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Abstract 

Background: The preservation of soil health is a critical challenge in the 21st century 
due to its significant impact on agriculture, human health, and biodiversity. We provide 
one of the first comprehensive investigations into the predictive potential of machine 
learning models for understanding the connections between soil and biological 
phenotypes. We investigate an integrative framework performing accurate machine 
learning‑based prediction of plant performance from biological, chemical, and physical 
properties of the soil via two models: random forest and Bayesian neural network.

Results: Prediction improves when we add environmental features, such as soil 
properties and microbial density, along with microbiome data. Different preprocessing 
strategies show that human decisions significantly impact predictive performance. We 
show that the naive total sum scaling normalization that is commonly used in micro‑
biome research is one of the optimal strategies to maximize predictive power. Also, we 
find that accurately defined labels are more important than normalization, taxonomic 
level, or model characteristics. ML performance is limited when humans can’t classify 
samples accurately. Lastly, we provide domain scientists via a full model selection deci‑
sion tree to identify the human choices that optimize model prediction power.

Conclusions: Our study highlights the importance of incorporating diverse environ‑
mental features and careful data preprocessing in enhancing the predictive power 
of machine learning models for soil and biological phenotype connections. This 
approach can significantly contribute to advancing agricultural practices and soil 
health management.

Keywords: Soil microbiome, Phenotype prediction, Microbiome networks analysis, 
Machine learning, Bayesian neural networks

Background
Machine learning (ML) has transformed how scientific research is conducted in recent 
years. Among the many tasks performed by ML models in our daily lives, researchers 
have relied on ML to assist in clinical diagnoses [1–3], identification of bacterial phe-
notypes such as antimicrobial resistance [4], and even identification of objects in space 
[5]. Recently, the vast evidence of the prediction power of ML models on a wide range 
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of applications has launched the adoption of these models in other domains such as 
sustainable agriculture where soil health – characterized by a wide range of biological, 
chemical, and physical properties [6, 7]—is explored as an important driver to predict 
plant phenotypes, such as disease susceptibility or yield.

The question of whether the improvement of soil health could result in superior crop 
yield and disease resistance remains open, as researchers have not been able to identify 
a set of indicators to accurately and robustly predict plant outcomes from soil informa-
tion. Among all the candidate indicators for soil health, soil microbiome is one that con-
tinues to be understudied in its predictive potential in the productivity and resilience of 
agricultural ecosystems [8]. Amplicon sequencing of highly preserved, phylogenetically 
informative marker genes, such as the 16 S ribosomal RNA for bacteria and the internal 
transcribed spacer (ITS) for fungi, has enabled extensive studies on the complexity and 
diversity of soil microbial communities over the last decade. However, little is still under-
stood about how changes in these microbial communities directly impact plant growth 
and health. Although it is well-recognized that the soil microbiome is closely related to 
plant health and productivity [9], most current research focuses on how microbial com-
munities change in response to agricultural management.

Fortunately, ML models can bridge this gap by handling complex, high-dimensional 
data for predictions without requiring prior knowledge of variable interactions. Since 
we have little or no knowledge of most species among the thousands contained in the 
soil microbial communities, it would be beneficial to exploit the power of ML models 
on microbiome data as they are able to explore the unknown interactions between the 
microbial communities and plant phenotypes.

Analyzing microbiome datasets with ML has three main challenges: (1) The data is 
compositional, meaning raw counts are normalized by the total number of reads per 
sample. Therefore, microbial abundances are not independent, and the use of traditional 
statistical techniques (such as correlation) might lead to increased false discovery rates 
[10]. (2) Data are highly sparse, which means that datasets include a large number of 
operational taxonomic units (OTUs) that are present in a small proportion of samples 
(or in none at all) [11]. (3) Data are high-dimensional, which means that the number 
of OTUs are larger than the number of samples, especially in more specific taxonomic 
orders like Order, Family, and Genus.

Beyond microbiome data challenges, prediction accuracy decreases with imbalanced 
or inaccurate labels. That is, when we consider the task of prediction, each microbial 
sample should be labeled by a plant outcome value (say, high yield or low yield). It is 
common that labels in these datasets are imbalanced with one class representing the 
majority of observed samples which is denoted as an imbalanced binary classification 
problem. Furthermore, decisions on the class labels are many times not straight-forward. 
While diseased plant or non-diseased plant tends to be an indisputable classification, 
determining what constitutes high versus low yield is up for debate and depends not 
only on the season and other environmental factors, but also on the specific crop variety.

Here, we explore the potential of ML models in the prediction of plant phenotypes 
of yield and disease from soil data. We utilize a dataset from potato fields in Wisconsin 
and Minnesota and focus on the performance of the models while facing data challenges 
related to binarization, imbalance, compositionality, sparsity and high dimensionality. 
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Furthermore, we test the impact of specific data preprocessing steps such as (1) differ-
ent normalization and zero replacement strategies to overcome the compositionality 
and sparsity, (2) different feature selection strategies to overcome the high dimension-
ality, and (3) data augmentation techniques to overcome the imbalance of the data. In 
addition, we are also interested in answering the question of whether soil microbiome 
data alone has enough predictive power to predict the disease and yield phenotypes or 
whether other information on the soil, such as chemical composition, is necessary for 
accurate prediction. The answer to this question will inform farmers on the best data col-
lection strategies given that soil microbiome data is expensive. That is, if the soil micro-
biome data does not provide enough predictive power compared to other (cheaper) soil 
measurements, then the collection of microbiome data for prediction purposes would be 
futile.

For our investigation, we have chosen two distinct machine learning models. First, we 
employ random forests (RF), which have consistently demonstrated superior predic-
tive performance across various domains [12]. Further details about this method can be 
found in section “Random forest model”. Second, we utilize a Bayesian Neural Network 
(Bayesian NN), known for its inherent protection against overfitting [13] (See section 
“Bayesian neural network model”). Given their capacity to capture complex interactions 
among features, neural networks are valuable, especially when dealing with unknown 
relationships. However, considering the small sample size and large feature space in our 
study, traditional back-propagation-based neural network models may exhibit a substan-
tial bias or overfitting [14], hence the need to explore the Bayesian version.

We initially explored a variety of machine learning methods to assess precision across 
different responses. However, given our goal of finding a generalized model that could 
reliably predict multiple response types, we selected Random Forest (RF). This decision 
was supported by the model’s consistently comparable results to the  H2O AutoML pack-
age in Python [15], which considers different machine learning algorithms and selects 
the best-performing ones (See Fig. 3). Additionally, we employed Bayesian Neural Net-
works (Bayesian NNs) because of their capacity to model parameter uncertainty and 
their potential to avoid overfitting, particularly useful when working with small data-
sets. Initially, we worked with continuous yield values, but due to the models’ inability to 
predict yield reliably (See Fig. 2), we binarized the response to provide more robust and 
reliable methods.

Among the main findings, we can highlight that microbiome data alone indeed has 
predictive power for disease outcomes, especially for pitted scab disease, but not to pre-
dict yield. We also find that the most powerful prediction is achieved by combination of 
environmental information and microbiome data. Among the data preprocessing strate-
gies that we explored, we find that normalization and zero replacement strategies have 
a huge impact on the prediction power of the models, yet there are strong interaction 
effects with taxonomic levels, and thus, it is impossible to identify one strategy that out-
performs the others. In terms of the model, RF outperforms other supervised classifica-
tion machine learning models, including Bayesian NN which are more computationally 
expensive and may not be suitable for datasets with a large number of predictors.

We conclude our investigation with a full model selection (FMS) [16, 17] decision 
tree approach to identify optimal combinations of normalization, zero replacement, 
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feature selection, and model choices that maximize prediction accuracy for micro-
biome data analysis. Recommendations include using data augmentation and more 
specific taxonomic levels like Family and Genus for RF, but more general levels like 
Phylum without augmentation for Bayesian NN, while also identifying specific nor-
malization methods suitable for both models. All the technical terms used in this 
study are defined in Table S1.

Methods
Figure 1 shows a graphical representation of our pipeline with three major steps: (1) 
data preparation, (2) feature selection, and (3) classification based on random forest 
(RF) and Bayesian NN models with various types of predictors, including microbiome 
data (OTUs), environmental, and a combination of both. We describe each step in the 
pipeline in the next subsections.

Fig. 1 Workflow of the analyses with three main steps: (1) Data Preparation, (2) Feature Selection, and (3) 
Classification. In (1) Data Preparation, we consider OTUs (number of OTUs = N) at different taxonomic levels 
and filter by sample size (n). In addition, we perform combination of five normalization methods and four 
zero replacement methods (for a total of 20 normalized datasets). In (2) Feature selection, we rank OTUs 
based on i) the number of times they are selected as important features by machine learning (ML) criteria, 
and ii) the greatest degree of difference on microbial networks reconstructed from samples of each class. 
We score OTUs based on whether they are selected by ML ( score = 1 ), by network comparison ( score = 2 ), 
both ( score = 3 ) or neither ( score = 0 ). In (3) Classification, the Venn diagram depicts the different types 
of predictors: microbiome (OTUs), environmental (Env), and the combination of both. The acronyms (e.g., 
All‑OTU or OTU‑S3+DS) correspond to different choices of predictors that are described in Table 2). random 
forest and Bayesian neural network classification models are fitted on the different input predictors
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Data description and data processing

Data description

In this study, we focus on the soil microbiome (matrix of abundances) in a variety of 
taxonomic orders, including Phylum, Class, Order, Family, and Genus as well as other 
environmental information from soil samples acquired from potato fields in Wisconsin 
and Minnesota. The dataset consists of measurements related to soil health, potato yield 
and soil quality information. The soil health data were collected in the fall of 2019 from 
pre-planting commercial potato fields and include soil physicochemical properties, soil 
microbiome composition, soil microbiome diversity, and soil pathogen abundance. Soils 
were collected from 36 Minnesota fields and 66 Wisconsin fields, with three bulk soil 
samples randomly selected from each field. The potato yield and quality information at 
each sampling location was measured at the end of the growing season (September of 
2020) including tuber yield and disease severity. Overall, we have 256 samples, 108 of 
which are taken from fields in Minnesota, and 148 of which are taken from fields in Wis-
consin. While this provides a strong foundation for modeling the upper Midwest potato-
growing region, we acknowledge that the use of data from a single growing season and 
geographic region limits the generalizability of our findings. Future data collection 
from multiple growing seasons and regions is underway to enhance the robustness and 
applicability of our models. We list all measurements in Table S2 in the Supplementary 
Material.

