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Abstract 

Background: In unforeseen situations, such as nuclear power plant’s or civilian radia‑
tion accidents, there is a need for effective and computationally inexpensive methods 
to determine the expression level of a selected gene panel, allowing for rough dose 
estimates in thousands of donors. The new generation in‑situ mapper, fast and of low 
energy consumption, working at the level of single nanopore output, is in demand. 
We aim to create a sequence identification tool that utilizes natural language process‑
ing techniques and ensures a high level of negative predictive value (NPV) compared 
to the classical approach.

Results: The training dataset consisted of RNA sequencing data from 6 samples. 
Multiple natural language processing models were examined, differing in the type 
of dictionary components (word length, step, context) as well as the encoding length 
and number of sequences required for algorithm training. The best configuration 
analyses the entire sequence and uses a word length of 3 base pairs with one‑word 
neighbor on each side. For the considered FDXR gene, the achieved mean balanced 
accuracy (BACC) was 98.29% and NPV was 99.25%, compared to minimap2’s perfor‑
mance in a cross‑validation scenario. The next stage focused on exploring the dic‑
tionary components and attempting to optimize it, employing statistical techniques 
as well as those relying on the explainability of the decisions made. Reducing the dic‑
tionary from 1024 to 145 changed BACC to 96.49% and the NPV to 98.15%. Obtained 
model, validated on an external independent genome sequencing dataset, gave NPV 
of 99.64% for complete and 95.87% for reduced dictionary. The salmon‑estimated read 
counts differed from the classical approach on average by 3.48% for the complete 
dictionary and by 5.82% for the reduced one.

Conclusions: We conclude that for long Oxford nanopore reads, a natural language 
processing‑based approach can reliably replace classical mapping when there 
is a need for fast, reliable and energy and computationally efficient targeted mapping 
of a pre‑defined subset of transcripts. The developed model can be easily retrained 
to identify selected transcripts and/or work with various long‑read sequencing tech‑
niques. Our results of the study clearly demonstrate the potential of applying tech‑
niques known from classical text processing to nucleotide sequences.
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Introduction
Understanding the DNA code and searching for specific sequences within them has been 
a subject of research for years [1]. It has led to a number of discoveries and innovations, 
bringing different ways of sequencing the obtained reads [2], to which one then tries to 
assign an origin. The first ways of reading nucleotides, such as the Sanger method [3] 
and the Maxam–Gilbert method [4], created a good starting point for development, later 
extended by the Illumina technology [5]. It is part of the so-called second-generation 
NGS (Next Generation Sequencing), significantly speeding up the sequencing process. 
Despite its wide popularity, the limitation of short reads has led to the emergence of 
TGS (Third Generation Sequencing) methods, one representative of which is the com-
pany Oxford Nanopore Technologies (ONT) with its sequencing approach [6]. It is char-
acterized by the ability to read much longer reads, whose average length is measured in 
thousands of bp (base pairs), compared to hundreds of bp for NGS [7]. The technique 
proposed by ONT involves passing nucleic acids through nanopores (protein channels), 
thereby causing changes in the measured electrical signal used for sequence identifica-
tion. This results in a short sequencing time, while preserving the native form of DNA/
RNA [8].

Regardless of the technique used, identifying the occurrence of a given genome frag-
ment is an essential task. This information allows, among other things, the discovery of 
new treatments and therapies. The current approach is based on the use of a mapping 
process, which involves comparing a read to a certain reference sequence. Appropriate 
software, called an aligner, analyses the match between the two nucleotide sequences 
and determines the most likely location of the read on the reference. The main align-
ment algorithms include Needleman-Wunsch [9] and Smith-Waterman [10], represent-
ing dynamic programming, and one of the available and ready-to-use tools is minimap2 
[11, 12], which supports ONT long-reads.

The described way of aligners works has some limitations due to its generality. Per-
forming a full analysis provides the sequence match location, which is not useful for 
tasks such as classification. In addition, the mapping time itself is related to the length 
of the sequence, the number of reads, the aligner used and the available computing 
resources. However, in some situations, the most important information is the occur-
rence (or not) of the sought-after sequence in a long-read, disregarding the exact 
location or differences in matching. This paper considers the exemplary problem 
of ionizing radiation, being a permanent element of the environment in today’s life, 
without which the surrounding world is difficult to imagine. Despite the perception 
as a harmful factor, it occurs in basic medical procedures such as lung X-rays and CT 
scans. Moreover, radiation is an integral part of nuclear power stations, which have 
historically experienced various types of accidents (Chernobyl, Fukushima). Unfor-
tunately, it becomes a threat difficult to detect due to invisibility and insensibility. 
Therefore, research is still ongoing to find potential markers to help in the task. Based 
on the available literature [13], there are a number of genes that appear to be suit-
able for biological dosimetry. Our main goal was to propose a mapping-free solution 
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to find the sought-after sequence in a set of long-reads and provide an alternative 
to classical bioinformatics methods. The idea we presented, called ‘noMapping map-
ping’, consisted of replacing the aligner (and its sequence matching algorithm) with a 
machine learning model using techniques known from natural language processing 
(NLP). The classifier system created, hereafter referred to as noMapper, was designed 
to find ONT long-reads that potentially contain the sought-after sequence. Such fil-
tering allows undesirable reads to be discarded at an early stage and permits further 
(more detailed) analysis, for example, determining absorbed radiation dose in order 
to serve as a screening test.

The main NLP technique was the ‘bag of words’ method, allowing the text to be 
converted into a vector of numbers that makes possible further calculations. A similar 
approach was proposed in a paper [14], which focused on finding the viral genome. It 
used NGS data as the study material and employed de novo genome assembly, distin-
guishing it from our solution. Another paper [15] used the ‘TF-IDF’ technique, being 
an NLP alternative to ‘bag of words’. The authors therein focused on detecting regions 
of lateral origin, relying on the frequency distributions of k-mers in the sequences. In 
addition, our previous studies [16–18] have shown the potential to explore the solu-
tion described in this paper in more depth.

