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Introduction
In recent years, the achievement of measurement technologies mapping for RNA has 
significantly propelled research into RNA epigenetic modifications. Currently, over 170 
chemicals identified have been modifications in cellular RNA, with notable examples 
including 5-methylcytosine (m5C), 5-hydroxymethylcytosine (5hmC), N6-methyladen-
osine (m6A), N1-methyladenosine (m1A), 2’-O-methylation of ribose (2’-O-Me) and 
pseudouridine (Ψ) [1]. Lesser-known modifications such as 7-methylguanosine (m7G), 
adenosine-to-inosine (A-to-I), dihydrouridine (D), N2-methylguanosine (m2G), and 
N4-acetylcysteine have also been identified [2]. These modifications can affect all four 
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RNA bases, adenine (A), cytosine (C), guanine (G), and uracil (U), as well as the ribose 
sugar. While nearly all RNA species undergo modification, transfer ribosomal RNA 
(rRNA) and RNA (tRNA) are the most heavily modified [3]. More than 100 mutations in 
RNA-modifying enzymes have been linked to human illnesses, underscoring these mod-
ifications’ critical role in regulating gene expression and protein production [4]. Moreo-
ver, RNA modifications, like post-translational protein modifications, serve dynamic 
cellular functions by modulating cell-specific activities. Current developments in detect-
ing RNA modifications have been simplified by two principal methods: next-generation 
sequencing (NGS) and liquid chromatography coupled with mass spectrometry (LC–
MS). LC–MS is highly sensitive and specific but cannot provide sequence context [5]. 
In contrast, NGS offers comprehensive sequence information but struggles to detect 
modifications directly. This limitation arises because RNA modifications often interfere 
with reverse transcription, introducing errors or blockages during sequencing [6]. These 
technological advancements are crucial for further understanding RNA modifications’ 
complexity and biological significance [7, 8].

The 5-methyluridine (m5U) modification is a significant epigenetic mark that has 
drawn global attention from researchers. It is commonly found in cytosolic tRNAs and 
other non-coding RNAs like mRNA and rRNA [9]. Various enzymes, such as TrmA in 
E. coli, Trm2 in S. cerevisiae, and TRMT2A and TRMT2B, catalyze m5U modifications 
[10]. This modification is critical to RNA structures, but the conserved T-loop motif is 
essential in alleviating the secondary structure of RNAs [10, 11]. Despite being among 
the most prevalent RNA changes, there is still limited research on identifying and under-
standing the functions of m5U. Methylation of uridine at its fifth carbon, carried out 
by specific enzymes, may have been among the first pyrimidine methyltransferases to 
evolve. m5U is linked to diseases like breast cancer and lupus, as well as plant develop-
ment and stress response. Accurately pinpointing m5U sites is crucial for understanding 
its biological role. Still, experimental methods like miCLIP-Seq and iCLIP are costly and 
time-consuming, often yielding limited data due to antibody specificity issues [12].

To address the challenges of detecting RNA modifications, researchers have proposed 
using machine learning (ML) algorithms [13–15]. Experimentally identifying all RNA 
modifications is expensive and complicated, so computational methods are now widely 
used. Various ML-based tools have been developed to predict RNA modifications, such 
as (WHISTLE [16], SRAMP [17], iRNA-Methyl [18], RNA modification [19], m7GHub 
V2.0 [20], DirectRMDB [21], MODOMICS [22], ConsRM [23]), m5C site predictors 
(iRNA-m5C [24], RNADSN [25], pseudouridine predictors (iRNA-PseU, PPUS [26] and 
RNAm5Cfinder [27]). A few computational and experimental techniques have been cre-
ated to improve the identification of m5U-modified sites and to handle the complex-
ity of RNA modifications. One of the prominent tools is m5UPred, introduced by Jiang 
et al. [28], which uses an SVM algorithm. This method uses sequence-derived features 
like nucleotide concentration and chemistry to predict m5U sites in human RNA. While 
m5UPred achieved a respectable accuracy of 83.60% for Full Transcripts and 89.91% for 
Mature mRNA in cross-validation tests, it faced challenges like overfitting. It was lim-
ited by the quality of its dataset, which wasn’t redundantly processed.

Ao et  al. [29] proposed the m5U-SVM model to address these limitations, enhanc-
ing prediction by merging distributed representation characteristics with traditional 
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physicochemical features. This model was also based on SVM and used a multi-view fea-
ture approach, enhancing its ability to differentiate between m5U and non-m5U sites. 
Under tenfold cross-validation, m5U-SVM showed improved performance, with an esti-
mated average accuracy of 88.876% for Full Transcripts and 94.358% for Mature mRNA. 
Despite these promising results, both models still rely on conventional learning methods 
that struggle to accurately predict m5U-modified sites, primarily due to the resemblance 
among m5U and non-m5U sites.