Soil physicochemical properties Fresh field soils were measured for a variety of 
physicochemical properties in the Agvise soil testing lab (Benson, Minnesota). Meas-
urements of soil pH, organic matter content, carbon fractions, organic nitrogen, macro 
and micronutrients are described in [18]. Soil texture was measured by quantifying the 
relative amount of sand, silt, and clay using a hydrometer. Soil cation/anion exchange 
capacity was calculated from the nutrient test results mentioned above, reported as mil-
liequivalents per 100 gs of soil.

Soil microbial community composition and population abundance Soil micro-
bial community was characterized by high-throughput sequencing of the bacterial 16 S 
rRNA gene and fungal ITS2 regions. A subsample of 0.25 g of frozen field soils were 
extracted with the DNeasy PowerSoil Pro DNA isolation kit (Qiagen, CA). Extracted 
DNA was used in a two-step PCR reaction [19], with the V3-V4 region of bacterial 16 S 
rRNA and the eukaryotic ITS2 region amplified using the primer set V3F and 806R, and 
5.8S and ITS4, respectively [19, 20]. The final PCR product was normalized, pooled and 
cleaned-up before sequenced on a Illumina MiSeq platform at the University of Min-
nesota Genomics Center. Sequences were analyzed using Qiime2. Cutadapt was first 
used to remove the forward and reverse primers of the ITS reads. Trimmed ITS reads 
and the raw 16 S reads were then truncated, filtered, denoised, pair-end merged, and chi-
meras removed using the DADA2 pipeline. Taxonomy was assigned to the feature table 
of amplicon sequence variant (ASV) using Qiime2’s feature-classifier plugin, using the 
RDP Naïve Bayesian Classifier fit to the SILVA 138 database for 16 S reads and UNITE 
database for ITS reads. Bacterial and fungal ASV tables were merged at Phylum, Class, 
Order, Family, and Genus levels using phyloseq in R. Alpha diversity measured as 
Chao1, Abundance-based coverage estimator, Shannon, Simpson, and Inverse Simpson 
index were calculated after rarefying the samples to the minimum sample depth. Alpha 
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diversity was calculated for each taxonomic level using the vegan package [21]. The 
population abundance of bacteria, fungi, Verticillium dahliae, and Pathogenic Strepto-
myces were measured with quantitative polymerase chain reaction as described in [18].

Yield and disease Potatoes were harvested by hand from a one-meter hill (usually 3-4 
plants) at each sampling location at the end of the growing season. One plant was used 
for tuber disease assessment, and the rest plants were used for yield estimation. Tubers 
were visually assessed for common scab, silver scurf, and black scurf, and then cut-open 
to evaluate Verticillium dahliae infection (dark vascular ring), and hollow heart. Tuber 
yield was estimated as the fresh weight of cleaned tubers.

Binarization of response variables

We have six phenotypes (response variables) of interest, four of them correspond to dis-
eases and two of them correspond to yield (Table 1).

All six responses in the dataset are continuous, so we need to binarize them to fit the 
classification models. For the disease-related responses, we simply make the binary label 
0 if there is no presence of disease, and 1 if there was detection of disease (that is, if the 
continuous response is greater than 0.0). Binarizing the yield response variables is harder 
as there is no universal standard to classify potato yield to be low or high. Furthermore, 
yield values are highly dependent on the type of potato variety. We assign a label of 0 
(low yield) to samples with a yield less than the variety-specific median. Similarly, we 
assign a label of 1 (high yield) to samples with a yield greater than the variety-specific 
median. We illustrate this approach in Fig. S1 in the Supplementary Material.

After binarization, we note that pitted scab disease (denoted Scabpit in the figures), 
superficial scab disease (denoted Scabsuper in the figures), and both yield responses are 
balanced, whereas other responses are highly imbalanced: scab disease (denoted Scab 
in the figures) has 80% of samples labeled as 1, and black scurf disease (denoted Black_
Scurf in the figures) has only six samples labeled as 1. We use these imbalanced cases to 
assess the performance of the methods under imbalance settings and data augmentation 
strategies.

Data filtering, normalization, and zero replacement

The input data is a matrix with non-negative read counts that were generated 
by a sequencing procedure. Let w(k) = [w

(k)
1 , ...,w

(k)
p ] be the total read counts of 

Table 1 Description of responses in this study

The first column displays the responses, the second column shows the number of samples, and the third column indicates 
the count of positive instances (ones) in our binary responses. The last column provides a description of the responses

Response N. samples N. ones Description

Yield_Meter 196 96 Weight of potatoes (grams) per one meter yielded at harvest time

Yield_Plant 219 108 Weight of potatoes (grams) per plant yielded at harvest time

Scab 231 170 Number of tubers that carry scab (superficial+pitted) disease on the 
sampled plant

Scabpit 231 100 Number of tubers that carry pitted scab disease on the sampled plant

Scabsuper 231 145 Number of tubers that carry superficial scab disease on the sampled plant

Black_Scurf 231 22 Percentage coverage of black scurf disease on the sampled plant
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sample k containing p OTUs, where w(k) is a composition that adds up to a fixed value of 
m(k) =

∑p
i=1 w

(k)
i  . This value m(k) is the sequencing depth, which varies across samples 

and is predetermined by technical factors resulting in highly sparse data. It is reasonable 
to filter out a certain set of OTUs as the first data preparation step. For filtering, we only 
include OTUs that appear in at least 15 samples. Table S3 displays the number of fea-
tures (OTUs) before and after filtering for different taxonomic levels.

As mentioned, the input data is compositional and highly sparse. It is known that ML 
methods do not perform well with unnormalized data [22] and with sparse data [23]. 
Therefore, we explore the effect of four zero replacement strategies (to overcome spar-
sity) and five normalization strategies (to overcome compositionality). All strategies are 
implemented in the NetCoMi R package [24].

In particular, we consider the four zero replacement strategies: (1) the original dataset 
which included zeros (denoted none in the figures), (2) pseudo-zero replacement which 
replaces zero counts by a predefined pseudo count (denoted pseudo in the figures), (3) 
multiplicative zero replacement which imputes left-censored compositional values by 
a given fraction and applies a multiplicative adjustment to preserve the multivariate 
compositional properties of the samples (denoted multRepl in the figures) [25], and (4) 
Bayesian-multiplicative treatment which imputes zero counts by posterior estimates of 
the multinomial probabilities generating the counts, assuming a Dirichlet prior distribu-
tion (denoted bayesMult in the figures) [26].

Next, we use five normalization methods: (1) Total sum scaling which simply converts 
counts to appropriately scaled ratios (denoted TSS in the figures) [27], (2) Cumulative 
sum scaling which rescales the samples based on a subset (quartile) of lower abundant 
taxa, thereby excluding the impact of highly abundant taxa (denoted CSS in the figures) 
[27], (3) Common sum scaling in which counts are scaled to the minimum depth of each 
sample (denoted COM in the figures) [22], (4) Rarefying which random samples without 
replacement after a minimum count threshold has been applied (denoted rarefy in the 
figures) [28], and (5) Centered Log-ratio which transforms the data using the geometric 
mean as the reference (denoted clr in the figures) [29].

With four zero replacement methods and five normalization methods, we create 20 
datasets by the combination of zero replacement and normalization techniques. Our 
goal is to study the effect of the zero replacement and normalization choice in the per-
formance of the deep learning methods. Namely, we have the following 20 combinations, 
NM1 : TSS+none, NM2 : TSS+pseudo, NM3 : TSS+multRepl, NM4 : TSS+bayesMult, 
NM5 : CSS+none, NM6 : CSS+pseudo, NM7 : CSS+multRepl, NM8 : CSS+bayesMult, 
NM9 : COM+none, NM10 : COM+pseudo, NM11 : COM+multRepl, NM12 : 
COM+bayesMult, NM13 : rarefy+none, NM14 : rarefy+pseudo, NM15 : rarefy+multRepl, 
NM16 : rarefy+bayesMult, NM17 : clr+none, NM18 : clr+pseudo,, NM19 : clr+multRepl, 
and NM20 : clr+bayesMult. For convenience, we use the notation NMi (Normalization 
Method) for i = 1, . . . , 20 in the Full Model Selection section (See section “Identifying 
general practices to predict potato disease from microbiome data using full model selec-
tion models”).

For the environmental predictors of soil chemistry and microbial population density in 
the soil, we apply six scaling methods: (1) standardize features by subtracting the mean 
and scaling to unit variance [30]; (2) scale each feature to a [0, 1] range; (3) scale each 
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feature by its maximum absolute value; (4) scale features by subtracting the median and 
scaling to the interquartile range [31]; (5) transform the features to follow a normal dis-
tribution [32]; (6) normalize samples individually to the unit norm. After normalization, 
the datasets are split into training, validation, and testing sets with 10-fold cross-valida-
tion. We used 80% of samples for training and validation, and 20% for testing.

Data augmentation

There are three main goals that we wish to achieve with data augmentation: (1) improve 
the model’s prediction performance with more artificial samples; (2) balance the number 
of labels with artificial samples, and (3) make the model more robust and avoid overfit-
ting with unseen (artificial) data. We note that augmenting the whole dataset and then 
splitting it into training and testing sets would result in data leakage. For example, when 
the original sample is in the testing set and the augmented sample from this sample is in 
the training set, the model is essentially training and testing on the same sample since 
the normalized values of OTUs are very close. Thus, we split the data into training and 
testing sets first and only augment the training set. This strategy also allows us to have 
a fair performance comparison for augmented and non-augmented sets with the same 
testing data.

Regarding the data augmentation procedure, instead of simply adding a randomly gen-
erated noise to the original sample, we subset the data by variety and label, compute the 
mean (and standard deviation) abundance value for this subset, and create a new sam-
ple that includes the original data plus a Gaussian error with mean µ/100 and standard 
deviation σ/100 where µ, σ are the subset-specific mean and standard deviation, respec-
tively. This approach is illustrated in Fig. S2 in the Supplementary Material. By the end of 
this procedure we would have a balanced augmented training set with 400 samples per 
label for each of the five taxonomic levels (Phylum, Class, Order, Family, and Genus), the 
number of samples is shown in Table 1.