As far as we are aware, it is the first work analysing ONT long-reads to identify the 
sought-after gene, using such NLP encoding and not requiring other time-consuming 
preprocessing operations. The outcomes shown in this paper focus on the analysis 
of the FDXR gene, but the approach used can easily be applied to other sought-after 
sequences as well (confirmed for the NACA gene and described later). Examining the 
expression of the FDXR gene, which plays an important role in the cellular response 
to ionising radiation, can be one tool to assess radiation dose [19]. This gene is a reli-
able biomarker of radiation exposure, as its expression levels are closely related to the 
amount of exposure. It is also rapidly induced after radiation exposure, making it a 
useful tool for detecting exposure in real-time or near real-time. In addition, FDXR 
is upregulated in many tissue types, increasing its value as a biomarker of radiation 
exposure in different biological systems. Combining FDXR with other genes involved 
in radiation response may increase the accuracy and comprehensiveness of assessing 
cellular response to radiation. Researchers are creating gene expression panels that 
include FDXR to improve the predictive power of gene expression analyses in differ-
ent radiation exposure scenarios.

The noMapper repository is available at https:// github. com/ ZAEDP olSl/ noMap per. In 
addition to the source code, the repository provides detailed instructions on how to use 
the tool, along with a pre-built model and encoder specifically designed for detecting 
irradiation marker. If you wish to create a custom version of noMapper tailored to solv-
ing different tasks and identifying other genes/markers, the repository includes a com-
prehensive guide that walks you through the necessary steps. One notable feature is the 
ability to use your own dataset, consisting of raw sequences directly from sequencing. 
Users aiming to prepare their version of noMapper do not need to perform any preproc-
essing; they simply need to run the implemented pipeline, which will generate the model 
and system encoder. Once the custom version is set up, its operation and usage will be 
similar to the provided noMapper version focused on irradiation marker detection.

https://github.com/ZAEDPolSl/noMapper
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Methods
Data

Two datasets, marked as I and II, were used in this study. The first one, RNA sequenc-
ing dataset, was utilized for all the numerical experiments performed, both for train-
ing and pre-testing the machine learning models (subsection ‘Experimental design’). 
The second was a genome sequencing dataset, with different properties, which was 
used solely as an independent validation set, thus verifying the final effectiveness of 
the proposed solution (subsection ‘Testing on an external dataset’).

Dataset I

Dataset I contained Oxford Nanopore long-reads. Full-length sequencing was per-
formed on a GridION sequencer with libraries prepared using the direct RNA 
sequencing kit (SQK-RNA002). All available data were generated from three repeti-
tions of the biological experiment: A, B, C. They were prepared using the HT1080 
cell line, which was purchased from the American Type Culture Collection (ATCC). 
In each repetition, the cells in T-25 flasks were exposed to a 10 Gy X-rays dose. Once 
irradiated, the samples were incubated at 37  °C with 5% CO2 for 24 h. The cell line 
was maintained in Minimum Essential Medium (MEM) containing 10% FBS (fetal 
bovine serum) and 1% penicillin/streptomycin.

In the subsequent stages, RNA extraction was carried out using the RNeasy Mini kit 
following the manufacturer’s instructions. Quantity of isolated RNA was determined 
by spectrophotometry with a ND-1000 NanoDrop and quality was assessed using a 
Tapestation 2200. The resulting dataset consisted of six samples, three of which were 
non-irradiated (A1, B1, C1) and a further three samples 24 h after exposure (A2, B2, 
C2). Eventually, ONT sequencing yielded 8.5 million RNA long-reads.

Dataset II

Dataset II was an excerpt from ONT’s GM24385 open dataset (SRE version after 
base-calling with Guppy 5.0.6). It contained high molecular weight DNA from lymph-
oblastoid cells, representing the human genome. However, the present work did not 
use all the available sequences, but only two chromosomes: one on which the FDXR 
gene is located (no. 17) and the other randomly selected containing a relatively simi-
lar number of sequences (no. 14). More information on the entire shared GM24385 
dataset can be found [20].

Data preparation

The sequencing data were subjected to several procedures to prepare them for further 
analysis. The whole process started with finding and removing possible adapters using 
Porechop [21]. Filtering was then carried out, thereby removing short reads. This step 
was performed under the assumption that they could be the result of various errors, 
which would not have a positive impact on the functioning the entire proposed solu-
tion. In order to determine the threshold value, an Empirical Cumulative Distribution 
Function (ECDF) was drawn for each sample from dataset I. One of these is shown 
in supplementary Fig. S1. A value was chosen as the cut-off threshold for which the 
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beginning of the graph line to its right had a steep slope to the horizontal axis, while 
not excluding too many reads from further analysis. After detailed comparative analy-
sis across all samples, the cut-off value was set to 500 bp. Therefore, all reads whose 
length was less than 500 bp were discarded. Finally, almost 7.2 million reads remained 
in the dataset I for further use. For each sample, descriptive statistics of location were 
calculated, in the form of string length quartiles (Q1, median, Q3). The overall sum-
mary is presented in Table 1.

Making a selection of ONT long-reads, still required assigning them to one of two 
categories: ‘gene/transcript’ and ‘no-gene/transcript’. The first referred to such reads 
that could potentially belong to a particular genome fragment. The second referred 
to the opposite case. In order to accomplish the task posed in this way it was decided 
to use an alignment software, minimap2 [11, 12], which is responsible for aligning the 
given sequences to a given reference sequence. Using it, finding the likely location of 
each read becomes possible. Since the need to divide into two groups, the sought-
after gene was chosen as the reference sequence. Ultimately, the majority of long-
reads (7,128,352; 99.48%) were not mapped. All the rest of reads (36,914), according 
to the aligner, could potentially come from the gene being searched for.

Classifier structure

The structure of the system intended for classification, consisted of two main com-
ponents. The first was responsible for appropriately encoding the input sequence and 
the second for performing the output prediction.

