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Abstract 

Background:  Advances in transcriptional profiling methods have enabled the discov-
ery of molecular subtypes within and across traditional tissue-based cancer classifi-
cations. Such molecular subgroups hold potential for improving patient outcomes 
by guiding treatment decisions and revealing physiological distinctions and targetable 
pathways. Computational methods for stratifying transcriptomic data into molecular 
subgroups are increasingly abundant. However, assigning samples to these subtypes 
and other transcriptionally inferred predictions is time-consuming and requires 
significant bioinformatics expertise. To address this need, we recently reported “Classi-
fieR,” a flexible, interactive cloud application for the functional annotation of colorectal 
and breast cancer transcriptomes. Here, we report “ClassifieR 2.0” which introduces 
additional modules for the molecular subtyping of prostate and high-grade serous 
ovarian cancer (HGSOC).

Results:  ClassifieR 2.0 introduces ClassifieRp and ClassifieRov, two specialised mod-
ules specifically designed to address the challenges of prostate and HGSOC molecular 
classification. ClassifieRp includes sigInfer, a method we developed to infer commer-
cial prognostic prostate gene expression signatures from publicly available gene-lists 
or indeed any user-uploaded gene-list. ClassifieRov utilizes consensus molecular 
subtyping methods for HGSOC, including tools like consensusOV, for accurate ovarian 
cancer stratification. Both modules include functionalities present in the original Classi-
fieR framework for estimating cellular composition, predicting transcription factor (TF) 
activity and single sample gene set enrichment analysis (ssGSEA).

Conclusions:  ClassifieR 2.0 combines molecular subtyping of prostate cancer 
and HGSOC with commonly used sample annotation tools in a single, user-friendly 
platform, allowing scientists without bioinformatics training to explore prostate 
and HGSOC transcriptional data without the need for extensive bioinformatics knowl-
edge or manual data handling to operate various packages. Our sigInfer method 
within ClassifieRp enables the inference of commercially available gene signatures 
for prostate cancer, while ClassifieRov incorporates consensus molecular subtyping 
for HGSOC. Overall, ClassifieR 2.0 aims to make molecular subtyping more acces-
sible to the wider research community. This is crucial for increased understanding 
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of the molecular heterogeneity of these cancers and developing personalised treat-
ment strategies.

Keywords:  Molecular classification, Shiny application, High-grade serous ovarian 
cancer, Prostate cancer, Transcriptomics

Background
Recent advances in affordable next generation sequencing methods have aided in 
the identification of distinct molecular subtypes within histopathological classifica-
tions of cancer. These molecular subgroups possess distinct biological characteristics 
and are often associated with patient prognosis. Clinically relevant subgroups have 
been identified in various cancers including breast, colorectal, pancreatic, gastroin-
testinal, prostate and ovarian [1–6]. Identification of cancer subtypes holds promise 
for enhancing patient outcomes by facilitating novel therapeutic development, guid-
ing treatment decisions and elucidating the underlying biological differences among 
anatomically and/or histologically similar cancers. As a result, there exists numerous 
computational methods for stratifying transcriptomic data from patient samples into 
molecularly distinct subgroups. However, researchers aiming to leverage the informa-
tion offered by molecular stratification require bioinformatics expertise, a resource 
often lacking in labs without computational assistance. Therefore, there is an increas-
ing need to annotate patient data into molecular subtypes in a user-friendly manner 
to better understand disease mechanisms and improve treatment outcomes.

ClassifieR, our recent solution for colorectal cancer (CRC) and breast cancer, 
exemplifies this approach [7]. For CRC, we developed ClassifieRc that facilitates the 
classification of CRC samples into Consensus Molecular Subtypes (CMS) [2] and 
Colorectal Intrinsic Subgrouping (CRIS) [8]. Similarly, for breast cancer, ClassifieRb 
allows for classification of samples into PAM50 molecular subgroups and inference of 
OncotypeDX risk scores. These tools are freely available and provide a comprehensive 
annotation of transcriptomic data without requiring extensive bioinformatics exper-
tise. Nevertheless, molecular stratification remains a core problem beyond breast and 
colorectal cancers. Here, we present ClassifieR 2.0 which has extended the functional-
ity of ClassifieR to prostate cancer and HGSOC.