Feature selection

Feature selection involves the identification of important features (or covariates) that 
have high predictive power. Given the high-dimensionality of the data (e.g. 256 original 
samples for 485 OTUs at the Genus level), feature selection is necessary, especially for 
Bayesian NN models that are computationally expensive.

We pursue two approaches for feature selection: (1) using ML models to assess varia-
ble importance, and (2) using network analyses. To focus exclusively on the effect of fea-
ture selection, we only consider one type of normalization and zero replacement strategy 
in this investigation, namely, total sum scaling normalization without zero replacement 
( NM1 : TSS+none).

Using ML models for feature selection

To identify important OTUs, we use six ML strategies implemented in scikit-learn 
[32]: (1) “SelectKBest” method selects features based on the k highest analysis of vari-
ance F-value scores, (2) select the top k features based on the mutual information statis-
tic, (3) recursive feature elimination (RFE) with logistic regression, (4) RFE with decision 
tree, (5) RFE with gradient boosting, and (6) RFE with RF. In addition to the six ML 
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strategies, we consider a 7th strategy which consists in including OTUs in the model if 
their maximum value is within the top 30%.

After running all seven strategies, we assign a value (“TOTAL”) to each OTU based 
on the number of times the OTU is selected as an important feature under the seven 
criteria. That is, an OTU that is selected as important by all seven strategies will have 
a value of 7. The OTUs are sorted based on “TOTAL” column and the top 30% of them 
are selected as important features. Thus, 30, 36, 75, 85, and 162 OTUs are selected for 
Phylum, Class, Order, Family, and Genus levels, respectively. For example, Table S5 in 
the Supplementary Material shows the top 30 OTUs at the Phylum level and by which 
strategies they are identified as important features to predict the pitted scab response.

Using network comparison for feature selection

Next, we identify important OTUs by comparing their interactions in microbial net-
works when the network is constructed with samples from one class (say, low yield) ver-
sus with samples from the other class (say, high yield) [10]. Indeed, evidence shows that 
microbial interactions can help differentiate between crop disease states [24]. We iden-
tify the OTUs that interact differently on the samples corresponding to one class versus 
another class as relevant OTUs that contain information about the outcome. We use the 
SPRING method (semi-parametric rank-based approach for inference in the graphical 
model) [33] in the NetComi package to construct two microbial networks: one cor-
responding to label 0 and one corresponding to label 1. To build these networks, the 
estimated partial correlations are transformed into dissimilarities via the signed distance 
metric, and the corresponding similarities are then used as edge weights. We then com-
pare these networks in order to identify OTUs that have the greatest difference based 
on degree values. Figure S4 shows an example of two microbial networks with different 
graphical structures, and Table S6 in the Supplementary Material lists OTUs ranked by 
the difference in degree in the two microbial networks for diseased and non-diseased 
classes of pitted scab response. The OTUs are sorted based on the values of the degree 
difference column and similar to ML strategy top 30% of them are selected as important 
features.

Combination of ML and network strategies in feature selection

We define a scoring value for each OTU based on whether they are identified as 
important by ML strategy ( score = 1 ), by the network comparison ( score = 2 ), or both 
( score = 3 ). If the OTU is not identified as important by any strategy, it is denoted 
score = 0 . Figure S5 displays the scoring values of all OTUs at the Phylum level for all 
responses.

Model descriptions: random forest and Bayesian neural network

We apply two types of classification models to predict potato disease and yield: RF and 
Bayesian NN. We consider separately three types of predictors: OTU abundances (5 
taxonomic levels and 20 normalization/zero replacement strategies described in section 
“Data filtering, normalization, and zero replacement”), environmental predictors such as 
soil characteristics and microbial population density, and a combination of both types. 
Table 2 lists all the models we consider in this study.
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Table S4 shows the number of predictors included in each model as well as the data 
choices related to taxonomic level or normalization and zero replacement strate-
gies. For example, using all OTUs (first row), we have five taxonomic levels and 20 
normalization+zero replacement strategies each, so in total, we have 100 (20 normaliza-
tion strategies times 5 taxonomic levels) different OTU datasets. For each of these 100 
datasets, the number of predictors (i.e., OTUs) would depend on the taxonomic level 
being analyzed. For example, at the Phylum level, there might be 42 predictors, while at 
the Genus level, there could be up to 485 predictors.

Random forest model

The RF classifier is a powerful ML technique that has gained significant popularity in the 
last two decades because of its accuracy and speed. RF randomly creates an ensemble 
of decision trees. Each tree picks a random set of samples (bagging) from the data and 
models the samples independently from other trees. Instead of relying on a single learn-
ing model, RF builds a collection of decision models, and the final decision is based on 
the output of all the trees in the model. The bagging approach promotes the generation 
of uncorrelated trees which reduces the risk of overfitting. Each decision tree is gener-
ated individually without any pruning and each node is split using a user-defined num-
ber of features. By expanding the forest to a user-specified size, the technique generates 
trees with a high variance and low bias. The final classification choice is determined by 
summing the class-assignment probability obtained by each tree. A new unlabeled data 
in testing set input is thus compared to all decision trees formed in the ensemble, with 
each tree voting for class membership and the membership category with the most votes 
will be picked.

Table 2 Models under study for three types of predictors (first column)

OTUs environmental, and both. The name of each model (second column) is used in figures and tables in the text

Type of predictors Name of the model Predictors included in the model

OTU ALL‑OTU OTU abundances

OTU‑S0 OTUs with a score of zero (not selected by ML or network compari‑
son feature selection strategies)

OTU‑S1 OTUs selected by the ML feature selection strategy (score of one)

OTU‑S2 OTUs selected by the network comparison feature selection strategy 
(score of two)

OTU‑S3 OTUs selected by the ML and network comparison feature selection 
strategies (score of three)

Alpha Alpha diversity

Environmental Soil Soil chemistry

DS Microbial population density in soil

Soil+DS Combination of soil chemistry and microbial population density in 
soil

Combination Alpha+Soil Combination of alpha diversity and soil chemistry

Alpha+Soil+DS Combination of alpha diversity, soil chemistry, and microbial popula‑
tion density in soil

OTU‑S3+Soil Combination of OTUs with score of three and soil chemistry

OTU‑S3+DS Combination of OTUs with score of three and microbial population 
density in soil

OTU‑S3+Soil+DS Combination of OTUs with score of three, soil chemistry, and micro‑
bial population density in soil
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The RF has several hyperparameters to be determined by the user, such as the num-
ber of decision trees to be generated, the number of variables to be selected and tested 
for the best split when growing the trees, the maximum depth of the tree, the mini-
mum number of samples required to split an internal node, among others. Generally, 
a grid search is combined with K-fold cross validation to select the best hyperpa-
rameters [34]. GridsearchCV is a well-known search method which is available in 
scikit-learn [32] and it evaluates all possible parameter combinations to deter-
mine optimal values.

Here, we set different values for parameters (see Table S7 in the Supplementary Mate-
rial) and tune them using GridsearchCV to find the optimal values for the RF clas-
sifier. GridSearchCV uses a “score” method for evaluating the performance of the 
cross-validated model on the test set.

For evaluating our results, we employ the weighted F1 score due to the presence of 
unbalanced data. The weighted F1 score provides a comprehensive evaluation metric 
that considers both precision and recall across multiple classes, taking into account the 

class imbalance. It is calculated using this formula: weighted F1 scores =
∑N

i=1 wi·F1 scorei
∑N

i=1 wi

where N  is the number of classes, here is 2 and wi is the weight assigned to class i 
which is determined based on the size of each class, and F1 scorei is the F1 score for class 
i . A weighted F1 score of 1 indicates the best possible result, while a score of 0 indicates 
the worst possible result.

Finally, when the parameters for the RF model are tuned, we use 20% of samples to 
report the performance of the final model. We use the weighted average F1 score to eval-
uate the performance of the models, which is computed by averaging all the per-class F1 
scores while accounting for the number of samples in each class.

Bayesian neural network model

The size of the samples used in our study is too small for traditional Deep Learning 
approach. Bayesian NN are suitable for small sample sizes as they provide natural pro-
tection against overfitting by considering distributions for the model parameters. This is 
due to the fact that distributions are considered for the parameters in the model which 
allow us to marginalize them so that the prediction is based on data points alone [13]. In 
the first paragraph of section “Details of bayesian neural network model” of the Supple-
mentary Material, we provide the mathematical details of Bayesian NN models.

We structure our Bayesian NN models based on the datasets and we set the prior dis-
tributions and hyperparameters following the scheme described in [35]. The detailed 
mathematical representation of the parameters and structure information of our model 
could be found in the second paragraph of section “Details of bayesian neural network 
model” of the Supplementary Material.

The training and the approximation of the posterior distribution are done via a Ham-
iltonian (Hybrid) Monte Carlo (HMC) implemented in [35]. The choice of leap frog 
lengths and step sizes could be found in the last paragraph of section “Details of bayesian 
neural network model” of the Supplementary Material.

Given that HMC does not scale well for high dimensional parameter spaces and large 
datasets [36], we did not fit the Bayesian NN on all the models described in Table 2. In 
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particular, we do not fit a Bayesian NN model on the Genus level for the ALL-OTUs as 
this model would involve over 9 million weights in the network with 485 input neurons.

Full model selection

FMS [16, 17, 37] involves the process of listing all data preprocessing steps, model 
options and selection of predictors, and using a decision tree model to identify the 
choices that yield the highest measure of performance. Here, we fit a FMS strategy with 
the following options: 1) type of normalization, 2) type of zero replacement, 3) taxo-
nomic level, and 4) data augmentation. We combine the type of normalization and type 
of zero replacement strategy into one variable (denoted NMi for i = 1, . . . , 20 ). We focus 
on the weighted F1 score as measure of performance, and we include all OTU predictors 
(that is, we do not consider feature selection as one of the options to compare). We build 
the regression decision tree by using the DecisionTreeRegressor which is avail-
able in scikit-learn [32]. We use the default parameters in the DecisionTreeR-
egressor such as “squared error” as the criterion to measure the quality of a split, a 
minimum number of 2 for the samples required to split an internal node, and a mini-
mum number of 1 sample required to be at a leaf node. In order to create an informative 
decision tree that can be interpreted, we use a maximum depth of 4.