The proposed concept employs a well-known and widely used technique from natu-
ral language processing, the ‘bag of words’ [22]. It is based on counting the occurring 
keywords, belonging to a finite set (dictionary), which allows the input information 
to be represented as a vector of natural numbers. The algorithm works successfully 
with ‘classic’ text containing words, i.e. letter combinations separated by spaces. 
However, in the DNA/RNA data, there is a challenge in defining the ‘word’ within 
strings of nucleotides. To address this, the sequence is split into k-mers. Such words 
have a fixed length and are formed with a predetermined step, allowing long strings 
of nucleotides to be interpreted as an NLP problem. The encoded sequences as vec-
tors were subjected to prediction, determining the probability of origin from a chosen 
gene.

Table 1 A number of reads and read length quartiles for a dataset I

Sample Not filtered Filtered (> 500 bp)

Long-reads Long-reads Q1 Median Q3

A1 1,232,364 1,040,293 784 1231 1692

B1 1,665,661 1,410,171 780 1204 1702

C1 1,254,760 1,069,828 802 1263 1720

A2 1,670,162 1,356,675 745 1146 1556

B2 1,859,656 1,570,158 786 1229 1721

C2 862,354 718,141 772 1209 1648

Total 8,544,957 7,165,266
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To perform this classification, we employed a neural network, which is a computa-
tional model inspired by the structure and function of the human brain. Neural networks 
consist of layers of interconnected ‘neurons’ that process input data and adjust their con-
nections based on the information they learn, allowing them to recognize patterns and 
make predictions. The specific neural network architecture used in this study was a fully 
connected model. The input layer received the encoded sequence vectors, with the size 
depending on the dictionary. The subsequent two hidden layers each consisted of 50 
neurons, utilizing the ReLU activation function to introduce non-linearity and capture 
complex patterns within the data. Finally, the output layer, consisting of a single neuron 
with a sigmoid activation function, was responsible for determining the class member-
ship, indicating whether the sequence belonged to one of the two predefined classes.

While we chose a neural network for its ability to capture complex relationships in 
the data, it is important to note that other classifiers could also be applied to this prob-
lem. The choice can range from simpler algorithms such as random forests to more com-
plex architectures such as recurrent networks and transformers, depending on specific 
requirements and constraints. Similarly, the encoding component can be implemented 
in various ways. In this work, we also tested the embedding layer of a neural network, 
instead of a ‘bag of words’. However, the concept of word construction has not changed.

Classifier’s degrees of freedom

The implementation of the presented encoding process requires the setting of certain 
parameters, which impacts the final classification quality. One example of a value poten-
tially influencing its efficiency and, at the same time, a necessary parameter from the 
point of view in generating words (k-mers) is their length (κ). Additionally, having a long 
sequence of nucleotides, subsequent vocables can be generated with a certain step φ, 
meaning an offset from the beginning of the previous one. Apart from that, the finite 
dictionary needed for encoding may contain components representing single words or 
also their neighborhood/context (λ). It is a case of a combination of several consecutive 
words representing a context, which would, in such a case, be a single dictionary com-
ponent. Another parameter needed to consider is the impact of the encoded long-read 
length τ. Perhaps for some cases, analyzing only the initial τ nucleotides is sufficient, 
making the calculation certainly faster.

The last aspect is the size and structure of a training dataset (Ω). In this paper, all such 
parameters are called degrees of freedom, and the significance of which has been ana-
lyzed in depth. Figure 1 presents a visualization of the analyzed degrees of freedom.

Experimental design

The main aim of the study is to construct an NLP-based classification system that allows 
the detection of sequences that could potentially originate from the gene being searched 
for. Several configurations of parameters were analyzed in the leave-one-sample-out-
cross-validation (LOSOCV) schema. Firstly, the randomly chosen sequences from 
both categories (gene and no-gene transcripts, with a 1:3 ratio to emphasize the rarity 
of the first group) from each sample constituted six fixed testing datasets, one for each 
LOSOCV experiment.
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A preliminary configuration setting experiment focused on the subset of parameters. 
Reflecting the genetic code, the word length was initially assumed to mimic one codon 
and to be equal to 3 bp (κ = 3). Next, to see which approach would perform better for 
the classification task, a comparison was made between a dictionary containing sin-
gle words (λ = 1) and a dictionary built from words with context, built with one 3  bp 
neighbor on each side (λ = 3; 3 bp vs. 3 bp|3 bp|3 bp). For this experiment, step φ = 1 
was used and all nucleotides of each sequence were encoded (τ = whole seq). The first 
parameter investigated for its impact on the final prediction performance was the train-
ing set size Ω. Since the task of finding a sequence that would potentially be derived 
from a specific gene, it was decided to use an unbalanced dataset at the training stage. 
The criterion was based on biological reality, as the sequence sought represents only 
a small fraction of the entire genome. The assumed ratio of representatives of the two 
classes was 1:3, where the second referred to sequences other than the gene searched 
for (just like the test set). Based on this assumption, the following datasets were con-
sidered: Ω = {1,000 + 3,000; 3,000 + 9,000; 10,000 + 30,000; ~ 30,000 + 90,000; ~ 30,000 + 
300,000 and ~ 30,000 + 900,000}. To clarify, ~ 30,000 should be understood as all avail-
able sequences derived from the gene, the exact number of which varies according to 
the cross-validation experiment. Therefore, the imbalance ratio in subsequent training 
sets increases. Additionally, in order to shorten the notation, ‘ ~ ’ was omitted and the 
numeral k was used to denote a thousand.