This paper presents a robust computational predictor named Deep-m5U, designed 
to accurately identify 5-methyluridine (m5U) modifications, leveraging effective fea-
ture extraction techniques. The model utilizes pseudo-k-tuple nucleotide compositions, 
which are grouped into parts such as single nucleotide composition (SNC), dinucleotide 
composition (DNC), trinucleotide composition (TNC), quad nucleotide composition 
(QNC), and penta nucleotide composition (PNC) to establish robust and intricate pat-
terns from the RNA sequence. These features are further enhanced by using structural 
and global sequence-order information and converting an RNA sequence into a feature 
vector. These vectors are then followed by the integration process to develop a new fea-
ture set, which is a blended one, and it helps the model to represent the biological data 
more efficiently. The SHAP is set to improve this feature set, which enforces removing 
noisy and irrelevant features from the set of features to keep only the most discrimina-
tive ones for the classification. Furthermore, classifier training uses a DNN after select-
ing the relevant features under consideration. The model was validated through a tenfold 
cross-validation process by the benchmark data of Mature mRNA and Full Transcript 
data sets. The results were outstanding, with the identified accuracies of 91.47% and 95. 
86%, respectively. Also, it showed that the accuracy of the proposed model, Deep-m5U, 
is higher than that of existing predictors with enhanced performance in all the evalua-
tion criteria. Therefore, it can be used to predict RNA modification sites effectively. Fig-
ure 1 illustrates the structure of the suggested model. The main outcomes of this study 
are as follows:

1. A novel deep computational model for predicting 5-methyluridine (m5U) modifica-
tions.

2. Integrating an optimized feature extraction process using nonlinear activation func-
tions and multi-layer architectures to address dataset complexities.

3. A thorough assessment of model efficacy using both validation and testing datasets.
4. Superior performance in contrast to existing m5U predictors, as measured by vari-

ous assessment parameters.

Materials and methods
Benchmark dataset

Datasets are essential for developing accurate and effective machine-learning models for 
predicting and detecting RNA 5-methyluridine (m5U) modification sites. These types 
of datasets, also known as Benchmark datasets, are essential to test the efficiency and 
capability of the ML algorithms. In this research, we used benchmark datasets that were 
used by [28, 30, 31]. We created a new sequence of forty-one nucleotides for the positive 
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samples based on the sequence containing the experimentally defined modified uridine 
sites. The negative instances were randomly sourced from the unaltered uridine sites of 
the identical transcripts used for the positive samples. These two databases for Full Tran-
script were the set of 3,696 positive and 3,696 negative samples in Mature mRNA data-
bases, including 1,232 positive and 1,232 negative samples. At first, we did not exclude 
homologous sequences for the corresponding genomic regions, which could be prob-
lematic if sequence identity exceeded a certain threshold. We used the CD-HIT method 
to eliminate homologous sequences from the complete transcript m5U modification site 
data to tackle this issue, and an 80% homology similarity was used to enhance the data 
quality. Table 1 shows the details of the final m5U modification site dataset.

Feature formulation

Several approaches are designed to encode DNA, proteins, and RNA samples into math-
ematical structures with structural features of nucleotides maintained [6, 32–35]. These 
approaches enable bioinformaticians to transform RNA sequences into different statistical 
features to retain uniqueness and patterns within the sequence [36]. The Pseudo Amino 
Acid Composition (PseAAC) technique fundamentally represents protein samples with a 

Fig. 1 Proposed model framework

Table 1 Benchmark dataset samples of RNA 5-methyluridine

Dataset Positive sequences Negative 
sequences

Full transcript 1,534 2,862

Full transcript-independent 500 731

Mature mRNA 983 985

Mature mRNA-independent 245 247
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discrete approach. Because of its efficiency, the PseAAC method was further developed to 
predict the RNA and DNA molecules, called the Pseudo k-tuple Nucleotide Composition 
(PseKNC) approach [37]. Through the series of transformations possible with this feature 
formulation technique, PseKNC has emerged as a prominent method for modeling RNA 
and DNA sequences in computational biology [38, 39]. Using the PseKNC method, RNA 
sequences are converted to the corresponding feature vectors, allowing for a representa-
tion of the RNA secondary structure without compromising the sequence order as much 
as possible. It makes the data after transformation similar within the RNA samples, there-
fore appropriate for use in different machine learning procedures [40]. To this end, all RNA 
sequences were encoded using the PseKNC method. RNA primary sequences were trans-
formed into numerical feature vectors where the order of the nucleotides is maintained. For 
example, consider an RNA sequence N with L nucleotides, represented as:

where L stands for the total number of nucleotides in an RNA sequence, which is the 
length of the sequence, in the above Eq. 2, the symbol A represents the Adenine nucleo-
tide base, U is a Uracil nucleotide base, symbol G represents Guanine nucleotide base 
and the symbol C stands for Cytosine nucleotide base.Ni represents the nucleotide that 
occurs in the ith position concerning the sequence. Let’s expand the general form of 
PseKNC representation discussed in [41] for the context of the sample presented in Eq. 1 
below:

The transposed vector T, the numeric value z, and ϕu representing the actual value of the 
RNA sequence’s function vector may be computed using Eq. 4.

where θj stands for the  jth tier correlation factor or rank; this exhibits the correlation 
of the sequence order of the consecutive K-tuple nucleotides in RNA sequence. The 
parameter � represents the overall degrees of correlation ranks to be accounted (or tiers) 
for through a weight factor w . The impact of the correlation factors is stabilized. Theo-
retical and simulation work has shown that � = 1 and w = 0 are the best values for the 
two parameters. 1, which, in turn, provides the best performance results. The correlation 
factor θj can be calculated as follows: 