For prostate cancer, various prognostic gene signatures are available commercially, 
such as the Decipher test [9], the Prolaris Cell Cycle Progression score [10], and the 
OncotypeDX prostate cancer assay [11]. These gene signatures have demonstrated 
clinical utility in stratifying patients into high and low risk groups [12]. Whilst the 
lists of genes that make up these signatures are published, the commercial nature of 
these tests require that their methods of producing prognostic scores be locked and 
not made publicly accessible, posing a significant barrier for their use in research set-
tings. In the case of the OncotypeDX prostate cancer assay, their methods to produce 
prognostic scores have been published. However, as the signature was developed as a 
real-time polymerase chain reaction (RT-PCR) assay, their prognostic scores cannot 
be determined on microarray/RNA-sequencing (RNA-seq) gene expression data. As 
such, research institutes need methods that can infer prognostic information from 
these signatures and stratify patients into clinically relevant groups based on the 
expression of the available gene list.
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The molecular subgrouping of HGSOC has also been well investigated, leading 
to the identification of four biologically distinct molecular subtypes with prognos-
tic relevance, termed immunoreactive, proliferative, differentiated and mesenchy-
mal subtypes [5, 8, 13–20]. To standardise the molecular classification of HGSOC 
tumours, one group developed a consensus random forest classifier, trained on 
unanimously classified tumours across multiple methods. This effort yielded an R 
package that implements this consensus subtyping algorithm and five other previ-
ously published algorithms, called consensusOV [5]. Despite these advances how-
ever, users still need bioinformatics expertise to utilise this R package. Additionally, 
subtyping HGSOC samples using bulk RNA-seq data presents significant challenges 
due to the complex nature of the tumour microenvironment (TME). Bulk RNA-
seq captures the collective gene expression from a mixture of cell types within the 
tumour, including cancer cells, immune cells, and stromal cells, making it difficult 
to distinguish the gene expression profiles of cancer cells alone [38–40]. To address 
this challenge, cellular deconvolution methods, such as MCP-counter and xCell, can 
be applied to estimate the relative abundance of different cell populations, includ-
ing immune and stromal cells, within the bulk RNA-seq data. However, combining 
these deconvolution methods with subtyping remains complex and inaccessible for 
many research labs, highlighting the need for a user-friendly platform to facilitate 
this integration.

To address these issues, we developed ClassifieR 2.0, expanding upon our origi-
nal framework and introducing key advancements tailored for prostate cancer and 
HGSOC. ClassifieR 2.0 presents two specialised modules, ClassifieRp and Classifi-
eRov, dedicated to stratification of prostate cancer and HGSOC samples respectively 
(Fig.  1). For prostate cancer, ClassifieRp enables the inference of prognostic infor-
mation from commercial gene signatures (e.g., Decipher, Prolaris), and for HGSOC, 
ClassifieRov incorporates the consensusOV package to streamline the application of 
multiple subtyping algorithms. These new modules also retain the functionality of 
the original ClassifieR framework, including tools for annotating transcriptional sub-
groups with estimates of cellular composition using Microenvironment Cell Popula-
tions-counter (MCP-counter) and xCell, transcription factor (TF) activity predictions 
using discriminant regulon expression analysis (DoRothEA) and single sample gene 
set enrichment analysis (ssGSEA; [21–23]).

Our platform is designed to accept input data from multiple transcriptomic tech-
nologies, including RNA-seq and microarray, allowing for a broad application in gene 
expression analysis. Our application also streamlines the workflow by eliminating the 
need for users to install multiple packages and learn their individual functionalities. 
By integrating these tools into a single platform, ClassifieR 2.0 simplifies the analysis 
process, allowing users to apply molecular subtyping and patient stratification meth-
ods without requiring detailed bioinformatics expertise or manual data manipulation 
to utilize different packages. Ultimately, this facilitates a deeper understanding of 
cancer heterogeneity, supporting improved patient stratification and treatment strat-
egies. Additionally, identifying specific biological pathways or transcription factors 
enriched in certain subgroups can highlight potential therapeutic targets, guiding the 
development of targeted therapies tailored to each subgroup.
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Implementation

Similar to ClassifieR [7], ClassifieR 2.0 was developed in an R environment [24] using 
Shiny [25], enabling the execution of R code within a HTML and JavaScript framework. 
The application has been orchestrated, hosted, and deployed on a designated CloudCIX 
Virtual Machine, allowing online access without requiring specific operating systems 
or additional software. The graphical user interface (GUI) has retained the modern and 
user-friendly design of ClassifieR, providing detailed instructions on how to use each 
tool and what information each analysis provides. As with the previous framework, Clas-
sifieR 2.0 can take input from a variety of commonly used transcriptome or array plat-
forms, in the form of a log2 normalised gene expression matrix, a DESeq2 normalised 
expression matrix [26] or raw gene counts. Upon loading, ClassifieR 2.0 automatically 

