observe that 
the advantage of BIONIC is even more remarkable in cold-start conditions compared 
to the random split. For example, in the random testing, with the assistance of BIONIC, 
DrugMAN outperforms models with substitution of multi-node2vec by 2.8%, 2.6% and 
3.8% in AUROC, AUPRC and F1-score, respectively. In the both-cold testing, this dis-
crepancy has increased to 15.3%, 15.4% and 10.4% in AUROC, AUPRC and F1-score, 
respectively. The results indicate that BIONIC captures more sophisticated functional 



Page 9 of 16Zhang et al. BMC Bioinformatics          (2024) 25:361  

and topological information from drug and target heterogeneous networks to power 
the drug–target interaction prediction compared to the established network integration 
methods.

Fig. 2 Comparison of DrugMAN to state-of-the-art methods. We compare the prediction performance of 
DrugMAN to that of five baselines, including three chemoinformatics models SVM, RF and DeepPurpose, and 
two network-based models DTINet and NeoDTI. The rows from top to bottom correspond to four scenarios: 
warm-start, drug-cold, target-cold and both cold, respectively. The columns from left to right correspond to 
three metrics: the receiver operating characteristic curve, precision-recall curve and F1 Score. The box plots 
show the median as the center lines and the mean as green triangles for five random runs. The minima and 
lower percentile represent the worst and second-worst scores. The maxima and upper percentile indicate the 
best and second-best scores
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Evaluation of integrated and single networks

To evaluate the impact of each single network on the model predicting ability, for each 
run we use one single network to produce the drug or target features and fix all other 
settings in DrugMAN. We find that all single network-based models (including four 
drug networks and seven protein target networks) show poorer performance compared 
to the primary DrugMAN (Supplementary Tables 1 and 2), confirming the significance 
of integrating heterogeneous networks for drug–target interaction prediction. For 
input drug networks, the best performance is observed for the drug structure similarity 
network-based model with AUROC of 0.949, 0.896, 0.913 and 0.834, AUPRC of 0.953, 
0.910, 0.923 and 0.844 and F1-score of 0.883, 0.823, 0.837 and 0.764, in random, drug-
cold, target-cold and both-cold testing, respectively (Supplementary Table  1). This is 
reasonable as the structure information is the basis for drug binding to the target. Con-
sistently, in all single protein network-based models, the protein sequence similarity net-
work-based model performs better than or as well as other single network models across 
all scenarios (Supplementary Table  2). Based on the prominent contribution of struc-
tural information to DrugMAN, we further examine the performance of the model with 

Fig. 3 Evaluation of different network embedding methods. In DrugMAN, the drug and target embedding 
module BIONIC is replaced by two other network integration methods: DeepNF and Multi-node2vec. The 
vertical bars represent the mean value of five random runs, and the black lines are error bars indicating the 
standard deviation. The dots indicate performance scores in each random run
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only the drug structure similarity network and the protein sequence similarity network 
as input  (DrugMANSTR). Encouragingly,  DrugMANSTR outperforms those state-of-the-
art structural models including SVM, RF and DeepPurpose, indicating the DrugMAN 
framework can capture more information from the structural similarity data related to 
drug–target interactions compared to the established methods. Moreover, compared to 
 DrugMANSTR, we can observe that DrugMAN has significant performance improve-
ments with the introduction of non-structural heterogeneous information in all scenar-
ios (Fig. 4). The discrepancy between  DrugMANSTR and the primary DrugMAN can to 
some extent reflect the contribution of non-structural information to the performance. 
For example, in the both-cold scenario, DrugMAN outperforms  DrugMANSTR by 7.6%, 
6.2% and 6.7% in AUROC, AUPRC and F1-score, respectively (Fig.  4). These results 
demonstrate the strength of DrugMAN in generalizing prediction performance across 
different conditions by integrating various pharmacological and biological information.

Ablation study

We perform an ablation study to investigate the impact of the mutual attention network 
on DrugMAN. As shown in Fig. 5, the introduction of the mutual attention network has 
significantly improved the performance of DrugMAN in all scenarios. The results indi-
cate that the mutual attention network can capture the pairwise interaction information 
for drug–target interaction prediction.

Discussion and conclusion
In this work, we develop a new framework, DrugMAN, to integrate drug and protein 
target information from multiplex biological networks to mine drug–target interactions. 
DrugMAN achieves superior performance over both state-of-the-art chemoinformatics 
and network-based models. Especially, the stability of DrugMAN performance has been 
confirmed in different real-world scenarios. DrugMAN’s effectiveness can be attributed 
to two intrinsic advantages: the sophisticated network embedding module for learn-
ing suitable drug and target features from heterogeneous data and the mutual attention 
block to capture interaction information between drugs and targets.