(1)N = N1N2N3......Ni....NL

(2)Ni ∈ {A,U ,C ,G} (i = 1, 2, 3, ...., L)

(3)N = [ϕ1ϕ2ϕ3........ϕu.............ϕz]
T

(4)ϕu =

f
K−tuple
u
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K−tuple
u +w
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where, Ci,i+j is the correlation function and can be computed using Eq. 6.

where  Ni represents any nucleotide (Ref. Equation 1), Hξ (NiNi+1...Ni+K−1) is the numer-
ical value of the ξ th physicochemical property of NiNi+1...Ni+K−1 (K-tuple nucleotide) 
in the RNA sequence, and Hξ (Ni+jNi+j+1...Ni+j+K−1) is the corresponding value for the 
K-tuple nucleotide.Ni+jNi+j+1...Ni+j+K−1.

Hybrids features

In this study, every RNA sequence was written down as an isolated function vector using 
the PseKNC method. Analyzing the five feature extraction methods of the PseKNC, in 
which K varied from 1 to 5, we demonstrated that the PseKNC has five distinct functional 
modes. These modes correspond to different compositions: PseSNC: the proportion for 
single nucleotide composition; PseDNC: the proportion for dinucleotide composition; 
PseTNC: the proportion for trinucleotide composition; PseQNC: the proportion for quad 
nucleotide composition; PsePNC: the proportion for penta nucleotide composition. The 
number of features generated for each mode is indicated in Table 2 below. To construct a 
comprehensive hybrid feature vector, we combined all five feature vectors as follows:

where Nm5U denote the hybrid feature vector, ∪ denotes the union, NPseSNC , NPseDNC , 
NPseTNC NPseQNC and NPsePNC are the individual feature vectors and defined as follows:

(6)Ci,i+j =
1

u

�∑

ξ=1

[
Hξ (NiNi+1...Ni+K−1)−Hξ (Ni+jNi+j+1...Ni+j+K−1)

]2

(7)Nm5U = NPseSNC ∪ NPseDNC ∪ NPseTNC ∪ NPseQNC ∪ NPsePNC

(8)NPseSNC =

∣
∣
∣f

1−Tuple
j=1,...4D

f
−→(A,C ,G,U)

(9)NPseDNC =

∣
∣
∣f

2−Tuple
j=1,...16D

f
−→(AA,CC ,GG,UU)

(10)NPseTNC =

∣
∣
∣f

3−Tuple
j=1,...64D

f
−→(AAA,CCC ,GGG,UUU)

(11)NPseQNC =

∣
∣
∣f

4−Tuple
j=1,...256D

f
−→(AAAA,CCCC ,GGGG,UUUU)

Table 2 The total number of pseKNC features from k = 1 to k = 5

Methods No. of features

PseSNC 4

PseDNC 16

PseTNC 64

PseQNC 256

PsePNC 1024

Hybrid feature 1364
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SHAP features selection

Decoding the biological import of selected features in machine learning models is 
sometimes problematic since these algorithms are known as black boxes, and their 
internal workings are complex to understand [42]. Another critical idea in machine 
learning is the data shape; it involves aspects like the organization, size, and arrange-
ment of datasets utilized in a classification or regression function. Some behavioral 
patterns are exhibited by a machine learning algorithm based on the shape of the 
data sets it consists of. It is beneficial during data partition, such as dividing data 
into training, testing datasets, data normalization, and feature selection. Data clean-
ing is crucial because when data is well structured, it can perform optimally, hence 
the basis for decision-making. Through cooperative game theory, SHAP can provide 
a solution to explain the contributions of ’input features’ present in a model [43]. 
SHAP scores each feature, and this numeric value encodes how informative that fea-
ture is to resulting decisions. The approach computes the prediction variation when 
a particular characteristic is included or excluded and quantifies its effect on the 
model. This incremental effect is mathematically formalized through Eq. 13, which 
points out how feature i impacts the result when interacting with different compo-
nents of features.

where:

• φi , denotes the SHAP value for the feature i.
• N  , represents the set of all features.
• S , is a subset of features excluding feature i.
• f (S) is the model’s prediction given the features in S.
• f (S ∪ {i}) is the model’s prediction given the features in S and feature i.

In this study, we use BorutaSHAP-based wrapper feature selection to identify the 
most influential features from the extracted vector, as it evaluates the contribution 
of each feature to model performance. BorutaSHAP enhances the training process 
by highlighting the global importance of features and facilitating the selection of 
the optimal feature set. For our model, we selected the top 125 features for the Full 
Transcript dataset and 80 features for the Mature mRNA from a hybrid feature vec-
tor with a total dimension of 1364 from both datasets. Figure  2 (a-b) presents the 
summarized BorutaSHAP plots for the top features, where each row represents a 
chosen feature. Red points indicate high-contributing features, while blue points 
signify those with lower contributions. The horizontal axis shows the SHAP values, 
where positive values push the prediction towards m5U, and negative values predict 
the non-m5U class.