Results
Performance evaluation of predictive models for yield responses

We implemented the  H2O AutoML package in Python [15], an open-source package 
designed for automated ML, which trains multiple models such as RF, Gradient Boost-
ing Machines, and Deep Learning models.  H2O AutoML automates model selection and 
hyperparameter tuning, providing a comprehensive comparison of different ML meth-
ods. The best-performing model is selected based on Root Mean Square Error (RMSE), 
a standard metric for regression tasks. This process allows for a more robust evaluation 
of model performance in predicting continuous yield, avoiding the biases introduced by 
arbitrary binarization. However, to maintain consistency with the rest of the study, we 
also report results from RF models. We report Mean Absolute Percentage Error (MAPE) 
as the evaluation metric. MAPE calculates the average absolute difference between pre-
dicted and actual values as a percentage of the actual values. The formula for MAPE is 
defined as:

where Ai is the actual value, Fi is the predicted value, and n is the number of observa-
tions. MAPE, evaluated on a scale from 0 to 1, is commonly used for regression tasks 
because it is particularly valuable as it is scale-independent, making it easy to compare 
performance across different models and datasets [38]. A lower MAPE indicates bet-
ter model accuracy, with 0% representing perfect prediction. A MAPE of, for example, 
10% means that, on average, the model’s predictions are 10% off from the actual values. 
The results of MAPE values are visualized using box plots, which clearly represent the 
variability and performance of the models across different normalization methods and 

MAPE =
1

n

n
∑

i=1
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taxonomic levels in Fig. 2. The left part of the figure displays the results from RF models. 
For a more comprehensive analysis, we also show the best result obtained from the  H2O 
AutoML model as shown in the right part of Fig. 2.

We acknowledge that binarization does lead to information loss. The continuous mod-
eling results demonstrate that predicting Yield_Plant is particularly challenging, likely 
due to the biological variability between individual plants. However, we observed better 
performance for Yield_Meter, which is a more stable measure due to its aggregation over 
a larger area. To balance accuracy and complexity in this study, we applied binarization 
to the continuous response in cases where it improved performance, although we recog-
nize that this is not an ideal long-term solution. In future work, we plan to explore larger 
datasets and incorporate additional environmental variables to enhance model accuracy 
without relying on binarization.

Comparing the performance of random forest and  H2O autoML for disease and binarized 

yield prediction

Figure 3 presents the weighted F1 scores for RF (left panel) and the best  H2O AutoML 
models (right panel) across various responses, including both yield and disease out-
comes (binary responses). Each boxplot represents different taxonomic levels (Phylum, 
Class, Order, Family, Genus) to evaluate model performance. The results show that RF 
performs comparable to the best  H2O AutoML models, particularly excelling in Scabpit 
response. This demonstrates RF’s reliability, as its performance is consistently close to or 
equal to the more complex models selected by AutoML.

We also choose Deep Learning Models as they are known to excel in exploring deep 
relationships between predictors. We believe it is essential to include a Deep Learning 

Fig. 2 Boxplots with Mean Absolute Percentage Error (MAPE) values: random forest and Best Model resulted 
from the  H2OAutoML python package. The x‑axis represents the yield outcomes. The range of each box plot 
depicts the MAPE values for 20 normalized datasets at each taxonomic level

Fig. 3 Boxplots weighted F1 score values: random forest and Best Model resulted from the  H2OAutoML 
python package. The x‑axis represents the diseases and yields outcomes. The range of each box plot depicts 
the weighted F1 score values for 20 normalized datasets at each taxonomic level
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model as this is the cutting-edge method that resulted in most success in ML applica-
tions in the last decade. However, while deep learning approaches were considered, we 
determined that our dataset, with approximately 200 samples, is too small to effectively 
apply deep learning models. Deep learning typically requires larger datasets to avoid 
overfitting and produce generalizable results, and thus, it was not a viable option for our 
study. While there are many computational efficient models, none would be properly 
trained with 200 samples without underfitting or overfitting. Despite the computational 
challenges, Bayesian NNs [13] are known to be informative for small sample sizes, offer-
ing protection against overfitting by modeling parameter uncertainty. Even though the 
Markov Chain Monte Carlo (MCMC) process for parameter estimation is very compu-
tationally inefficient in the context of Deep Learning, more research has gone into alter-
nate estimation methods such as Variational Inference methods in the past few years 
which might drastically improve the computational efficiency in the near future. The 
Deep Learning result also validates the result of the RF model, a completely different 
approach that is more computationally efficient. Therefore, we will retain the Bayesian 
NN results in the paper alongside the other models, as they provide valuable insights 
despite the computational demands.

Regarding black scurf disease, we found that it is a very imbalanced dataset, with 
only 6 samples exhibiting the disease. Due to the extremely limited number of cases, 
the results from machine learning methods cannot be considered reliable. Consequently, 
we decided not to focus on this disease in our current analysis. Instead, we plan to use 
data augmentation methods to improve predictions for black scurf. Additionally, we are 
collecting more datasets, after which we will apply ML methods to the original data to 
obtain more reliable results.

Although the  H2O AutoML framework identifies slightly better-performing models 
in certain cases, RF maintains a strong balance between predictive performance and 
computational efficiency. In yield-related predictions like Yield_Plant and Yield_Meter, 
RF produces F1 scores that are very close to those of the best AutoML models, mak-
ing it a dependable choice. Given the practical constraints of running models across 600 
configurations (5 taxonomic levels × 20 normalization methods × 6 responses) and the 
inclusion of environmental predictors, RF’s lower computational demand provides an 
efficient solution without compromising accuracy. This comparison supports our choice 
of RF as a reliable and efficient model, reinforcing the robustness of our study’s find-
ings. Furthermore, we aimed to use one robust model that works effectively across all 
response types, and RF consistently met this criterion, demonstrating reliable perfor-
mance across various conditions. Given these results, RF was selected as the main model 
due to its interpretability, robustness, and lower computational demands. While  H2O 
AutoML occasionally yielded slightly higher scores, RF’s performance remained con-
sistently close, underscoring its suitability as the primary model for microbiome studies 
with limited computational resources.

Overall performance of predictive models: manual binarization causes inaccurate 

prediction of yield

First, we identify the outcomes (disease or binarized yield) that are accurately pre-
dicted across models (and are thus robust to prediction regardless of model choices), 
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as well as the models that accurately predict across outcomes (and are thus the most 
powerful model alternatives). To do so, we aggregate the weighted F1 scores on data 
preprocessing choices such as normalization, zero replacement, and taxonomic levels 
for every model and every outcome. We employed RF and Bayesian NN models across 
various predictive scenarios (14 different models). The predictive capabilities of these 
models are illustrated in Figs. 4 (RF) and S3 (Bayesian NN), providing a comprehen-
sive analysis of all 14 models outlined in Table 2. This detailed comparison illustrates 
how each feature selection strategy impacts model performance across taxonomic 
levels and response types. Columns correspond to the six responses: four diseases 
and two yield outcomes. For a given panel (model in row and response in column), 
the boxplot corresponds to the different weighted F1 scores for every combination 
of normalizations/zero replacement strategies as well as different taxonomic levels 
(Table  S4). For example, the boxplots for the ALL-OTU model (first row) include 
weighted F1 scores of the model fit on 20 normalization/zero replacement strate-
gies, and 5 taxonomic levels (100 different weighted F1 scores per outcome). The per-
formance of these models was assessed using the weighted F1 score metric, which 
accounts for the imbalance in classes, making it particularly suited for this dataset. 

Fig. 4 Boxplots of weighted F1 scores for random forest models for different types of predictors (rows) and 
different yield or disease outcomes (columns). For a description of the rows, see Table 2. The range of each 
boxplot depicts the weighted F1 scores for datasets in different taxonomic levels and different normalization 
and zero replacement strategies. The dashed line corresponds to the weighted F1 score when fitting the 
model with random datasets (see section B in the supplementary file)
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The dashed line in each panel corresponds to the average weighted F1 score of the 
model when fit with all random datasets (see section “Prediction of potato disease 
from microbiome data” and Figs. S6 and S7 in Supplementary file). This line allows us 
to assess whether the real data has more predictive power than random data [39]. For 
Random Forest models, feature selection performance ranks in this order: OTU-S3 > 
OTU-S1 > OTU-S2 > OTU-S0. Combining OTU-S3 with environmental information 
further enhances performance. Figure S3 follows the same structure for Bayesian NN 
models. Similar to Random Forest, OTU-S3 shows better performance compared to 
OTU-S1, OTU-S2, and OTU-S0. The best results are achieved by combining OTU-S3 
with soil information. The comparison against random datasets provides a baseline, 
helping to ensure that the model’s performance is not due to chance but reflects real 
patterns in the data.

While these plots do not allow us to distinguish differences by taxonomic level or 
normalization/zero replacement strategy (more on that in the next subsections), we 
can identify outcomes (columns) that can be more accurately predicted across mod-
els (rows). Additionally, we can identify models that are capable of accurately predict-
ing more outcomes. It is readily evident, for example, that the yield outcomes cannot 
be accurately predicted by any model as all the weighted F1 scores fall consistently 
below the dashed line. It is notable that the yield responses are those for which there 
is not a clear binarization strategy. Since we are artificially separating samples into the 
two classes (low and high yield) based on whether they are above or below the variety-
specific median, samples on the boundary will in fact be very similar to each other, and 
thus, difficult to classify. Furthermore, the poor prediction of yield is not restricted to 
one data type (microbiome vs environmental) which also suggests that the prediction 
challenges arise from the binarization process rather than the model or set of predictors.

Disease outcomes, on the contrary, display higher weighted F1 scores overall, and 
in particular, pitted scab displays weighted F1 scores that are consistently above the 
random prediction dashed line across different models. For the case of black scurf 
disease, even when the weighted F1 scores are very high, this is a deceiving result, as 
this disease outcome is highly imbalanced. This means that a naive model predict-
ing all samples to belong to the majority class will have high prediction accuracy (see 
dashed line above 0.8 for random data). We investigate the prediction of black scurf 
disease more carefully with the augmented data that balances the proportion of both 
classes (Section “Robust prediction in imbalanced datasets with data augmentation”).