Having the results from the preliminary experiment, it was decided to select such a 
training dataset Ω and neighborhood λ for which the classifier achieved the best perfor-
mance, and then to carry out the main experiment, allowing the remaining degrees of 
freedom to be analyzed. The number of nucleotides undergoing encoding τ was taken 
as the whole sequence and the values representing measures of position—string length 
quartiles: Q1, median, Q3. Then, observing a constant difference between these values, 
it was decided to augment this set with a number even lower than Q1. In the end, five 
different values τ were obtained. Deciding on a two-element set of steps φ ∈ {1,2} was 
supported by the occurrence of mutations and, in general, the appearance of read errors, 

Fig. 1 Considered degrees of freedom
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which is particularly characteristic of ONT long-reads. However, it is worth mentioning 
that as the parameter φ increases for λ > 1, the size of the final dictionary for the bag-of-
words method rises. This is due to the higher number of permutations, which translates 
into the memory complexity of the hardware used to train the model. Therefore, among 
other reasons, it was decided to consider maximally two values φ. As the last degree of 
freedom determining the length of the k-mer, κ ∈{3,6}was chosen. Again, the first value 
is related to the amino acid encoding and the second value is its doubling. Similar to 
the φ parameter, the size of κ directly impacts the cardinality of the final dictionary. By 
selecting one value λ and Ω, the final sets τ, φ, κ, it was possible to conduct the main 
experiment and analyze the effectiveness of all classification models. Finally, 20 classi-
fiers were compared with each other.

Testing on an external dataset

Based on the conclusions from the experiments, the optimal configuration of param-
eters for the classifier was selected. The goal was to identify values that would create an 
efficient classifier with the smallest possible dictionary size. After training the model on 
dataset I, it was evaluated on an external dataset II. Sequences from second dataset were 
taken, and it was checked whether the predictions made by the previously trained model 
matched the correct class assignments.

Dataset II differs significantly from the first; it involves genome sequencing rather than 
transcriptome sequencing, comes from a different source, and has distinct features. This 
variation provided a rigorous test for the generalizability of the classifier. Evaluating the 
model on such a diverse input helps determine its performance on new, unseen data, 
which is essential for assessing the effectiveness and robustness of the proposed solution.

Dictionary optimization

The size of the dictionary depends on the configuration parameters, and its range can 
include significant values depending on the choices made. Consequently, a key aspect 
becomes the optimization problem, which involves selecting the most relevant words in 
order to effectively manage the dictionary size. In the context of the case presented, cer-
tain nucleotide sequences (containing certain words) occur significantly more frequently 
in the analyzed gene compared to the rest of the genome. Moreover, they can be unique 
and only occur in one location, which is crucial in the classification task.

Taking these considerations into account, it was decided to examine the importance 
level (weight) of each dictionary component. The features were ranked in ascending 
order, from the least important to the most important ones – a component with the least 
weight was assigned the number one, while the most relevant dictionary component was 
placed at the end of the list with the highest possible rank. The weights (feature impor-
tance factors) were assigned based on three different approaches: odds ratio (OR) based, 
effect size based and using explainable artificial intelligence (XAI) tools. For the first, 
OR-based method, a 1/OR transformation was applied for OR values less than 1, which 
makes feature rank independent from its type of impact (risk or protection). The effect 
size-based method used Cramer’s V [23]. In the third method, the SHAP tool [24] was 
used. Finally, three independent rankings of features were obtained, which were later 
collated together and their selection consistency compared.
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The optimization task was completed by investigating the impact of reducing the dic-
tionary size on the efficiency level of the models. In a first step, dominant words were 
selected, meaning those with the highest weights, and a reduced feature space was used 
to train the model. The selection of dominant words can be approached in several ways. 
The simplest one is based on choosing a fixed d, which determines the number of words 
with the highest weight. This approach is quite complex, namely the question arises what 
value of d should be chosen. To solve the problem, two different data-driven approaches, 
known from the analysis of Receiver Operating Characteristic (ROC) in machine learn-
ing optimization task, were used. The previously calculated word importance values 
were sorted and plotted to constitute the importance curve. In the first method, called 
‘max distance’, the distance of each importance curve data point from a straight line 
connecting the first and last points was calculated. The data point (representing a par-
ticular component of the dictionary) with the maximum distance defined the cut-off. 
All words with an importance score higher than that were included in the reduced dic-
tionary. The second approach uses piecewise linear regression to model the importance 
curve. The dividing points were determined by minimizing the residual sum of squares 
for the entire dataset. The cut-off point was the data point separating the first and sec-
ond regression lines (see supplementary Figure S2).

Evaluation metrics

The developed approach requires tuning several parameters, which was done step by 
step. Firstly, we selected the values of λ and Ω (preliminary experiment) and then the 
remaining configuration parameters that determine the most effective classifier. Several 
indicators can evaluate a classifier, each focusing on a different property to determine 
the model’s effectiveness. As the focus is on the sequence filtering task, the main objec-
tive is to separate all potentially possible gene sequences from the rest. Omitting a read 
that potentially contains the specific gene is expected to occur rarely. Therefore, the neg-
ative predictive value (NPV), defined as the fraction of true negatives among all nega-
tives obtained, is chosen to be maximized. To determine the confidence that the reads 
classified into the group of the searched sequence actually contained it, we used positive 
predictive value (PPV, also known as precision), which represents the fraction of true 
positives among all positives. Additionally, balanced accuracy (BACC) was employed to 
evaluate the overall effectiveness of the proposed solution, particularly considering the 
imbalance between classes.

To provide a more comprehensive evaluation of the classifier’s performance, we also 
included additional metrics such as sensitivity, specificity, and the F1 score, offering 
insights from various perspectives.

Results and discussion
As mentioned earlier, the whole study included two experiments: a preliminary and a 
main experiment. The first one allowed to select the training set size Ω and the neigh-
borhood value λ, while the second one allowed to compare different NLP encoding con-
figurations: τ, φ, κ.
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Preliminary experiment

Figure 2 shows the balanced accuracy of the classifiers for which the training set size was 
altered.