(12)NPsePNC =

∣
∣
∣f

5−Tuple
j=1,...1024D

f
−→(AAAAA,CCCCC ,GGGGG,UUUUU)

(13)SHAPi(x) = φi =
∑

s⊆N\{i}

|S|(|N | − |S| − 1)

|N |
[f (S ∪ {i})− f (S)]
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Deep neural network architecture

Deep Neural Networks (DNNs) are a sub-classification of machine learning inspired 
by the structure and functionality of the human brain. DNN architecture involves an 
input layer, several hidden layers, and an output layer in between, as shown in Fig. 3.

The hidden layers are essential for the network to learn about features and pat-
terns in data that it can’t detect in the raw data. Whereas the number of hidden layers 
increases the predictive power to map complex patterns, it also increases the dif-
ficulty, computational costs, and over-fitting. Feature extraction is one of the most 
prominent advantages of DNNs. They do not need any feature engineering of the 
data since they can learn the features from the data independently, even if the data 
is unlabeled or suffers from unstructured data. As pointed out in [44], this capability 
is realized through standard learning methods. In this work, we will employ regular 
learning approaches. Experts have proved that DNNs are more effective in addressing 
complex classification problems than previous machine learning techniques because 
of their depth and flexibility. DNNs have been extensively used in several domains, 
including bioengineering [45], speech recognition, image recognition [35], and natu-
ral language processing [33]. DNNs show that they are equally efficient in such fields, 
pointing to their potential to solve numerous complex issues.

Fig. 2 Feature selection via SHAP analysis

Fig. 3 Neuron representation in deep neural network configuration
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Model training

Based on a benchmark dataset, this study used the DNN model to identify m5U sites. From 
the complete sequences, 80% of the samples were used as the training dataset, while the 
remaining 20% were utilized as an independent test dataset. Consequently, the m5U modi-
fication site dataset consisted of 1,534/2,862 samples for training and 500/731 samples for 
an independent test set in the Full Transcript mode. 983/985 samples were for the training 
set, and 245/247 samples were for the independent test set in the Mature mRNA mode. The 
proposed multi-layer DNN model comprises an input–output layer and four hidden layers, 
as shown in Fig. 4 above. As with the previous novel architecture, each layer has multiple 
neurons, and the inputs and outputs correspond to the feature vectors shown in Eq. 14. The 
weights stored at each neuron are set by the Xavier initialization method [46], ensuring that 
the variance is well-conserved and that practical learning is promoted across the layers. In 
order to improve the learning technique of the model, a backpropagation algorithm was 
adopted to change the weights iteratively, enabling the reduction of errors between the out-
put and target classes. The hyperbolic tanh (Tanh) activation function is used in both the 
input and hidden layers to incorporate nonlinearity into the developed model. This activa-
tion function enables the network to capture intricate patterns and the presence of relation-
ships within data to decide whether a neuron should be activated because of the output 
generated. When measuring in the output layer, the activation function applied here is the 
softmax activation function. Since the probabilities of classifying the points or samples into 
an individual class, the values obtained are probabilities from 0 to 1. This approach ensures 
that the DNN model can develop ballistic meanings of the predictions, improving the accu-
racy of the number of m5U sites it can identify.

where ya denote output at a layer, Ba denote bias value, wa
b represent weight used at a 

layer b by a neuron, xb denote input feature, and f  denote a nonlinear activation Tanh 
function, which can be calculated using Eq. 15.

(14)ya = f (Ba +

m∑

b=1

xbw
a
b)

Fig. 4 RNA m5U sites proposed DNN model configuration
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Evaluation of performance
Several performance indicators are usually employed during the assessment of the out-
put by the machine learning algorithm to determine the performance and reliability of the 
model. (1) Accuracy (ACC) is formulated to estimate the classifier’s precision of instances 
and is calculated by actual instances, including true positives and negatives, divided by total 
instances [47–49]. This offers an overall picture of the model’s effectiveness in achieving 
each objective. (2) Sensitivity (SN) or actual positive rate or recall rate, which measures the 
capability of the classifier in identifying the correct attributes for the particular positive 
instances [50–54]. This one is for assessing the probability that, indeed, the test will cor-
rectly identify subjects with the condition it is looking for and is computed by dividing the 
number of test subjects that are correctly identified by the disease by the total number of 
test subjects that have the disease plus those that are erroneously identified as having the 
disease. This is important, especially when it is relevant to identify positive instances, as in 
medical diagnosis or fraud detection, where it would be highly undesirable to ’overshoot’ a 
favorable instance. Altogether, the proposed metrics provide a holistic picture of the mod-
el’s performance, its accuracy, and, at the same time, its ability to filter the right instances 
[55]. (3) SP stands for Specificity because a negative rate calculates the antagonistic classes 
the classifier has recognized. (4) Mathew’s Correlation Coefficient measures binary clas-
sification consistency [13–15]. The performance metrics can be expressed mathematically 
as follows:

According to the above Equation, the variables represent the positive and negative values 
in the above-given equations. Where m5u+ represent True Positive, m5u− True Negative, 
and m5u+− False Positive and m5u−+ represent False Negative accordingly.