Figure  5 showcases the best performance of RF and Bayesian NN models. In the 
RF model, the integration of alpha diversity and soil chemistry data (referred to as 
Alpha+Soil) yields the most accurate predictions across all outcomes. Conversely, 
optimal performance for the Bayesian NN models is achieved by OTUs identified as 
significant by both ML and network comparison strategies (more details on feature 
selection are provided in section “Effective preservation of predictive signal with dif-
ferent feature selection strategies”), alongside soil chemistry data (denoted as OTU-
S3+Soil). These findings highlight the importance of integrating environmental 
information with microbiome data to enhance predictive power for disease outcomes.

Finally, given the poor performance on yield, we focus on the fine-grained descrip-
tion of results for the disease outcomes only for the remaining of the manuscript.
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Prediction of potato disease from microbiome data

Normalization and zero replacement strategy has been proven to have impact on predictive 

power

One of the goals of our study is to identify ideal data preprocessing steps that are 
guaranteed to maximize predictive power on the ML models. Figure  6 shows the 
weighted F1 scores for pitted scab for different combinations of normalization and 
zero replacement strategies (x-axis) for the two types of models (RF and Bayes-
ian NN). These analyses include all OTUs under the five taxonomic levels (different 
colors). Similar plots for other diseases are presented in Figs.  S8, S9, S10, S11 and 
S12 in the Supplementary Material. In fact, there is considerable interaction between 
the normalization/zero replacement method and the taxonomic level. For exam-
ple, for the RF model, the best result is achieved with Phylum level and cumulative 
sum scaling normalization with pseudo-zero replacement strategy (CSS+pseudo) 
or common sum scaling normalization without any zero replacement strategy 
(COM+none). Additionally, the rarefy+none and rarefy+multRepl strategies dem-
onstrate good performance. For Bayesian NN, however, the best results are achieved 

Fig. 5 Boxplots represent the weighted F1 scores corresponding to the most accurate predictions achieved 
by RF and Bayesian NN across various yield or disease outcomes (columns). The RF model exhibits its highest 
accuracy when utilizing alpha diversity and soil chemistry data (Alpha+Soil), while the Bayesian NN models 
demonstrate optimal performance by integrating OTUs identified as important by both machine learning 
and network comparison strategies, along with soil chemistry data (OTU‑S3+Soil). Each boxplot range 
depicts the weighted F1 scores for datasets at different taxonomic levels and normalization methods, with 
the dashed line indicating the score obtained from fitting the model with random datasets (see section B in 
Supplementary file). Detailed results are provided in Figs. 4 (RF) and S3 (Bayesian NN)

Fig. 6 Weighted F1 scores (y‑axis) for random forest and Bayesian neural network (Bayesian NN) models for 
the pitted scab disease under the 20 normalization/zero replacement strategies (x‑axis). We can conclude, 
however, that taxonomic levels, normalization and zero replacement strategies have an effect on the 
prediction accuracy of the models as evidenced by the broad range displayed by the points
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with the common sum scaling normalization with the multiplicative zero replacement 
(COM+multRepl) for the Phylum level (See Fig. 6).

For a given normalization/zero replacement strategy (x-axis), the variability in the 
scatterplot points indicates that taxonomic levels have an impact on the predictive 
power of the model. When we compare the range of weighted F1 scores across normali-
zation and zero replacement strategies, we see that the effect of the strategy is not neg-
ligible. For example, at the Phylum level, the lowest weighted F1 score is around 0.75 for 
centered log-ratio normalization with pseudo-zero replacement strategy (clr+pseudo) 
to around 0.9 for cumulative sum scaling normalization with pseudo-zero replace-
ment strategy (CSS+pseudo). This implies that for a given taxonomic level, the resulted 
weighted F1 score will be highly influenced by the normalization and zero replacement 
strategy. Traditionally, microbiome researchers use the total sum scaling normalization 
without any zero replacement strategy (TSS+none) on their data which has a range of 
0.80–0.90 weighted F1 scores for the RF model (0.8–0.85 for the Bayesian NN model) 
depending on the taxonomic level.

The strong interaction effects of taxonomic level, normalization, and zero replacement 
strategy prevent us from making recommendations about the best data preprocessing 
practices that can be generalizable to other datasets. We conclude by suggesting data 
practitioners to consider trying a variety of appropriate normalization and zero replace-
ment strategies instead of relying solely on one approach, but see section “Identifying 
general practices to predict potato disease from microbiome data using full model selec-
tion models” for more recommendations.

Effective preservation of predictive signal with different feature selection strategies

One of the standard steps in the ML pipeline is feature selection, especially for cases 
of high-dimensional data. We compare the ability to retain predictive signal of three 
feature selection strategies: standard importance score from ML methods, comparison 
of microbial network topologies, and combination of both. More details on the feature 
selection strategies can be found in Methods. Figure 7 shows the weighted F1 scores for 
the two types of models (RF and Bayesian NN) on pitted scab disease (Scapbit) under 
different subsets of predictors: (1) all OTUs (ALL-OTU), (2) only OTUs that were iden-
tified as important by the ML strategy (OTU-S1), (3) only OTUs that were identified 
as important by the network comparison strategy (OTU-S2), (4) OTUs that were iden-
tified as important by both strategies (OTU-S3), or (5) OTUs that were not identified 

Fig. 7 Weighted F1 scores (y‑axis) by random forest and Bayesian neural network (Bayesian NN) models 
for the pitted scab disease (Scabpit) by feature selection strategy (x‑axis) including all OTUs (All‑OTU), OTUs 
selected by the ML method (OTU‑S1), the network comparison method (OTU‑S2), both methods (OTU‑S3), or 
neither method (OTU‑S0)
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as important by neither strategy (OTU-S0). For fair comparison, we include the same 
number of predictors in OTU-S0 as in OTU-S3. Similar figures for other responses are 
shown in Figs. S13, S14, S15, S16 and S17 in the Supplementary Material.

Again, we perceive a strong interaction between taxonomic level and feature selection 
strategy. For the RF model, the highest weighted F1 score is achieved when including 
all OTUs (ALL-OTU) at the Order level whereas for the Bayesian NN model, the high-
est weighted F1 score is achieved when including OTUs identified by the ML strategy 
(OTU-S1) at the Genus level. RF models on all OTUs (ALL-OTU) have a weighted F1 
score above 0.8 in all taxonomic levels which suggests that this model could be a better 
alternative compared to Bayesian NN which is more computationally intensive. There 
are also smaller differences in RF models when comparing the performance on OTU-
S3 (important OTUs) and ALL-OTU (all OTUs) which suggests that the feature selec-
tion strategy is sufficient to preserve the predictive signal in the data while reducing the 
number of predictors in the model. This is relevant for computationally intensive models 
such as Bayesian NN that do not allow the inclusion of all OTUs for certain taxonomic 
levels.

To provide more interpretability, we compiled a comprehensive table that lists the 
key taxa across different taxonomic levels and responses. Each taxon is assigned a score 
based on its selection by ML and network-based feature selection methods: 0: OTUs 
not selected by either ML-based or network-based feature selection. 1: OTUs selected 
by ML-based feature selection. 2: OTUs selected by network-based feature selection. 3: 
OTUs selected by both ML-based and network-based approaches. This scoring system 
identifies the microbial taxa with the highest predictive importance for disease suppres-
sion or yield outcomes. End-users can access the corresponding table on our GitHub 
repository (link: https:// github. com/ solis lemus lab/ soil- micro biome- nn/ blob/ master/ 
python- code/ impor tant_ featu res_ score. xlsx) to determine which taxa are most rel-
evant for practical interventions or microbiome management strategies in their fields. 
We focused on the top five taxa in each taxonomic level to examine the literature for 
evidence of their importance in soil microbiome studies. In each level, we found sup-
port for their key roles, which aligns with our findings, indicating that our methods for 
feature selection and combining the two approaches to identify reliable taxa were suc-
cessful. Other important taxa, such as the top 10 percent, can be considered for further 
studies as significant candidates. For instance, our models showed that taxa from abun-
dant phyla such as Proteobacteria and Chloroflexi, as well as taxa from less abundant 
phyla including Myxococcota, Spirochaetota, and NB1.j, were significant predictors (see 
Tables S5 and S6 in the Supplementary Materials). This suggests that both dominant and 
rare microbial community members play a crucial role in ecosystem functions related to 
crop health, such as nutrient cycling, growth promotion, and disease suppression [40, 
41]. In addition, some of the key taxa identified have well-established roles in agricultural 
systems. For example, taxa from the Class level: Alphaproteobacteria and Gammapro-
teobacteria are frequently studied for their roles in soil health and disease suppression 
[42, 43]. Furthermore, Paenibacillaceae [44] and, Syntrophaceae [45] at the Family level 
have been recognized for their plant-growth-promoting properties and biocontrol capa-
bilities. However, some taxa from the Genus level we identified, such as Acidothermus 
[46], Myxococcota [47], and Haliangium [48] are relatively novel in this context and 

https://github.com/solislemuslab/soil-microbiome-nn/blob/master/python-code/important_features_score.xlsx
https://github.com/solislemuslab/soil-microbiome-nn/blob/master/python-code/important_features_score.xlsx
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could represent promising candidates for further research. Moreover, Pseudonocardiales 
[49] and Frankiales [50] were detected as important taxa at the Order level.

Robust prediction in imbalanced datasets with data augmentation

High prediction power in imbalanced datasets is misleading as a naive predictor that 
classifies all samples as the majority class will have high accuracy. In our data, black scurf 
disease is highly imbalanced, and thus, the high prediction accuracy is unreliable. We 
confirmed, however, that after data augmentation which balanced the data, accurate 
prediction persisted.