The approach with single words (λ = 1) in the dictionary and one with two-sided 
neighbors (λ = 3) were compared to each other. In turn, the exact NPV and PPV values, 
together with the number of representatives in the final dictionary for the same sets, 
are summarized in Table 2. Assumed values for the remaining parameters are: τ = whole 
seq, φ = 1, κ = 3. The results clearly illustrate the effectiveness of the applied method 
for the classification task. Even for a relatively small dataset, the model is able to clas-
sify sequences with an average of 87.22% (λ = 1) and 95.11% (λ = 3) balanced accuracy. 
The most effective model expressed by this indicator was achieved for Ω = 30 k + 90 k 
(all reads potentially derived from the sought-after gene), which had a very high 
value of 98.29% for words with the neighborhood, PPV = 96.58%, NPV = 99.25% 
and F1 score = 97.15%. The one on the same set Ω, also proved to train the classifier 
most effectively considering models with λ = 1, where BACC = 92.35%, PPV = 92.47%, 
NPV = 95.78% and F1 score = 89.66%. By directly comparing the models against the con-
sidered parameter λ, it can be concluded that the use of neighborhood words improves 
the effectiveness of the classifier by about 5–9% for balanced accuracy, 3–5% for NPV, 
11–18% for sensitivity and 7–12% for F1 score. However, the nature of the changes 
depending on Ω is similar. Initially, there is a dynamic improvement in efficiency up to 
a saturation level, and then worse model evaluation rates are achieved. However, the 
advantage of the classifiers based on λ = 1 was the very small size of the final dictionary. 
Due to the four-nucleotide alphabet, the number of possible permutations of three-letter 

Fig. 2 Balanced accuracy (BACC) depending on training set size for 3 bp and 3 bp|3 bp|3 bp. Results are 
presented as mean values and its 95% confidence intervals. 3 bp is λ = 1 and 3 bp|3 bp|3 bp is λ = 3
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words was only 64. This was as much as sixteen times less than classifiers with a neigh-
borhood of λ = 3.

Main experiment

After a preliminary experiment, the parameters Ω = 30 k + 90 k, λ = 3 were chosen, and 
the next experiment focused on the impact of word length and step. The number of the 
first base pairs from the analyzed sequence was also parametrized. The obtained esti-
mates of balanced accuracy are shown in Fig. 3.

Table 2 Mean values of evaluation metrics with their 95% confidence intervals (in brackets)

Dataset size Indicator 3 bp [%] 3 bp|3 bp|3 bp [%]

1 k + 3 k NPV 93.84 (90.11, 97.56) 97.44 (95.89, 98.99)

PPV 84.80 (71.22, 98.38) 94.31 (90.53, 98.10)

BACC 87.22 (83.66, 90.78) 95.11 (93.17, 97.05)

Sensitivity 80.55 (67.55, 93.55) 92.16 (87.16, 97.16)

Specificity 93.89 (87.26, 100.00) 98.06 (96.61, 99.51)

F1 Score 81.03 (78.40, 83.65) 93.08 (91.50, 94.66)

3 k + 9 k NPV 94.32 (92.51, 96.13) 97.98 (96.92, 99.05)

PPV 91.46 (88.67, 94.25) 95.54 (92.24, 98.85)

BACC 89.83 (87.16, 92.50) 96.17 (94.96, 97.38)

Sensitivity 82.28 (76.08, 88.49) 93.86 (90.54, 97.19)

Specificity 97.38 (96.32, 98.44) 98.48 (97.21, 99.76)

F1 Score 86.46 (83.79, 89.13) 94.61 (93.50, 95.72)

10 k + 30 k NPV 95.02 (93.29, 96.76) 98.95 (98.61, 99.30)

PPV 91.63 (86.12, 97.14) 95.82 (94.05, 97.59)

BACC 90.91 (88.72, 93.09) 97.72 (97.45, 97.99)

Sensitivity 84.56 (78.55, 90.56) 96.86 (95.80, 97.91)

Specificity 97.25 (95.23, 99.27) 98.58 (97.93, 99.23)

F1 Score 87.68 (85.85, 89.50) 96.32 (95.84, 96.81)

30 k + 90 k NPV 95.78 (95.10, 96.47) 99.25 (98.94, 99.55)

PPV 92.47 (90.29, 94.66) 96.58 (95.72, 97.44)

BACC 92.35 (91.53, 93.18) 98.29 (97.95, 98.63)

Sensitivity 87.09 (84.80, 89.38) 97.74 (96.82, 98.67)

Specificity 97.61 (96.84, 98.38) 98.84 (98.53, 99.15)

F1 Score 89.66 (89.06, 90.27) 97.15 (96.88, 97.42)

30 k + 300 k NPV 92.99 (92.07, 93.91) 98.62 (98.12, 99.11)

PPV 97.96 (97.56, 98.36) 97.39 (96.32, 98.47)

BACC 88.48 (86.89, 90.06) 97.48 (96.77, 98.18)

Sensitivity 77.49 (74.30, 80.67) 95.82 (94.29, 97.34)

Specificity 99.46 (99.35, 99.57) 99.14 (98.77, 99.51)

F1 Score 86.50 (84.50, 88.51) 96.59 (95.84, 97.34)

30 k + 900 k NPV 90.73 (89.88, 91.58) 94.65 (93.26, 96.04)

PPV 99.39 (98.83, 99.96) 99.41 (99.12, 99.69)

BACC 84.61 (83.06, 86.16) 91.42 (89.13, 93.71)

Sensitivity 69.36 (66.25, 72.47) 83.01 (78.36, 87.65)

Specificity 99.86 (99.72, 99.99) 99.83 (99.75, 99.92)

F1 Score 81.67 (79.51, 83.84) 90.41 (87.75, 93.07)

Dictionary size = 64 Dictionary size = 1,024
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They compare models varying in the number of encoded nucleotides τ and the word 
generation step φ. In the left panel, the results for κ = 3 (3 bp|3 bp|3 bp) are accumulated, 
and in the right one for κ = 6 (6 bp|6 bp|6 bp). The NPVs, PPVs and BACCs are summa-
rised in supplementary Table S1 and Table S2. Again, mean values and their 95% confi-
dence interval based on all LOSOCV replicates are used.