(15)f (i) =
ei

1+ ei

(16)ACC = 1−
m5u+− +m5u−+
m5u+ +m5u−

(17)SN = 1−
m5u−+
m5u−

(18)SP = 1−
m5u+−
m5u+

(19)MCC =
1− (

m5u+−+m5u−+
m5u++m5u−

)
√

(1+
m5u+−+m5u−+

m5u+
)(1+

m5u+−+m5u−+
m5u−

)
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Discussion and experimental analysis
This section evaluates and discusses the proposed model’s effectiveness in depth. Several 
validation tests, including the K-fold and independent tests, can be utilized to assess the 
overall performance of the machine learning training algorithm in bioinformatics. The 
K-fold cross-validation approach is a typical validation technique that uses evenly bal-
anced findings [56]. Consequently, a tenfold cross-validation test employing such bench-
marking datasets was used to examine the overall accuracy of the suggested prescription 
in this work.

System configuration

To experiment, we used the sixth-generation Intel Core i5 processor, an average desk 
work option that confidently performs its functions, such as data processing and basic 
computing tasks. SSD 256-GB, booting, reading, and writing speeds and application 
performance are much better than what HDD could provide. The system configuration 
also includes the 8  GB of RAM, which achieves a good level of multitasking. Typical 
Python 3 libraries such as Numpy and Scipy, common in data science workflows, were 
pre-installed onto the system for training and testing ML models. We also included Ten-
sorflow and Keras [57] for building deep neural networks and Pandas and Matplotlib 
to do heavy work with data analysis, cleaning, and collating data for running machine 
learning models. This setup is well-suited for a data-centric individual or small mem-
bers-focused team. Advanced tasks associated with larger datasets or resource-intensive 
tasks may require enhancement of the CPU and RAM. The overall system configuration, 
consisting of HP Core i5 6th generation, 256 GB SSD, and 8 GB RAM, is presented in 
Table 3.

Analysis of nucleotide composition

In this section, we utilized the Two-Sample Logo software [44] to compare sequences 
with and without m5U modifications and determine if nucleotides with m5U modifica-
tion sites differ in composition. This approach generated two-sample logos highlighting 
areas where residues are significantly enriched or reduced in m5U-modified sequences. 
The statistical analysis, performed using a t-test with a significance threshold of p < 0.05, 
revealed notable differences, as illustrated in Fig. 5.

The differences in complete transcript mode sequences with and without m5U modi-
fications are illustrated in Fig. 5-A, and Fig. 5-B shows the Full Transcript and Mature 

Table 3 The system configuration, including software and hardware

System Dell Core 
i5 6th 
generation

SSD 256 GB

RAM 8 GB

Language Python 3

Framework Tensorflow, 
keras, 
pandas, 
matplotlib
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mRNA sequences,  respectively. Regarding the consensus motifs, both modes had a 
conservative UUC at the positions 0–2. We observed specific nucleotide enrichments 
toward the regions containing m5U modification sites. For instance, in both modes, 
G was mainly found enriched with a ratio of 35 at position -8 and 50 at position -3. C 
primarily was concentrated at positions 7 and 8 while U was at position 1. Further-
more, another example of the homopolymer and homopolymeric region is found in 
G (positions -10 to -8) and C (positions 6 to 9). The analysis also revealed composi-
tional differences between sequence types: C was enriched at position nineteen in the 
Full Transcript mode, while G was enriched in the Mature mRNA mode. In particular, 
when C Sch is at position -1, Full Transcript mode enriched A and Mature mRNA mode 
gave a higher concentration of G. Thus, nucleotide deviation analysis can predict RNA 
m5U modification sites.

Hyper parameters and optimizations

In this section, we intend to find the best values for the hyperparameters in the DNN 
model. We used a grid search algorithm [58] to assess DNN performance under different 
configurations [59, 60]. We noticed that the values of some parameters with the poten-
tial to improve DNN’s performance were stochastic[61, 62]. We included the following 
parameters in the grid search algorithm: activation function, learning rate, and number 
of iterations. Based on the results, Table 4 identifies a set of the best-obtained hyperpa-
rameter values.

We ran experiments to evaluate how different activation functions and learning rates 
impact performance. The results, shown in Table 5, include tests using ReLU, Sigmoid, 
and Tanh as activation functions, with learning rates ranging from 0.1 to 0.3. According 
to the table, the DNN classifier achieved the highest accuracy, 91.47% for the Full Tran-
script dataset and 95.86% for the Mature mRNA dataset when using Tanh as the activa-
tion function and a learning rate of 0.1.

Table 5 shows that a reduction in the learning rate results in an equal enhancement 
of the accuracy of the DNN model. However, increasing the learning rate to less than 
0. 1 did not produce much higher increases in accuracy . Therefore, we can also state 
that regarding the value of the learning rate, the DNN model reached the maximum 

Fig. 5 m5U sites nucleotide composition analysis



Page 13 of 23Noor et al. BMC Bioinformatics          (2024) 25:360  

state of accuracy at the level of 0. 1 when using the Tanh activation function, which is 
expected. Details of the best hyperparameters for a few of the main ones are summa-
rized in Table 4 below.