To illustrate this, Fig.  8 depicts the weighted F1 scores on original and augmented 
datasets for all yield and disease outcomes (x-axis) and both models (RF and Bayesian 
NN). The range of each box plot depicts the weighted F1 scores for 20 normalized data-
sets at each taxonomic level. We observe that black scurf and pitted scab can be reliably 
predicted across taxonomic levels as their median weighted F1 scores for all taxonomic 
orders are around 0.8 when the models are fitted on the original datasets. As mentioned 
before, however, black scurf is highly imbalanced, so the results on the original data are 
not reliable. Fortunately, the median weighted F1 scores on augmented data (which is 
perfectly balanced by design) increase for both diseases, such that they are around 0.9 
for all taxonomic levels. These results suggest that data augmentation, especially in cases 
of highly imbalanced data, is an appropriate strategy that improves the robustness of the 
model and, in some cases even increases the accuracy. One has to be careful, however, in 
that augmented data can yield certain models prohibited. For example, the Bayesian NN 
model could not be fit on the augmented datasets for Order, Family, or Genus levels due 
to computational limitations.

Identifying general practices to predict potato disease from microbiome data using full model 

selection models

As evidenced by our analyses, every single data and model choice has an impact on the 
predictive performance of our methods. The effects of different data preprocessing steps 

Fig. 8 Boxplots with weighted F1 scores by model (rows): random forest (RF) and Bayesian neural network 
(Bayesian NN) for original and augmented OTU predictors (columns). The x‑axis represents the yield and 
disease outcomes. The range of each box plot depicts the weighted F1 scores for 20 normalized datasets at 
each taxonomic level
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appear to strongly interact, and thus, we could not identify clear patterns on strategies to 
maximize prediction power.

With a FMS [16, 17, 37] strategy, however, we are able to identify the choices that yield 
the highest measure of performance. More details on the FMS models can be found in 
Methods. Figures 9 and S23 show the FMS decision trees for the RF and Bayesian NN 
models on pitted scab disease, respectively. A FMS decision tree shows the different 
data preprocessing steps that yield different weighted F1 scores, so that practitioners can 
select the options that result in the highest predictive power. Here, we have five taxo-
nomic levels, 20 normalization+zero replacement strategies, and 2 data augmentation 
options: no data augmentation (Aug=0) and data augmentation (Aug=1). Thus, in total, 
we have 200 data preprocessing options (20 normalization strategies times 5 taxonomic 
levels times 2 data augmentation).

To interpret a FMS decision tree, each node corresponds to a specific step in the data 
preprocessing pipeline, for example, whether to perform data augmentation or not. If 
the condition is true, we follow the branch to the left; if the condition is false, we follow 
the branch to the right. At the top of the decision tree, we have the root which repre-
sents the data preprocessing step that has the greatest effect on model accuracy. At the 
bottom of the decision tree, we have the leaves with the average weighted F1 score of the 
model fitted on the data that satisfies all conditions towards the root. Each node also dis-
plays the percentage of data preprocessing options included in the node. For example, in 
Fig. 9, the root node covers 100% of the options with average weighted F1 scores 0.865. 
The condition at the root node ( Aug = 0 ) represents the case of “no data augmentation”. 
Thus, “true” (left of the root) means “no data augmentation”, and “false” (right of the 
root) means “data augmentation”. For simplicity, we denote the 20 normalization/zero 
replacement strategies as NMi for i = 1, . . . , 20 . See section “Data filtering, normaliza-
tion, and zero replacement” for a description on each normalization/zero replacement 
strategy.

For the FMS decision tree for the RF model (Fig.  9), the highest weighted F1 score 
(0.934 with 0.5% of the data) is achieved with data augmentation, normalization/zero 
replacement strategy #6 (CSS+pseudo), and Order level. Another path of the decision 

Fig. 9 Full model selection decision tree with a maximum depth of 4 summarizing the results of random 
forest models on pitted scab disease. When the condition at a node is true, we follow the branch on the left, 
and when the condition is false, we follow the branch on the right. The percentage of the data preprocessing 
options and mean of weighted F1 scores are shown in each node
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tree follows data augmentation and any normalization/zero replacement strategy except 
#6 (CSS+pseudo), #14 (rarefy+pseudo), and #18 (clr+pseudo) which yields an average 
weighted F1 scores of 0.892 for 42.5% of the data preprocessing options. If data aug-
mentation is not an option (left of the root), the highest weighted F1 score available is 
0.868 with Phylum level, and any normalization/zero replacement strategy except #18 
(clr+pseudo) or #20 (clr+bayesMult). For the FMS decision trees on the other responses, 
see Figs. S18, S19, S20, S21 and S22 in the Supplementary Material.

Similarly, in Fig. S23 for the Bayesian NN model, the highest weighted F1 score (0.896 
with 15% of the data preprocessing options) is achieved when we do data augmentation, 
we use any taxonomic level except Phylum, and we use any normalization/zero replace-
ment strategy except #10 (COM+pseudo) and #18 (clr+pseudo). See Figs. S24, S25, S26, 
S27 and S28 in the Supplementary Material for other responses.

While the specific recommendations on normalization, zero replacement and taxo-
nomic level are model-specific, both models perform better with data augmentation. In 
terms of taxonomic level, we note that the Bayesian NN was only run on Phylum, Class, 
and Family levels, and thus, the highest accuracy is obtained with Class level (when Phy-
lum= 0 is true). This does not contradict the result from the RF that identified Order 
level as the one yielding higher accuracy. We cannot rule out that the Bayesian NN 
would also have higher accuracy with Order compared to Class. The results from the 
RF, though, seem to suggest that there is a peak at Order, and more granularity in Family 
and Genus does not seem to provide more predictive power.

Table  3 presents a summary of the best FMS decision tree results from the RF 
model for all responses (Figs.  9, S18, S19, S20, S21 and S22). We focus on diseases 
that have reasonable outcomes. The most critical decisions across all diseases involve 
first utilizing the augmentation method and then selecting the appropriate taxonomic 
level-either Family or Order-while avoiding Phylum (due to its lower information 
content) and Genus (which can lead to overfitting due to small sample sizes). The 
final key factor influencing Random Forest results is the choice of the normalization 
method. Our analysis suggests the best results are achieved with NM6: CSS+pseudo 
and NM14: rarefy+pseudo, while the least effective methods were NM18: clr+pseudo, 

Table 3 A summary of the best Full Model Selection (FMS) decision tree results from the Random 
Forest model. The table presents the preprocessing decisions for key disease outcomes and yield‑
related predictions. For each response, the most critical decisions‑identified by their order in the FMS 
Tree (from the first to the fourth level, shown in the first to fourth columns)‑such as augmentation 
methods, taxonomic levels, and normalization strategies, are shown. The corresponding weighted 
F1 scores and the percentage of data preprocessing options that follow this selection path are 
shown in the fifth and sixth columns, respectively

Response Level 1 Level 2 Level 3 Level 4 F1-score data 
preprocessing 
options (%)

Scabpit Aug Not NM_18 NM_6 order 0.934 0.50

Black_Scurf Aug Not Phylum Not NM_18 Not NM_2 0.957 36

Scab Not Aug Not Phylum Not NM_20 NM_14 0.71 2

Scabsuper Not Aug Not Genus Family NM_14 0.74 0.5

Yield_Plant NM_2 Not Phylum Not Order Not Genus 0.623 2

Yield_Meter Aug Not NM_12 NM_9 Not Genus 0.575 2
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NM2: TSS+pseudo, and NM20: clr+bayesMult. We strongly recommend that future 
studies employ the FMS decision tree approach when a gold standard is available for 
evaluation. In cases where there is no way to find the optimal normalization method, 
we suggest applying multiple normalization strategies (as outlined in this paper) and 
reporting consensus results based on the outcomes of different normalized datasets. 
This approach can help yield more robust and reliable results.

For the Bayesian NN model, the focus was similarly on diseases with reasonable 
outcomes (Table  4). Unlike the RF model, we did not observe a consistent pattern 
regarding the importance of augmentation or taxonomic level (Figs.  S23, S24, S25, 
S26, S27 and S28). However, the results indicate that the selection of augmentation, 
taxonomic level, and normalization methods at the first node of the FMS tree sig-
nificantly influences the model’s performance. This variability could be attributed 
to computational limitations that prevented us from running the model on all taxo-
nomic levels. The best-performing normalization methods for the BNN model were 
NM1: TSS+none, NM2: TSS+pseudo, NM4: TSS+bayesMult, NM7: CSS+multRepl, 
NM12: COM+bayesMult, NM13: rarefy+none, and NM16: rarefy+bayesMult.

In overall, with a deep investigation of the FMS results for all responses, we can 
recommend some normalization methods and taxonomic levels for further study. For 
RF model, it is recommended to use the augmenting method since RF can have better 
performance with more samples. For RF, normalization methods have a lower impact 
on the results, and in general, performing data augmentation and using a more spe-
cific taxonomic level like Class and Family are more important and located higher in 
the decision tree depth. This agrees with the fact that RF is known for being toler-
ant to high dimensional data, non-normal data, and missing values [51, 52]. In sum-
mary, four normalization methods consistently performed well across both disease 
and yield tasks: NM1: TSS+none, NM4: TSS+bayesMult, NM13: rarefy+none, and 
NM16: rarefy+bayesMult. There is no evidence from the FMS analysis to suggest 
that using these methods decreases performance, making them strong candidates for 
future studies.

Table 4 A summary of the best Full Model Selection (FMS) decision tree results from the Bayesian 
NN model. The table presents the preprocessing decisions for key disease outcomes and yield‑
related predictions. For each response, the most critical decisions‑identified by their order in the 
FMS Tree (from the first to the fourth level, shown in the first to fourth columns). The corresponding 
weighted F1 scores and the percentage of data preprocessing options that follow this selection path 
are shown in the fifth and sixth columns, respectively

Response Level 1 Level 2 Level 3 Level 4 F1-score data 
preprocessing 
options (%)

Pitted scab disease Aug Phylum Not NM_18 Not NM_6 0.834 15

black scurf diseas Aug Not NM_9 Not NM_8 Not NM_6 0.898 28.30

scab phylum Not NM_20 Not NM_5 Not NM_3 0.44 28.30

Scabsuper Not NM_11 Not Aug Not NM_15 Not NM_3 0.591 56.70

yield by plant Not Family Not NM_17 Not NM_14 Not NM_11 0.526 70.80

yield by meter Not NM_10 Not NM_15 Not NM_19 Not Family 0.528 70.8
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Prediction of potato disease from environmental data

One of the questions to address in our work is whether prediction accuracy is improved 
by the inclusion of microbiome data, or if environmental factors (usually cheaper to col-
lect) provide enough signal to classify potatoes in diseased or non-diseased groups. We 
found that environmental factors indeed provide sufficient signals to predict pitted scab 
disease as illustrated in Fig. S29 which shows the weighted F1 scores by RF and Bayesian 
NN models based on environmental (soil characteristics) data for pitted scab. The range 
of each boxplot corresponds to the six scaling methods described in section “Data filter-
ing, normalization, and zero replacement”. In contrast with the normalization methods 
in microbiome data, we observe here that the scaling methods do not seem to have an 
effect on prediction as evidenced by narrow boxplots, and that weighted F1 scores are 
all higher than 0.75, and therefore, comparable to the models fitted on microbiome data 
alone. These results suggest that environmental factors alone are powerful to predict the 
incidence of pitted scab in the tubers. As microbiome data is more expensive than envi-
ronmental data, we suggest to prefer environmental predictors under restricted mon-
etary budget. See Figs.  S30, S31, S32, S33 and S34 in the Supplementary Material for 
other responses.