As expected, the best performance was achieved by classifiers that encoded all nucleo-
tides of long-reads. Regardless of φ and κ, their BACC was over 98%, PPV over 96%, 
NPV over 99% and specificity over 98%. Analyzing Fig. 3 (left panel) and Table S1, it can 
be deduced that for the 3 bp|3 bp|3 bp encoding there was no significant improvement 
in model efficiency depending on the step φ. However, there was a significant increase 
in the size of the final dictionary. A 16-fold larger list, translated into significantly higher 
memory complexity, but did not result in noticeable increases in classification. The situ-
ation was different for the 6 bp|6 bp|6 bp encoding (Fig. 3, right panel), where, compar-
ing the models against the parameter φ, those with a lower step were characterized by a 
better balanced accuracy score for all tested values of τ other than whole seq. The same 
situation is observed for the NPV, sensitivity and F1 score indicators, shown in Table S2. 
It is also worth noting the significant size of the final dictionary for φ = 2. The number of 
permutations was so large that only for such parameters configuration, not all possible 
combinations of 6 bp|6 bp|6 bp were included in the dictionary. Nevertheless, encod-
ing all the nucleotides of long-reads in this way achieved the best classifier consider-
ing BACC, NPV, sensitivity and F1 score indicators. The worst among the τ = whole seq 
models was the one with 3 bp|3 bp|3 bp encoding for φ = 1. However, the difference in 
the quality measures analyzed is marginal, especially bearing in mind the approximately 
1017% smaller size of the final dictionary compared to the most effective of them.

Embedding neural layer

As mentioned earlier, the structure of the system consists of two main components: 
for encoding and prediction. Once a long sequence has been split into words, differ-
ent approaches can be applied. Classification results using the embedded neural layer 
instead of a ‘bag of words’ method are shown in Table S3. It summarizes the selected 
encoding configurations: 3 bp, 3 bp|3 bp|3 bp and 6 bp|6 bp|6 bp.

Fig. 3 Model balanced accuracy (BACC) depending on the encoded sequence length. Steps φ ∈ {1; 2} and 
κ = 3 (left panel) and κ = 6 (right panel) were used. Results are presented as mean values and their 95% 
confidence interval
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Comparing the obtained results with those presented in Table 2 (Ω = 30 k + 90 k) and 
Table S2 (τ = whole seq, φ = 1), it can be observed that the ‘bag of words’ method gener-
ally provided better performance. Each evaluation metric showed higher (better) value, 
except for PPV, sensitivity, and F1 score in the 6 bp|6 bp|6 bp scenario. Nevertheless, 
as the dictionary size increased, there was a noticeable improvement in all evaluated 
metrics.

Testing on an external dataset

As mentioned before, performing the preliminary and main experiments made it pos-
sible to select the optimal values for the configuration parameters. Based on the results 
presented, it was decided that the classifier tested on the external dataset should 
have the following properties: neighborhood λ = 3, word length κ = 3 and step φ = 1. 
Ω = 30  k + 90  k was chosen as the training set and τ = whole seq was encoded. This 
configuration provided a 1024 components dictionary, with high model efficiency. 
Running a verification test on an external dataset II provided feedback for which the 
BACC = 75.28%, PPV = 66.96%, NPV = 99.64%, sensitivity = 99.82%, specificity = 50.74% 
and F1 score = 80.15%. These results were based on 58,574 long sequences, with 29,287 
representatives in each class.

It can be seen that, despite a completely different dataset, characterized by dissimilar 
properties from dataset I, the results confirmed the effectiveness of the proposed solu-
tion. Noteworthy is the very high value of the NPV metric, which is especially important 
from the point of view of the considered task and further analysis of sequences poten-
tially derived from the searched gene. Thus, it seems that the 3 bp|3 bp|3 bp encoding, 
with dictionary size = 1024, fulfils the task of filtering out long-reads that with high con-
fidence do not originate from the sought-after gene.

Dictionary optimization

Using exactly the same configuration parameters, a dictionary containing 1024 compo-
nents was analyzed. It began by creating three independent rankings, which were then 
compared. The rank value represented the feature importance – the higher ranking 
value the more important component (‘word’) is.

First, each component was assigned a position in all rankings, and next the average 
position was calculated, which was used to order the dictionaries. In this way, supple-
mentary Figure S3 and Figure S4 were created, focusing on the components with the 
highest ranks. The green line indicates the perfect match of all three methods.

Table 3 Dictionary size after reducing its components to dominant ones for each LOSOCV 
repetition

Selection strategy Max distance Regression-based

A1 B1 C1 A2 B2 C2 A1 B1 C1 A2 B2 C2

Odds ratio 149 156 145 170 173 169 143 139 143 140 135 142

Effect size 117 118 118 110 114 120 88 93 88 93 95 87

XAI 74 53 77 73 52 91 44 44 52 55 44 41
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The next step was to select the most dominant features treated as gene (transcript) fin-
gerprints. Using the max distance and regression approaches, cut-off points were deter-
mined, i.e. the number of dictionary components with the highest significance level. The 
sizes of the reduced dictionaries are presented in Table 3. Subsequently, the consistency 
in selection of such dictionaries was compared. First against all ranking methods per 
each LOSOCV (supplementary Figure S5 for exemplary LOSOCV) and then across all 
LOSOCV repetitions (Table 4).

The analysis was concluded by comparing how the dictionary restriction affects the 
final performance of the classifiers. During this step, the focus was on comparing the 
95% confidence intervals for NPV, PPV, BACC. The obtained results are presented in 
Fig. 4.

Based on the results achieved, there is a consistency in the selection of the most sig-
nificant dictionary components. Regardless of the chosen ranking method, such words 
needed for encoding are outstanding and turn out to be of clear relevance during model 
prediction. This is shown in supplementary Figure S3 and Figure S4. At first, for the ini-
tial dictionary components, there is quite a spread of differences in ranking positions, 
but as one approaches the words with the highest importance, the spread decreases and 
the points tend towards the line of perfect match.

In the case of methods for selecting dominant features, it can be seen (Table 3) that 
the regression approach generally selects fewer dictionary components, and the differ-
ence from max distance depends on the nature of the plot (related to the way the weights 
were calculated). The least noticeable difference is for the OR-based method. However, 
it is important to say that the components in the reduced dictionaries are repeated. The 
phenomenon occurs across the LOSOCV repetition (supplementary Figure S5) and in 
the ranking methods (Table 4). The XAI-based approach achieves the lowest values of 
the Dice similarity coefficient, but it is worth noting that the least numerous dictionaries 
of dominant features are also observed. The other two approaches observe high coverage 
of selected components.