Fig. 1  Overview of ClassifieR 2.0. A. Visual abstract of ClassifieRp and ClassifieRov. B. Screenshot of the 
graphical user interface (GUI) of ClassifieRp data input page. C. Schematic overview of ClassifieRp architecture 
and sub-functions
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detects whether the data is from RNA-seq or microarray platforms, ensuring compat-
ibility with both technologies. It can process raw RNA-seq reads or microarray inten-
sity data, making the tool accessible to various transcriptomic workflows. Raw RNA-seq 
reads can be processed to produce these count matrices through accessible web-based 
platforms such as Galaxy [27]. A demonstrative dataset is also provided to enable users 
to acquaint themselves with the applications prior to utilisation.

After the data have been uploaded, the user can proceed to choose the classifiers or 
functional annotation tools to apply to the dataset (sigInfer for ClassifieRp, consensu-
sOV for ClassifieRov, DoRothEA, xCell, MCP-counter and ssGSEA). These packages 
have undergone internal modifications aimed at enhancing speed of functionality. The 
resulting molecular classifications are presented in multiple formats, including a sum-
mary report, interactive plots and a downloadable CSV table. Functional annotation and 
interrogation of molecular subgroups can provide valuable insights into the underlying 
biological pathways and mechanisms associated with each subtype, revealing potential 
drivers of tumorigenesis. As such, both applications facilitate further functional anno-
tation and interrogation of molecular subgroups. Each analysis yields detailed tabular 
information and graphical representations, available within each individual tab. Both 
ClassifieRp and ClassifieRov consolidate outputs from multiple tools into a single down-
loadable CSV file, merging scores based on sample ID. This allows for interactive visu-
alisation of MCP-counter and DoRothEA transcription factor-activity values within 
sigInfer/consensusOV transcriptional subgroups.

The sub-applications are accessible at https://​class​ifier.​cloud​cix.​com/​class​ifieRP/ for 
prostate cancer and https://​class​ifier.​cloud​cix.​com/​class​ifieR​ov/ for ovarian cancer. 
Ensuing versions that encapsulate fixes and supplementary features will be rolled out as 
they are developed.

Results
Similar to the original ClassifieR framework, ClassifieR 2.0 features a streamlined user 
interface organised into three main tabs: Introduction, Data Input and Manipulation and 
Data Output. When the input data has been loaded into the app, automatic detection of 
whether it has been normalised and which technology it was generated from occurs. As 
with the previous version, the apps can accept input data from many widely used micro-
array and RNA-seq platforms. In the case where a certain technology is not available, 
the user can provide a custom lookup table to facilitate conversion of probe/gene IDs to 
gene symbol and Entrez IDs, which are utilised by packages within the app. The user can 
then select the desired analyses from the Settings menu, with the option to select more 
advanced options if required. After package selection, the user can click the “Classify!” 
button to run the analyses. Retaining ClassifieR’s ease of use, the classification and anno-
tation of data can be executed without requiring user customization.

In the Processed Data tab, users can access a downloadable expression table, normal-
ised if specified, featuring Gene Symbol identifiers for convenience. Additionally, in the 
functional annotation tabs (featuring DoRothEA, MCP-Counter and xCell) interactive 
bar plots, histograms and scatterplots are available to configure and download. These 
plots were integral to the core functionality of the previous version, illustrating immune 
cell or transcription factor activities across all samples and enabling users to plot and 

https://classifier.cloudcix.com/classifieRP/
https://classifier.cloudcix.com/classifieRov/
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calculate correlations between two continuous variables. ClassifieR 2.0 integrates cellu-
lar deconvolution methods, such as MCP-counter and xCell, directly into the molecu-
lar subtyping workflow. These tools estimate the abundance of immune and stromal cell 
populations from bulk RNA-seq data and provide this information alongside molecular 
subtyping results.

ClassifieR 2.0 maintains the core functionalities of its predecessor while integrating 
several additional features. When users input transcriptomic data, ClassifieR 2.0 per-
forms molecular subtyping (e.g., using sigInfer or consensusOV) while simultaneously 
calculating cell type proportions using cellular deconvolution methods. The results are 
then visualized through heatmaps and boxplots, allowing researchers to assess the con-
tribution of the tumour microenvironment (TME) to molecular subtypes. This seamless 
integration enables users to explore TME influences on tumour biology without requir-
ing advanced computational skills. This integrated approach enables detailed annotation 
of transcriptional subgroups, unveiling critical insights into the underlying biological 
processes that differentiate these subtypes.