Leveraging microbiome and environmental data in the prediction of potato disease

As expected, prediction accuracy improves when both microbiome and environmental 
data are included. Fig. 10 shows the weighted F1 scores by RF and Bayesian NN mod-
els based on combined datasets with environmental and microbial predictors for pitted 
scab. We only focus on the most accurate models identified in section “Overall perfor-
mance of predictive models: Manual binarization causes inaccurate prediction of yield”. 
First, we note that a model that uses OTU abundances outperforms a model that uses 
alpha diversity as a predictor (comparison of Alpha with OTU-S3) for both types of 
models (RF and Bayesian NN). This suggests that we lose information by transforming 
abundances into diversity measures. Second, models including only OTU abundances 
(OTU-S3) perform comparably to models that include both types of predictors (OTU-
S3+Soil+DS) which suggests that the microbial data indeed has substantial predictive 

Fig. 10 Boxplots with the weighted F1 scores (y‑axis) by random forest and Bayesian neural network 
(Bayesian NN) models for pitted scab disease. The range of each box plot depicts the weighted F1 scores 
for normalized datasets at each taxonomic level. There are 6 normalization methods for alpha diversity and 
environmental factors (Soil and DS), and one normalization method for microbiome (OTU‑S3). See Tables 2 
and S4 for description of models and number of normalization methods for each predictors. The models 
including both types of predictors outperform other models, yet models including microbiome data alone 
(OTU‑S3) are comparable which suggests that the microbial information indeed contains signal to predict 
the disease outcome on its own. However, microbiome data is more expensive to collect, and perhaps not 
necessary, given that the model without microbiome data (Soil) performs just as accurately (blue dashed line)
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power on its own, but adding microbiome to soil predictors may not provide much ben-
efit for high predictive power, with the only exception of Phylum level OTU-S3+Soil+DS 
in a RF model (Fig.  10). Generally, the model with only soil information (shown as a 
blue dashed line) performs just as accurately. Third, contrary to prior expectations that 
microbial communities at finer resolution would be a better choice for predicting pitted 
scab or other diseases, our study does not find any evidence that the prediction power 
increases when moving up from Phylum to Genus level. Particularly, the prediction 
power of OTU-S3 in RF model increases from Class to Genus, and this pattern is not 
preserved when diversity is used instead of OTU abundances. For example, a model with 
only alpha diversity as the predictor (Alpha) shows decreasing weighted F1 score as we 
move from Phylum to Genus level. Both models (RF and Bayesian NN) when includ-
ing all types of predictors (OTU-S3+Soil+DS) result in the similar weighted F1 score 
regardless of taxonomic level. See Figs. S35, S36, S37, S38 and S39 in the Supplementary 
Material for other responses.

According to Figs. 7, S13, S14, S15, S16 and S17 in the Supplementary Material, OTU-
S3 performs well and is considered for comparison with other models in Figs. 10, S35, 
S36, S37, S38 and S39 in the Supplementary Material. By comparing results based on 
a few selected features (OTU-S3), we observe reliable performance for both disease 
and yield prediction. This underscores the robustness of OTU-S3 as an effective feature 
selection strategy.

Running time

The RF model was implemented and tested on a MacBook Pro with an Apple M1 Pro 
chip and 16 GB of RAM. The running time for the RF model is provided in Table S8 in 
the supplementary materials. Depending on the number of trees and features selected, 
the RF model typically requires a few minutes per model on a dataset of our size (~200 
samples). For the Bayesian NN model, the computational demands are significantly 
higher due to the need for probabilistic inference. We ran the Bayesian NN model on 
the Center for High Throughput Computation (CHTC) platform at UW-Madison with 
RTX2080ti graph cards. Despite using more computation resources, the Bayesian NN 
model would take between 24-72 h to compute the result for the models on all but Phy-
lum level. Thus, it will be infeasible to run the Bayesian NN model on this particular 
problem on any personal devices. The runtime log of Bayesian NN models has been lost, 
unfortunately, as the CHTC platform only keeps the log files for 6 months, while the 
model was run more than 2 years ago. In summary, while the RF model can be efficiently 
run on a standard laptop such as a MacBook Pro, the Bayesian NN model requires sig-
nificantly more computational resources. We recommend high-performance computing 
resources for readers planning to implement Bayesian NNs, particularly for larger data-
sets or more complex models.

Discussion
The following points summarize the main findings and their significance in advancing 
our understanding of soil microbiome and plant health:

Can machines classify what humans cannot? The importance of accurate labels. 
The prediction power of microbiome data varies depending on the outcome we want to 
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predict. For example, among all models that predict diseases, models for the pitted scab 
disease receive very high weighted F1 scores compared to other diseases. We further 
confirm this predictive power by comparing the performance of models trained on the 
real microbiome data to models trained on randomly generated data (see Figs. S6 and 
S7). Given that the prediction of the pitted scab disease is far from random, we can con-
fidently conclude that this disease can be accurately predicted from microbiome data. 
It is noteworthy, however, that pitted scab disease is precisely one of the diseases that 
are easier to be visually detected, and thus, there is a reliable separation among the two 
classes (diseased and non-diseased) which is aiding in prediction by ML models. Other 
diseases, and more so yield, do not have such clear distinction between classes which 
results in lower predictive power. That is, we believe that the lack of prediction accuracy 
in yield is not driven by a lack of a biological connection between soil microbiome and 
yield, but on the lack of accurate labels that distinguish the two classes (e.g. low and high 
yield). If humans cannot distinguish what is low yield vs high yield, then that ambivalence 
will propagate into the ML classification. This conclusion seems to be confirmed when 
we notice that yield cannot be accurately predicted by any of 14 models in consideration 
(Table 2). We conclude that one of the main challenges when applying ML methods in 
biological applications is the artificial binarization of phenotypes. We acknowledge that 
binarization leads to information loss; however, in this study, we found that it improved 
model performance in some cases. Continuous modeling results indicated that predict-
ing Yield_Plant is challenging due to individual plant variability, whereas Yield_Meter 
showed better performance as a more stable measure. In future work, we aim to explore 
larger datasets and additional environmental variables to enhance model accuracy with-
out relying on binarization. More work is needed to improve the performance of regres-
sion models that can predict continuous phenotypes when faced with limited sample 
sizes that are common in biological domains.

Human analytical choices: Data preprocessing has a substantial impact in pre-
diction performance. We demonstrate that the choice of normalization methods for 
microbiome datasets profoundly impacts prediction outcomes. Regrettably, our analy-
sis did not reveal a discernible pattern indicating the superiority of one normalization 
method over others. We recommend domain scientists to explore various normalization 
methods for their data before utilizing them for prediction purposes. For further per-
formance comparisons on normalization types, see also [27, 53, 54]. Upon comprehen-
sive analysis of the FMS results, we offer recommendations for normalization methods 
for future investigations. For RF model, normalization methods have a lesser impact on 
results overall, with greater emphasis placed on other factors such as data augmenta-
tion and taxonomic levels. However, certain normalization methods are recommended 
against, as indicated in Table  3. In contrast, recommendations for the Bayesian NN 
model differ. Please refer to Table 4 for specific suggestions on normalization methods. 
In summary, four normalization methods consistently demonstrated strong performance 
across both disease and yield tasks for both RF and Bayesian NN: NM1 (TSS+none), 
NM4 (TSS+bayesMult), NM13 (rarefy+none), and NM16 (rarefy+bayesMult).

Feature selection effectively preserves the predictive signal on lower dimensions. 
In terms of feature selection, we considered different strategies to select important fea-
tures (ML, network comparison, and intersection of both). There is a significant overlap 
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between important OTUs by two methods and the inclusion of this subset of predic-
tors allowed us to build less complex models with comparable good performance (see, 
for example, Fig. S7 for pitted scab disease). We did not observe one feature selection 
strategy that outperformed the others. For example, the weighted F1 scores obtained 
when using the OTUs identified as important by the ML methods are comparable to 
the weighted F1 scores when including OTUs identified as important by network com-
parison. It is worth mentioning, however, that the performance is also comparable to 
that obtained when including all OTUs which shows that the feature selection strategies 
work at preserving the OTUs that have predictive signals while simultaneously allowing 
computationally expensive models (like Bayesian NN) to be applied.

In addition to showing that both RF and Bayesian NN methods perform well in feature 
selection, we provide a list of important taxa identified through two different strategies in 
https:// github. com/ solis lemus lab/ soil- micro biome- nn/ blob/ master/ python- code/ impor 
tant_ featu res_ score. xlsx. Our analysis shows that some of the microbial taxa might be 
important, such as Paenibacillaceae, Moraxellaceae, and Syntrophaceae, as they consist-
ently proved to be key predictors in model performance. Those taxa may also be related 
to nutrient cycling, plant growth, and disease suppression [44, 47]. Important taxa with 
strong prediction power for yield and disease can play a significant role in sustainable 
agriculture, where maintaining healthy soil microbiomes is a key objective. These taxa 
can also inform future research on biofertilizer development and microbial inoculants 
in soil microbiome engineering. Our study provided a robust framework for identifying 
key microbial taxa using multiple classification methods, including RF and Bayesian NN.