Importantly, the NPV metric decreases relatively slightly (Fig. 4), despite reducing the 
dictionary components by up to 20 times (XAI & regression). For the OR-based method, 
the average NPV dropped from 99.25% (all components) to 98.15% in the max-distance-
based optimized dictionary and 97.89% in the regression-based. For effect size, averages 
of 97.24% (max distance) and 96.70% (regression) were achieved. Similarly, NPV fell to 

Table 4 Consistency in selecting dominant dictionary components across LOSOCV repetitions in 
relation to the first repetition

The Dice similarity coefficient is shown, along with the number of common dictionary components (in brackets)

LOSOCV Max distance Regression-based

OR Effect size XAI OR Effect size XAI

A1–reference 1.0000 (149) 1.0000 (117) 1.0000 (74) 1.0000 (143) 1.0000 (88) 1.0000 (44)

B1 0.9574 (146) 0.9702 (114) 0.6457 (41) 0.9574 (135) 0.9724 (88) 0.6591 (29)

C1 0.9864 (145) 0.9872 (116) 0.6623 (50) 0.9860 (141) 0.9886 (87) 0.7292 (35)

A2 0.9342 (149) 0.9604 (109) 0.6667 (49) 0.9894 (140) 0.9613 (87) 0.6263 (31)

B2 0.9255 (149) 0.9524 (110) 0.6349 (40) 0.9712 (135) 0.9508 (87) 0.6136 (27)

C2 0.9371 (149) 0.9873 (117) 0.6424 (53) 0.9895 (141) 0.9943 (87) 0.7059 (30)
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98.35% and 97.41% for the XAI-based method. Such a property allows increased effi-
ciency during the encoding stage and reduced model prediction time. The worst perfor-
mance was achieved by classifiers with dominant features selected using effect size. The 
OR-based technique performed best, but it should be noted the classifiers were trained 
on the largest feature space (reduced dictionary size: 135–173). PPV values generally 
reached lower levels compared to NPV, but a similar nature of change can be observed. 
The highest PPV = 96.58% reached the complete dictionary. The max distance method 
resulted in decreases to 95.67% (OR), 93.55% (effect size) and 93.91% (XAI), while the 
regression technique led to 95.52% (OR), 90.96% (effect size) and 93.28% (XAI). It is 
noteworthy that in all cases, except the effect size & max distance combination, a wider 

Fig. 4 The summarized classifier’s performance in LOSOCV obtained for different dictionary optimization 
strategies. Results are presented as mean value and its 95% confidence interval
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confidence interval is observed in comparison to NPV. In the last indicator also the 
greatest BACC = 98.29% was observed for the complete dictionary. Methods based on 
OR, effect size and XAI achieved: 96.49%, 94.76%, 96.50% for max distance and 96.08%, 
93.54%, 94.99% for regression.

The final evaluation of the developed no-mapping sequence aligner used the gene 
expression values as indicator. All sequences classified as gene/transcript related were 
subjected to transcript counts per million estimation by salmon software [25]. NCBI 
database was chosen for gene transcript references. The results are presented in Table 5. 
Additionally, to verify the effectiveness of the proposed solution, the same approach 
was performed for the NACA gene, characterised by higher expression. The results are 
included in Table S4.

One can notice that the estimation error, as related to the classical approach, varies 
from 1.30% to 5.97% (mean 3.48%, standard deviation 1.56%) for FDXR gene expression 
for complete dictionary NLP model and from 2.25% to 9.86% (mean 5.82%, standard 

Table 5 Standardized FDXR transcript/gene count estimates (per million) for different data 
processing models

Transcript A1 A2 B1 B2 C1 C2

Classical approach: minimap2 + salmon

NR_047576.3 0 24.31 15.29 0 0 0

NM_001258014.4 13.79 0 0 0 0 0

NM_024417.5 13.79 156.46 15.47 110.16 28.29 59.03

NM_004110.6 13.79 0 15.47 91.08 28.29 92.59

NM_001258015.3 0 0 0 0 0 0

NM_001258012.4 0 4.24 0 0 0 21.50

NM_001258013.4 0 0 0 24.07 0 33.28

NM_001258016.3 0 0 0 0 0 0

FDXR total 41.38 185.01 46.23 225.31 56.58 206.41
noMapper (complete dictionary) + salmon

NR_047576.3 0 25.87 15.10 0 0 0

NM_001258014.4 13.25 0 0 0 0 0

NM_024417.5 13.25 149.63 15.26 103.66 27.50 56.52

NM_004110.6 13.25 0 15.26 84.88 27.50 89.19

NM_001258015.3 0 0 0 0 0 0

NM_001258012.4 0 4.12 0 0 0 20.60

NM_001258013.4 0 0 0 23.33 0 31.98

NM_001258016.3 0 0 0 0 0 0

FDXR total 39.76 179.62 45.63 211.87 54.99 198.29
noMapper (reduced dictionary) + salmon

NR_047576.3 0 24.75 14.71 0 0 0

NM_001258014.4 13.25 0 0 0 0 0

NM_024417.5 13.25 143.14 14.86 101.81 25.50 57.60

NM_004110.6 13.25 0 14.86 82.90 25.50 90.65

NM_001258015.3 0 0 0 0 0 0

NM_001258012.4 0 3.95 0 0 0 20.98558

NM_001258013.4 0 0 0 22.85 0 32.54

NM_001258016.3 0 0 0 0 0 0

FDXR total 39.76 171.84 44.43 207.57 51.01 201.77
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deviation 2.91%) for the model using the reduced dictionary. In the case of the NACA 
gene, the estimation error is 0.55–2.02% (complete dictionary, mean 1.28%, standard 
deviation 0.59%). Keeping in mind that the targeted approach is the radiation accident 
victim triage, the obtained accuracy fulfills the system requirements.