Next, we conducted numerous experiments to evaluate the DNN model’s performance 
by varying the number of training epochs. The findings are illustrated in Figs. 6 and 7. 
The data shows that the error rate consistently decreases as training epochs increase. For 
instance, in Fig. 6, which represents the Full Transcript dataset, the DNN model started 
with an error loss of 1.287 at the initial epoch, steadily dropping to 0.004 by the  50th 
epoch. Similarly, Fig. 7 shows the results for the Mature mRNA dataset, where the ini-
tial error loss was 1.241 and reduced to 0.003 after the  30th epoch. From these results, 
we can conclude that 50 epochs for the Full Transcript dataset and 30 epochs for the 
Mature mRNA dataset are optimal, as the error rates stabilize at these points. The opti-
mal configuration derived from this analysis is summarized in Table 4. 

Performance analysis using sequence formulation techniques

In this section, we evaluate the proposed model using different sequence formulation 
methods, summarised in Table  6, using the Full Transcript dataset. As presented in 
Table 6, the findings show that the best performance was realized whenever feature com-
bination or hybrid features were employed instead of the individual features methods. 

Table 4 List of optimal hyper-parameters value of proposed DNN model

List of parameters Optimal values

Activation functions Tanh and softmax

Dropout 0.25

Number of hidden layers 4

Regularization l2 0.001

Learning rates 0.1

Number of neurons at hidden layers 70–45-21–6, 68,52,18,4,

Optimizer SGD Method

Updater ADAGRAD function

Weight initialization function XAVIER function

Seed 12345L

Training epoch 50, 30

Momentum 0.9

Table 5 Impact of different learning rates and activation functions on the accuracy of DNN model 
using tenfold

Dataset LR Tanh (%) Sigmoid (%) ReLU (%)

Full transcript 0.1 91.47 90.89 89.54

0.2 91.22 90.31 89.01

0.3 91.01 90.25 88.21

Mature mRNA 0.1 95.86 93.78 94.71

0.2 95.21 93.08 94.31

0.3 94.97 92.93 94.01
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Initially, the model’s performance metrics produced an accuracy of 89.03%, sensitivity 
of 89.12%, Specificity of 88.92%, and MCC of 0.798. All these metrics were captured 
before the implementation of any feature selection algorithms. Finally, to improve the 
model’s overall performance, we used one more step in the feature space, feature selec-
tion, to bring down the dimension of the hybrid feature vector. This adjustment on the 
part of the assessment led to significant gains on the following ranges: Overall accuracy 
to the rate of 91.47%, sensitivity to the new rate of 92.94%, Specificity rising to the level 
of 90.01%, and lastly, MCC at 0.830.

Fig. 6 Error loss on the full transcript dataset using the tanh activation functions

Fig. 7 Error loss on the mature mRNA dataset using the Tanh as activation functions
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Similarly, we evaluated the proposed model’s performance on different sequence for-
mulation methods using the Mature mRNA dataset, as presented in Table 7. The results 
show that the model performed best when applying hybrid features, outperforming the 
individual formulation methods. For example, the proposed model achieved a success 
rate of 94.57%, with sensitivity at 95.04%, Specificity at 94.12%, and an MCC of 0.891. 
To further enhance its performance, we applied a feature selection method to reduce 
the dimensionality of the hybrid features. This led to a noticeable improvement, with 
the success rate increasing to 95.86%, sensitivity to 95.15%, Specificity to 96.58%, and an 
MCC of 0.917 accordingly.

Performance comparison of different classifiers

In this section, the performance of the proposed model is examined by testing it with 
several well-known supervised machine learning algorithms using hybrid features. The 
nature of the algorithms under consideration for this comparison are Random Forest 
(RF) [63], Support Vector Machine (SVM), Logistic Regression (LR), Naive Bayes (NB), 
and K- Nearest Neighbor (KNN) [64]. Random Forests is another ensemble learning 
technique that builds several decision trees by utilizing different bootstrapping meth-
ods. The result from each tree decision is combined by applying voting to improve the 

Table 6 Performance comparison using sequence formulation techniques and hybrid feature 
vector using full transcript dataset

Methods ACC (%) SN (%) PRE (%) F1 (%) SP (%) MCC

PseSNC 86.34 87.34 86.37 86.33 86.34 0.727

PseDNC 87.37 88.35 87.47 87.36 86.39 0.748

PseTNC 88.01 89.59 88.03 87.53 86.41 0.760

PseQNC 87.04 88.46 88.46 88.85 85.71 0.741

PsePNC 88.68 90.35 86.89 86.85 86.99 0.772

Hybrid feature 
(without feature 
selection)

89.03 89.12 90.78 88.91 88.92 0.798

Hybrid Features 
(with feature selec-
tion)

91.47 92.94 91.51 91.47 90.01 0.830

Table 7 Performance comparison using sequence formulation techniques and hybrid feature 
vector using mature mRNA

Methods ACC (%) SN (%) PRE (%) F1 (%) SP (%) MCC

PseSNC 91.47 92.47 91.51 91.67 90.47 0.830

PseDNC 92.94 93.94 93.00 92.94 91.94 0.859

PseTNC 93.01 94.01 93.15 93.00 92.01 0.862

PseQNC 92.75 94.15 92.81 92.75 91.34 0.856

PsePNC 93.39 94.39 93.57 93.86 92.39 0.870

Hybrid feature 
(without feature 
selection)