Finer taxonomic levels provide higher prediction power for Random Forest and 
not much for Bayesian NN. While it is intuitive to expect that finer taxonomic levels 
would provide more predictive power, our analysis reveals this to be the case only in 
specific instances, such as the OTU-S3 model in RF and the OTU-S1 model in Bayes-
ian NN, where the Genus level outperforms others (Fig. S7). However, this expectation 
does not hold true across all scenarios. This may be due to not having enough samples, 
which limits the predictive power at finer taxonomic levels. For a comprehensive assess-
ment, we utilize the FMS method to identify optimal combinations of normalization, 
zero replacement, feature selection, and model choices for maximizing prediction accu-
racy in microbiome data analysis. Contrary to common expectations, our findings do 
not support an overall superiority of certain taxonomic levels over others. Instead, the 
FMS model provides nuanced recommendations: for RF, optimal results are achieved by 
employing data augmentation and focusing on more specific taxonomic levels such as 
Family and Genus, while for Bayesian NN, utilizing more general taxonomic levels like 
Phylum without augmentation proves advantageous.

Limited predictive power in soil microbiome compared to environment. When 
including environmental features such as soil physicochemical properties and microbial 
population density of soil in the model, we achieved higher weighted F1 score values. For 
pitted scab disease (Scabpit), utilizing alpha diversity with the RF model yields a median 
weighted F1 score of approximately 0.75. When combined with soil population density 
information, this score increases to 0.85. Similarly, for the Bayesian NN model, the score 
improves from 0.6 to 0.8 with the addition of soil population density information. For 
RF, employing OTU3 results in a median weighted F1 score of about 0.8, which further 

https://github.com/solislemuslab/soil-microbiome-nn/blob/master/python-code/important_features_score.xlsx
https://github.com/solislemuslab/soil-microbiome-nn/blob/master/python-code/important_features_score.xlsx
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increases to 0.9 when supplemented with soil population density data. Similarly, for 
Bayesian NN, the median score reaches approximately 0.9. However, incorporating the 
population density of soil information leads to a narrower range for the box plot. In gen-
eral, we investigated 14 different models for yield and disease prediction with different 
combinations of microbiome and environmental data. Results show poor performance 
in predicting yield across different models. The best results for pitted scab are achieved 
by combining alpha diversity and soil chemistry (Alpha+Soil) for RF and important 
OTUs and soil data (OTU-S3+Soil) for Bayesian NN. The median weighted F1 scores 
for predicting diseases range from 0.8 to 0.9 for RF and from 0.6 to 0.9 for Bayesian NN 
models (refer to Fig. 5). Although the best-performing models include microbiome pre-
dictors (Alpha and OTU-S3), it is important to note that the models without microbi-
ome data are comparably powerful as those including microbiome data. Specifically, 
for the RF method, the F1 score exceeds 0.75 for pitted scabe disease (Scabpit) and for 
black scurf, and surpasses 0.6 for scab and superficial scab (Scabsuper) diseases. While 
the models trained with microbiome data alone show that microbiome can effectively 
predict pitted scab disease, the fact that models without this type of data continue to 
perform well provides evidence that microbiome data may not be necessary to achieve 
reasonable prediction. In fact, when the collection of microbiome data requires much 
higher cost investment, the increased prediction accuracy by including microbiome pre-
dictors may not be enough to justify the extra cost.

Cost Analysis and Practical Applications: The public price for soil chemistry analy-
sis from a commercial lab can be $9.75 per sample. Adding the costs for microbial popu-
lation density analysis, which is $20 per sample, brings the total cost of environmental 
data used in our analysis to approximately $29.75 per sample. Microbiome data col-
lection, performed at the University of Wisconsin-Madison Biotechnology Center can 
cost $32 per sample. The goal of this research is to provide yield and disease predictions 
before planting and guide management decisions that would occur during the growing 
season. The value of improved prediction accuracy depends on how this tool is used. 
For instance, fields predicted to have high disease pressure would suggest the need for 
disease-control methods, such as fumigation or fungicide application. In this case, pre-
dictions with a certain threshold of accuracy (e.g.,>5%) would provide sufficient infor-
mation to make disease-control decisions. Corresponding management actions would 
reduce disease risks, and the benefits would depend on factors such as the predicted 
disease level, potato cultivar, and market price. In another scenario, yield prediction 
can assist with selecting potato cultivars that align with the producer’s goals. The ulti-
mate goal of our research is to help create a decision-making platform where growers 
can choose between various management options and perform benefit and risk analy-
ses. Growers often aim to produce multiple potato cultivars for various markets, and 
soil microbiome composition and disease pressure often vary significantly among potato 
fields on the same farm. By selecting the most suitable cultivars based on the field-spe-
cific conditions, growers can optimize production and environmental outcomes, and 
meet the goal of precision agriculture.

Inconsistent Predictive Performance Across Outcomes: One of the key challenges 
identified in this study is the inconsistency in predictive performance across different 
outcomes, particularly between disease and yield. While our models demonstrate robust 
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predictive power for diseases such as pitted scab and superficial scab, the results for 
yield outcomes were notably weaker. This discrepancy likely stems from the complex and 
multifactorial nature of yield responses, which are influenced by environmental factors, 
soil properties, farming practices, and other variables not fully captured in our current 
dataset. Moreover, disease outcomes such as pitted scab tend to have clearer biological 
indicators, making them easier to model, whereas yield is a more complex and continu-
ous trait, further complicating prediction. Our results also underscore that traits diffi-
cult for humans to detect, such as yield potential based on subtle microbial interactions, 
are also inherently challenging for machine learning models to predict. Furthermore, 
the limited sample size in this study may have compounded these issues, particularly for 
yield outcomes, where larger datasets are required to capture the full range of influential 
factors. Moving forward, we are collecting more samples from different years and loca-
tions, which will enhance the diversity and robustness of the dataset. This will enable 
the development of more generalized and accurate models capable of addressing the 
variability in agricultural outcomes. Our findings here lay the groundwork for further 
research, with the ultimate goal of creating models that are both reliable and broadly 
applicable to diverse agricultural datasets.

Implications for disease management. Pitted scab is a severe form of potato com-
mon scab, a soil-borne disease that significantly reduces potato yield. The pitted scab 
is caused by the pathogenic Streptomyces spp, with symptoms of deep, dark lesions on 
the tuber surface. The disease is known to be sensitive to soil physicochemical proper-
ties including soil pH and moisture content [55]. Soil microbial communities can also 
be related to the severity of the disease in the plants, as suppressive soils with unique 
microbiomes often cause the pathogen to fail to establish in the plants [40]. The role 
of soil microbiome in influencing soil-borne disease has captured great research inter-
ests in both soil health and disease management. This study shows the close association 
of pitted scab with soil physicochemical properties when sampling across two different 
states. Although soil microbiome information contributed a small amount of prediction 
power to the prediction of this disease, the increased precision of prediction suggests 
the importance of soil microbiome in disease development. Particularly at finer spatial 
scales, soil microbiome may explain more of the disease variation among fields with sim-
ilar physicochemical properties.

Conclusion
Soil microbiome represents the most complex and least understood aspect of soil health. 
In this study, we use ML techniques such as random forest (RF) and Bayesian neural net-
work (Bayesian NN) to determine whether soil microbial information has any predictive 
power for plant outcomes such as yield and disease. The RF method consistently demon-
strates superior performance across all models, underscoring its effectiveness compared 
to the Bayesian NN method. In this study, Bayesian NN takes far longer to train due to 
weight sampling and approximation, especially on more refined taxonomic levels such as 
Order, Family, and Genus. Thus, we believe that based on the current dataset, RF is the 
preferred decision-making model with high prediction potential for disease outcomes 
when including a combination of microbiome and environmental predictors. Our results 
indicate that microbiome data helps predict potato disease, but the best accuracy comes 
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from combining it with environmental data. Given that prediction with environmen-
tal factors alone was sufficiently powerful, it is uncertain whether the extra expense to 
sequence microbiome data is worth the cost.

Future work. In our study, we initially attempted to predict the continuous response 
variable for yield using various machine learning techniques, including RF regression. 
However, the inherent ambiguity and subjectivity introduced by artificial labeling of the 
continuous data posed significant challenges, leading to unsatisfactory prediction accu-
racy [56]. To overcome this limitation, we employed a binary classification approach, 
which proved to be more effective in capturing the underlying patterns and achieving 
better predictive performance. Although this approach involves some loss of granular-
ity, it allowed us to focus on the broader trends and mitigate the impact of labeling sub-
jectivity [57]. In addition, we applied the principal component analysis (PCA) method. 
However, in our specific case, PCA did not yield significant improvements in terms of 
dimensionality reduction or feature extraction. We hypothesize that this could be due to 
the inherent complexity and nonlinear relationships present in our data, which may not 
be effectively captured by linear transformations like PCA [58]. As part of future work, 
we aim to investigate advanced machine learning techniques that can handle the inher-
ent ambiguity and subjectivity present in continuously labeled data. This could involve 
ensemble methods, deep learning approaches, or techniques specifically designed to 
handle noisy or subjective labels [59]. Additionally, we plan to utilize the MiNAA pack-
age [60] to detect alignment pairs of taxa in two constructed networks (healthy and dis-
eased). By doing so, we can identify important taxa by comparing the two networks and 
confirming their significance using three different methods (ML-network-based mod-
els and applying Minaa). This work is based on data from one year, 2019. The goal is 
to find model traits that remain consistent year after year, making them applicable to 
other datasets. we plan to expand the dataset to include multiple growing seasons and 
diverse geographic locations, which will provide a more comprehensive representa-
tion of environmental and agronomic conditions. This expanded dataset will enable us 
to revisit continuous prediction methods with a larger and more diverse sample, aim-
ing to improve accuracy by incorporating more sophisticated regression techniques and 
addressing variability across different regions. By leveraging a richer dataset, we hope 
to refine our models to capture the nuanced interactions influencing yield outcomes, 
ultimately developing more generalizable and robust predictive tools for precision 
agriculture.

Abbreviations
ML  Machine learning
ITS  Internal transcribed spacer
OTUs  Operational taxonomic units
RF  Random forests
Bayesian NN  Bayesian neural network
FMS  Full model selection
ASV  Amplicon sequence variant
TSS  Total sum scaling
CSS  Cumulative sum scaling
COM  Common sum scaling
Rarefy  Rarefying (random samples without replacement)
CLR  Centered log‑ratio
RFE  Recursive feature elimination
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