Hardware performance

To evaluate the computational efficiency of noMapper, performance tests were con-
ducted on a Raspberry Pi 5. The single-board computer is equipped with a 2.4  GHz 
quad-core ARM Cortex-A76 CPU, 8 GB RAM, making it a suitable platform for assess-
ing the tool’s practicality in resource-constrained environments.

The encoding stage is identified as the most time-consuming part of the process. The 
final computation time depends on the dictionary size, so the optimization described 
plays an important role. Our noMapper processed 8,000 Nanopore long-reads in about 
15 s for dictionary containing 1024 components.

Limitations

Despite the promising results achieved with our tool, limitations must be acknowledged 
to provide readers with a comprehensive understanding of its current form. The neces-
sity for target-specific system preparation must be enlisted firstly. To effectively utilize 
the tool for a particular marker/sequence/gene, users must first train the noMapper 
model using machine learning algorithms tailored to the intended target. This process 
requires leveraging sequence alignment software to generate the necessary training data. 
Although our repository provides a detailed guide and a complete pipeline for conduct-
ing this preparation, simplifying the process, it does require some additional effort from 
the user. Once the training is complete, the noMapper no longer depends on alignment 
software for operation. It can be then deployed on the target hardware, such as a Rasp-
berry Pi, but this initial customisation step is essential for effective tool application.

Although initial training data generated from an alignment tool is required for noMap-
per, it is crucial to emphasise that in certain tasks, a portable, reliable, energy-efficient 
and computationally cost-effective solution for estimating the selected transcript expres-
sion is of paramount importance. The aforementioned example pertains to the selection 
of individuals who may have been exposed to irradiation, as may occur in the event of a 
nuclear power plant incident. In such cases, a number of genes are responsible for the 
formation of what is known as the irradiation signature. In the context of the ongoing 
miniaturisation of sequencing devices, such as the Oxford Nanopore MinION sequencer, 
which enables rapid, real-time long read sequencing of nucleic acids, the development of 
a bioinformatics tool capable of simultaneous targeted mapping of reads is of uppermost 
importance. NoMapper is designed to meet this need. Once the system has undergone 
the requisite training, it can be integrated with the sequencer and dose predicitive model 
and then used as a fast portable patient triage supporting device. Moreover, irradiation 
dose estimation is not the only area of noMapper usage. The system can also be used 
to identify diseases/pathogens in the event of an outbreak as, after initial training, it 
allows rapid analysis of the transcriptome to assess viral/bacterial response. Similarly, 
in the case of bioterrorism, we can cite as an example the estimation of the expression 
of transcriptomic biomarkers of the presence of botulinum toxins or assessment of food 
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biocontamination. To mitigate this alignment-based training limitation, we propose the 
creation of a repository of pre-trained noMapper models specialized for various targets. 
By developing a web-based platform to host these models, users could easily access and 
utilize noMapper instances that are ready for immediate application, reducing the time 
and effort required for customization.

In addition, when discussing the limitations of noMapper, we will emphasize that the 
encoding step affects the overall prediction time, with the duration of this process pri-
marily depending on the dictionary size used. In our work, we have explored the opti-
misation of dictionary size and its impact on system efficiency. However, it is important 
to note that larger dictionaries tend to lengthen the encoding process. This trade-off 
between speed and performance is an inherent limitation that users must consider, espe-
cially when using the tool in time-sensitive scenarios.

Conclusions
This paper presents a method for classifying long-reads in search of a specific transcript 
sequence(s). The proposed solution consisted of two main components: the first was 
responsible for encoding the sequence using NLP methods, and the second was a neu-
ral network for performing the sequence classification. Various parameters were ana-
lyzed to encode the set of long-reads, as well as construct the training dataset. A total of 
31 machine-learning models were considered. The best-performing classifier used the 
training dataset with 1:3 ratio between possible gene and no-gene categories. The pre-
pared comparison unequivocally showed the advantage of encoding taking into account 
neighbors over a dictionary containing only single words with a length (κ) of 3 bp. Based 
on the results obtained, there is a marginal to small effect of the step φ parameter on 
NPV, PPV and BACC. As the parameters κ and φ rise, the size of the final dictionary 
increases significantly. During the entire work carried out, the classifier systems ranged 
from 64 to approximately 1,041,599 encoding elements. This translates into memory and 
time complexity. Speeding up the encoding process can be done by choosing an suitable 
value for the parameter τ. As the obtained results showed, when the first 1650 initial 
nucleotides (equivalent to Q3) were encoded, the decrease in quality of the BACC met-
ric was 2–4% and the NPV 2–3% relative to τ = whole seq. For 750 initial nucleotides (Q1 
equivalent), the quality drops were 4–7% and 3–5%, respectively.

The finally selected classifier system with the configuration of the parameters: 
Ω = 30 k + 90 k, λ = 3, κ = 3, φ = 1 and τ = whole seq, was tested on an external genome 
sequencing dataset and the obtained results confirmed the effectiveness of the proposed 
solution.

Further investigations of classifiers with a dictionary equal to 1024 showed the poten-
tial for optimization. The results obtained clearly indicate that some features have a 
greater or lesser influence on the final prediction of the model. Regardless of the method 
used to calculate the weights, it is possible to distinguish the components which rank the 
most influential positions in the rankings. By reducing the dictionaries to only the key 
ranking places, the effectiveness of the classifiers decreases by 1–3% for NPV, gaining 
6–25 × smaller dictionary size, depending on the approach used to calculate the weights 
and locate the cut-off point.
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The analysis results presented in this paper show the potential of applying techniques 
known from NLP to the field of bioinformatics. Appropriate processing of long strings of 
nucleotides, allows the reads to be treated as ‘classic’ text, consisting of single words. The 
demonstrated solution thus provides an alternative to the classical alignment tool. By 
narrowing down the task to the search for a specific sequence, we can bypass the map-
ping process and at the same time apply the shown machine learning based method. The 
proposed noMapper can be easily used to identify sequences of interest. High efficiency 
results have proven the point of transforming DNA/RNA data into a form friendly to 
NLP techniques and make advancements in this branch of science.
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