94.57 95.04 95.01 95.04 94.12 0.891

Hybrid features (with 
feature selection)

95.86 96.15 95.59 95.52 94.58 0.917
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classification performances. It can be used in almost all classification and regression 
problems. K-Nearest Neighbor is a non-parameterized learning algorithm widely used 
in image processing. It divides instances into classes depending on the distance from 
the neighbors, and due to the straightforward approach, it fits most of the problems. 
Support Vector Machines are especially effective when dealing with linear and nonlin-
early separable data; this algorithm searches for the best hyperplane to classify different 
classes effectively. This method is widely used, especially in bioinformatics, because of 
its effectiveness in working with large data sets. Naive Bayes, which derives from Bayes’ 
Theorem, is a probabilistic classifier that analyzes features independently. It is particu-
larly effective for text categorization, having small data sets, and working in high-dimen-
sional spaces. Additional information about the performance of each of the algorithms is 
provided in Table 8.

Table 8 compares different models applied to the Full Transcript dataset using vari-
ous evaluation criteria. The presented models’ performance can be analyzed based on 
accuracy: the Logistic Regression (LR) model reached 88.45% and an MCC of 0. 769. 
Respectively, the NB, RF, and KNN models had better performances with a mean accu-
racy of 89.09%, 89.73%, and 90.63%. The MCC values of the three sets were 0.782, 0.795, 
and 0.812. The SVM model recorded the highest accuracy amongst the traditional mod-
els at 91.19% with an MCC of 0.824. However, the proposed Deep-m5U model yielded 
the highest performance with an accuracy of up to 91.47% and an MCC of up to 0.830. 
Therefore, it demonstrates the higher efficiency of the proposed Deep-m5U model com-
pared to the other methods used in the analysis.

In addition to the mentioned performance measures, the performance of the proposed 
model was evaluated with the AUC (Area Under the ROC Curve) metric, widely used 
to assess binary classifiers. Figure  8 shows the AUC outcomes for the proposed type 
using Full Transcript collection. The AUC metric ranges between 0 and 1, and the higher 
value of AUC suggests a classifier’s better performance [65]. These two features combine 
in a plot having the FPR, false positive rate, on the x-axis and TPR, true positive rate, 
on the y-axis. The results of using the proposed model for the given dataset were quite 
encouraging, with the obtained AUC value of about 0.972 with the Full Transcript data-
set higher than other machine learning algorithms, including NB, KNN, and SVM. This 
high AUC value gives more weight to the model of identifying the difference between 
positive cases and negative ones, thus proving effective.

Moreover, Table 9 presents the performance metrics for various models on the Mature 
mRNA dataset. The SVM model had the highest accuracy of 94.44% and an MCC of 

Table 8 Performance comparison of different classifiers using Full transcript dataset

Methods ACC (%) SN (%) PRE (%) F1 (%) SP (%) MCC

LR 88.45 88.89 88.22 88.02 88.03 0.769

NB 89.09 89.55 88.52 88.23 88.65 0.782

RF 89.73 90.41 89.11 89.41 89.04 0.795

KNN 90.63 90.91 90.31 90.61 90.36 0.812

SVM 91.19 92.50 90.91 90.95 89.91 0.824

Deep-m5U 91.47 92.94 91.51 91.47 90.01 0.830
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0.889 compared to the traditional machine learning techniques. The proposed Deep-
m5U outperformed all others, with the highest accuracy of 95.86% and an MCC of 
0.917. Similarly, in the other parameters, the F1 score was 95.52%, sensitivity 96.15%, 
and Specificity 94.58%. The DNN model outperformed the SVM algorithm and other 
traditional ML because it uses a single processing layer. Traditional ML struggles with 
complex datasets that have high nonlinearity.

In contrast, the DNN model utilizes multiple processing layers, allowing it to handle 
complex and nonlinear data more effectively. The AUC values for the proposed method 
using Mature mRNA datasets are illustrated in Fig. 9. The AUC graph visually represents 
the model’s performance, with an increasing area under the curve indicating improved 
performance. Conversely, a decrease in this area suggests a reduction in model effective-
ness. The proposed model achieved AUC values of 0.981 using Mature mRNA datasets 
compared to the other machine-learning algorithms.