The main challenge of network embedding is how to encode accurate node features 
from heterogeneous networks with high-dimensional, incomplete and noisy traits. 
DrugMAN takes BIONIC, the latest deep learning-based network integration algo-
rithm, which first characterizes the topology of each individual network by applying a 
GAT algorithm, and then formalizes a low-dimensional representation by combining the 
features learned from each individual network to approximate the initial networks. The 
network-specific integrated features learned by BIONIC can reflect both functional and 
topological properties of heterogeneous networks and excel other unsupervised meth-
ods in a range of downstream tasks [18]. We demonstrate that DrugMAN can achieve 
substantial improvement over the state-of-the-art network-based methods for drug–
target interaction prediction (Fig. 2). Consistently, we here compare BIONIC with two 
classical network integration approaches, deepNF and multi-node2vec in the DrugMAN 
framework (Fig.  3), indicating that BIONIC is more adaptive for drug–target interac-
tion prediction compared to the established network integration methods. In addition, 
we find when DrugMAN uses single drug or target networks as input, the predicting 
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performance is greatly inferior compared to DrugMAN with multiple networks (Sup-
plementary Tables 1 and 2), indicating BIONIC can produce accurate integrated drug 
and target features from heterogeneous networks for drug–target interaction prediction.

Fig. 4 Evaluation of DrugMAN based on the drug structure similarity network and the protein sequence 
similarity network. DrugMAN with only the drug structure similarity network and the protein sequence 
similarity network as input  (DrugMANSTR) outperforms three state-of-the-art chemoinformatic models 
but underperforms DrugMAN. The box plots show the median as the center lines and the mean as green 
triangles. The minima and lower percentile represent the worst and second-worst scores. The maxima and 
upper percentile indicate the best and second-best scores
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Most existing drug–target prediction models learn drug and target representations 
using their separate encoders and ignore mutual impacts between the targets and drugs 
[23, 24]. The pairwise interaction information between drugs and targets is explicitly 
important for drug–target interaction prediction [25, 26]. We use a mutual attention 
network that utilizes a series of transformer encoders to capture interaction patterns 
between drugs and targets. We demonstrate that the introduction of the mutual atten-
tion block in the DrugMAN architecture significantly improves the performance of 
DrugMAN in all scenarios (Fig. 5). In summary, DrugMAN can provide a powerful and 
useful tool to facilitate drug discovery and drug repositioning. However, DrugMAN still 
has some limitations in predicting drug–target interactions based on chemical structure 
information. In this study, we only used the one-dimensional structural information of 
drugs and targets, and more information in the three-dimensional structure of drugs 
and targets has not been mined. However, to the best of our knowledge, there are cur-
rently existing drug–target interaction prediction models that use deep learning meth-
ods to extract the characteristics of drug and target based on the 3D structure of drug 
and target. For example, the GTAE-VF model with good performance is based on the 3D 
structure of drugs and targets, and the deep learning method of Graph transformer is 
used to extract the features of drugs and targets [27]. This is where we need to consider 
improving our future work.
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from PubChem. The latest drug-side effect data are collected from the SIDER database (https:// sidee ffects. embl. de/) 
[28]. The gene expression signatures induced by chemical and genetic perturbations are collected from the Cmap 
Database (https:// clue. io/) [29]. The gene-pathway data are downloaded from Reactome, a knowledgebase of biological 
pathways, reactions, proteins and molecules (https:// react ome. org) [30]. The gene-chromosomal locations are curated 
from Gene, a searchable database of gene-specific contents in the national center for Biotechnology Information (NCBI) 
(http:// www. ncbi. nlm. nih. gov/ gene) [31]. The protein-protein interaction data are collected from the STRING network 
(https:// string- db. org) [32]. The gene co-expression data are curated from the Genotype-Tissue Expression (GTEx) dataset 
(https:// www. gtexp ortal. org) [33]. The sequences of reviewed human proteins are collected from UniProt (https:// www. 
unipr ot. org/) [34]. DrugBank is the most widely used drug information resource, which maps drugs to pharmacologi-
cal targets (https:// go. drugb ank. com/ relea ses/ latest) [10]. MTA is a manually curated dataset that contains 1578 US 
FDA-approved drugs and 893 human and pathogen-derived biomolecules [19]. BindingDB dataset is a web-accessible 
database of compound-target interactions with experimentally validated binding affinities (https:// www. bindi ngdb. org/ 
bind/ index. jsp) [11]. ChEMBL is a database of drug small molecules and their biological activity information, including 
clinical experimental drugs and FDA-approved drugs for therapeutic targets and indications. (https:// chembl. gitbo ok. 
io/ chembl- inter face- docum entat ion/ downl oads) [12]. Network preprocessing. Four types of drug networks are applied 
in this work. The disease-based drug association network is constructed by connecting two drugs related to the same 
diseases, which are extracted from the Comparative Toxicogenomics Database (CTD) [13]. The side effect-based drug 
network is built by linking two drugs related to the same side effects from the SIDER database Version 2 [28], The edge 
weight (i.e. drug similarity between two drugs) in the two networks is calculated by the Jaccard similarity method. 