Comparison of proposed predictor with existing predictors

We evaluate the performance of the proposed Deep-m5U model against the exist-
ing models on both Full Transcript and Mature mRNA datasets. Aggregate the 

Fig. 8 The efficiency of AUC using the Full Transcript dataset

Table 9 Performance comparison of different classifiers using a mature mRNA dataset

Methods ACC (%) SN (%) PRE (%) F1 (%) SP (%) MCC

LR 92.01 92.28 91.75 91.73 91.76 0.840

NB 92.31 92.57 92.05 92.08 92.06 0.846

RF 93.68 93.96 93.40 93.47 93.41 0.874

KNN 94.03 94.32 93.71 93.72 93.75 0.881

SVM 94.44 94.78 94.17 94.16 94.12 0.889

Deep-m5U 95.86 96.15 95.59 95.52 94.58 0.917
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abovementioned comparison, which is provided in Table  10. Therefore, moderate 
improvements in the m5UPred predictions were observed for the Full Transcript dataset 
with an accuracy of around 83.60%, sensitivity of 72.82%, and Specificity of 89.38% in 
MCC and MCC levels, respectively 0.634. As for the evaluation, the m5U-SVM model 
[29
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To further examine the proposed model’s generalization, the proposed model’s per-
formance comparison on independent datasets is shown in Table 11. From Table 11, the 
m5U-SVM predictor achieved an accuracy of 90.82% and an MCC of 0.809 using the Full 
Transcript dataset, while the proposed Deep-m5U model significantly outperformed it 
with an accuracy of 92.94% and an MCC of 0.831. Similarly, for the Mature mRNA data-
set, m5U-SVM had lower performance metrics with an accuracy of 94.11%, whereas the 
proposed Deep-m5U model again showed superior results with an accuracy of 95.17%.

Performance evaluation by cross‑technique and cross‑cell‑type validation

This section assesses cross-technique validation (tenfold) and cross-cell-type validation 
on the benchmark dataset used in [31]. Initially, we categorized the experimentally veri-
fied m5U sites based on their profiling methodologies, namely miCLIP and FICC-seq, and 
the cell lines, namely HEK293. The research outcomes are shown in Table 12, which pro-
vides a comparative performance study of the current models m5UPred [28] and m5U-
GEPred [31] across two assessment scenarios: cross-validation and independent testing. 
In cross-validation, the proposed model Deep-m5U regularly attains the most outstanding 
average accuracy, i.e., 97.28% and 94.17%, surpassing m5UPred and m5U-GEPred. m5U-
GEPred demonstrates robust performance; nevertheless, its precision is somewhat inferior 
to Deep-m5U. Similarly, Deep-m5U again exhibits greater average accuracy in the inde-
pendent testing findings, i.e., 90.10% and 77.30%. m5U-GEPred exhibits superior accuracy 
relative to m5UPred; nevertheless, both models see a marginal decrease in performance 
when compared to the cross-validation scenario. The overall performance of the proposed 

Table 11 The performance of the proposed model compared to the existing models on the 
independent datasets

Mode Method ACC (%) SN (%) SP (%) MCC

Full Transcript Deep-m5U 92.94 91.72 94.14 0.831

m5U-SVM 90.82 87.40 93.16 0.809

m5UPred 87.17 80.60 91.66 0.732

Mature mRNA Deep-m5U 95.17 93.48 96.87 0.916

m5U-SVM 94.11 93.06 95.14 0.882

m5UPred 89.70 87.440 91.95 0.795

Table 12 Performance comparison on the cross-cell-type and cross-technique validation

Testing 
method

Model Cross‑technique validation Cross‑cell‑type validation

miCLIP‑
Seq ACC 
(%)

FICC‑
Seq ACC 
(%)

Average 
ACC (%)

HEK293 
ACC (%)

HAP1 ACC 
(%)

Average ACC 
(%)

Cross-valida-
tion

m5UPred 86.76 90.58 88.67 86.72 80.15 83.44

m5U-GEPred 96.14 96.42 96.28 96.79 90.62 93.71

Deep-m5U 96.52 96.92 96.72 97.06 91.28 94.17

Independ-
ent

m5UPred 82.29 73.29 77.79 86.2 73.99 80.10

m5U-GEPred 86.26 90.83 88.55 74.82 78.71 76.77

Deep-m5U 88.93 91.27 90.10 75.62 78.98 77.30
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Deep-m5U model shows exceptional accuracy and generalization capabilities in both test-
ing methodologies.

Conclusions
5-methyluridine (m5U) is a prominent RNA modification critical in various biological func-
tions and disease pathogenesis. As a posttranscriptional modification involving methylation 
at the C5 position of uridine, understanding its biological significance requires precise com-
putational tools. This study introduced a novel deep learning-based model, i.e., Deep-m5U, 
designed to accurately predict RNA m5U sites by leveraging hybrid features and utilizing 
tenfold cross-validation and independent datasets. The model effectively addressed the 
over-fitting issue by optimizing hyper-parameters and demonstrated robust performance, 
achieving accuracies of 91.47% and 95.86% on the Full Transcript and Mature mRNA data-
sets, respectively. Additionally, the model attained 92.94% and 95.17% accuracy on inde-
pendent test samples, outperforming traditional machine learning methods and existing 
state-of-the-art approaches. The promising results of Deep-m5U highlight its potential to 
significantly contribute to further research in RNA modifications and their implications in 
disease, particularly in areas such as stress response and breast cancer, as well as its utility in 
developing therapeutic strategies.

In future, our research will be extended in three key directions: (a) developing a publicly 
accessible web server for large-scale RNA 5-methyluridine (m5U) prediction, enabling 
more comprehensive community access and application [66, 67] (b) implementing a multi-
view feature encoding strategy to capture better the properties of biological sequences [68–
70] and (c) exploring additional deep learning models to improve the identification of m5U 
modification sites in RNA sequences [71].
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