The transcriptome-based drug similarity network is constructed by calculating the Pearson correlation between gene 
expression profiles induced by drugs. The transcriptome-based drug network retains edges with similarity scores equal 
to or above 0.2. The gene expression signatures are collected from the Cmap Database [29]. For each drug, to get a 
unique signature that accurately measures the drug activity, we combined gene expression signatures of each drug to 
produce a consensus gene signature by the weighted average algorithm, which calculates a weighted average of the 
gene expression signatures of each drug, with coefficients given by a pairwise Spearman correlation matrix between 
the expression profiles of all signatures [35]. The drug structure similarity network is constructed by calculating pair-wise 
chemical similarity through the Jaccard similarity, based on the Morgan fingerprints with radius 2 implemented in the 
RDKit package (version: 2020.09.1.0). The drug structure network keeps drug pairs with similarity scores equal or greater 
than 0.4. To unify all networks for analysis, chemical names in each network are transformed into Pubchem CIDs. All drug 
networks are mapped to drugs in the curated drug–target interaction dataset and the detailed information of each 
network is provided in the supplementary Table 3. To incorporate as much gene functional association information as 
possible, seven classes of gene interaction networks are curated from different biological repositories. The disease-based 
gene association network is constructed by connecting two genes related to the same diseases based on the CTD 
dataset [13]. The pathway-based gene network is curated by linking two genes in the same biological pathways, which 
are downloaded from Reactome, a knowledgebase of biological pathways, reactions, proteins and molecules (https:// 
react ome. org) [30]. The pathway network keeps gene pairs with a similarity magnitude greater than or equal to 0.2 as 
edges. The chromosomal location-based gene network is built by connecting two genes in the same cytogenetic bands, 
which are curated from Gene, a searchable database of gene-specific contents in the National Center for Biotechnology 
Information (NCBI) (http:// www. ncbi. nlm. nih. gov/ gene). The three gene networks are constructed based on the assump-
tion that two genes associated with the same biological entities should be more functionally related than two genes 
associated with different biological entities. The similarity between two genes in these networks is quantified by calculat-
ing Jaccard similarity scores. Similar to the transcriptome-based drug network, the transcriptome-based gene similarity 
network is constructed by calculating the Pearson correlation between gene expression profiles induced by genetic 
perturbations. The transcriptome-based gene network contains gene pairs with edge weights equal to or greater than 
0.25. In the Cmap Database, we collect all gene expression signatures for three types of genetic perturbations, including 
shRNA, CRISPR and OE treatments [29]. For each target gene, to get a unique signature that accurately measures the 
gene activity, we combined gene expression signatures of each target gene to produce a consensus gene signature by 
the weighted average algorithm [35]. The gene co-expression network is built by calculating the Pearson correlation 
across gene expression profiles in different tissues from the Genotype-Tissue Expression (GTEx) dataset (https:// www. 
gtexp ortal. org) [33]. The co-expression network includes gene pairs with a Pearson correlation magnitude equal to or 
greater than 0.5. The Search Tool for Recurring Instances of Neighboring Genes (STRING; https:// string- db. org) quanti-
tatively integrates different studies and interaction types into a single integrated score for each gene pair based on the 
total weight of evidence [32]. To obtain networks that are comparable in size to other networks, the STRING network is 
filtered for only the top 10% of interactions by interaction scores. The protein sequence similarity network is obtained by 
calculating pairwise Smith–Waterman scores [36]. The sequences of reviewed human proteins are collected from UniProt 
(https:// www. unipr ot. org/) [34]. The sequence similarity network retains edges with pairwise similarity scores greater 
than or equal to 0.23. Gene names in each network are mapped to the human Entrez gene ID. All gene networks are 
mapped to genes in the five datasets including Drugbank, MTA, CTD, ChEMBL and BindingDB. Detailed information on 
each network is provided in Supplementary Table 3. 
Implementation of DrugMAN. DrugMAN is implemented in Python 3.8 and PyTorch2.0.0 [37], along with functions 
from Scikit-learn 1.3.0 [38], Numpy 1.25.2 [39], and Pandas 2.0.3. The batch size is set to 512 and the Adam optimizer 
is used with a learning rate of 3e-5. We allow the model to run for at most 400 epochs for all datasets and adjust the 
learning rate with a cosine annealing strategy [40] before 20 epochs. The best performing model is selected at the epoch 
giving the best AUROC score on the validation set, which is then used to evaluate the final performance on the test set. 
In the mutual attention network, the attention block contains five sequential Transformer encoders with eight heads in 
each self-attention layer. The drug–target pair representation is fed into a multi-layer perceptron consisting of three fully 
connected linear hidden layers with dimensions [512, 256, 256]. All the hyperparameters mentioned above are carefully 
manually adjusted to make the model perform optimally. The configuration details analysis are provided in the Supple-
mentary Table 4. For a better understanding of DrugMAN, we provide pseudocode in the supplementary Table 5.
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Code availibility
The source code and implementation details of DrugBAN are freely available in GitHub: https:// github. com/ lipi1 2q/ 
DrugM AN
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