Additional functionalities introduced by ClassifieR 2.0 include the enhancement of 
heatmaps with column annotations, presenting molecular subgroups for improved 
interpretability. Moreover, the custom ssGSEA functionality now accommodates Gene 
Matrix Transposed (GMT) files detailing single gene sets, as this is the typical format 
provided by databases such as the Molecular Signatures Database (MSigDB). This fea-
ture enables users to explore the enrichment of single processes among subgroups via a 
downloadable boxplot. However, the main additions to the ClassifieR 2.0 framework are 
the specialised modules; ClassifieRp and ClassifieRov, enabling users to classify prostate 
and HGSOC transcriptomic datasets respectively.

ClassifieRp with sigInfer

ClassifieRp enables researchers to infer gene signatures, helping to overcome the finan-
cial burden of utilising commercial signatures. It also allows the inference of prognos-
tic groups from gene signatures published without their mathematical models. We also 
developed sigInfer, a method newly introduced in ClassifieRp which processes input 
gene expression data by first filtering the dataset to retain only the genes corresponding 
to the signature of interest. Hierarchical clustering is then used to group patient samples 
based on expression profiles of these genes. sigInfer offers flexibility in its use, allow-
ing customization of the clustering process through various distance metrics (default: 
Euclidean) and clustering methods (default: Ward’s method). Users can also adjust the 
number of patient subgroups (clusters) to be generated (default: two subgroups). In gen-
eral, prognostic gene signatures generate prognostic scores that are grouped as high or 
low risk for patients. As such, sigInfer’s default options reflect this by producing two 
patient subgroups which can be interpreted as high and low risk patients. The output 
includes sample groupings based on the expression of signature genes, which can be 
further analysed for prognostic or biological significance. Ultimately, sigInfer’s function-
ality supports the inference of groups obtained from commercially available gene signa-
tures, such as the Decipher test [9], the Prolaris Cell Cycle Progression score [10], and 
the OncotypeDX prostate cancer assay [11]. Additionally, sigInfer allows users to input 
customs gene signatures by uploading their own gene lists.
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As part of the ClassifieRp module, the sigInfer method was applied to the prostate 
cancer dataset (GSE116918) using the Decipher test gene signature [9]. The input gene 
expression data was filtered to retain only the genes corresponding to the Decipher sig-
nature, and hierarchical clustering was performed using Ward’s method with Euclidean 
distance as the metric. Two patient subgroups were identified based on their expression 
profiles (Fig. 2A). Similar to the original ClassifieR framework, cell type classifiers such 
as MCP-counter and xCell, TF activity classifiers such as DoRothEA, and functional 
annotation classifiers such as ssGSEA, are performed in conjunction with the applica-
tions’ subgrouping method. Interactive boxplots are produced to demonstrate key TF 
activity and immune and stromal cell type differences between the sigInfer patient sub-
groups. By inferring the Decipher prognostic gene signature in the prostate cancer data-
set (GSE116918), differences in fibroblast cells (Fig. 2B), androgen receptor (AR; Fig. 2C), 
and MYC proto-oncogene (MYC; Fig.  2D) TF activity between the two patient sub-
groups are observed. Cancer-associated fibroblast infiltration has been associated with 
disease progression in prostate cancer [30], whilst high MYC TF activity induces low AR 
TF activity to drive disease progression and castration resistance in prostate cancer [31]. 
The sigInfer patient subgroups can be easily integrated with patient-matched survival 
probability information to be used with the surviveR application [32] for investigating 
the prognostic potential of the patient subgroups (Fig. 2E). This demonstrates sigInfer’s 
capacity to generate meaningful patient subgroups based on signature expression data 
and highlights its utility in research settings where commercial prognostic tools may not 
be accessible.

ClassifieRov with consensusOV

The ClassifieRov application facilitates the rapid, single-sample classification of HGSOC 
transcriptional profiles using a selection of classifiers. The default classification method 
is consensusOV, a consensus random forest classifier trained on unanimously classified 
tumours across multiple methods, developed by Chen et al. [5]. The user also has the 
option of classification using four other methods published previously [15, 17, 19, 20] 
using the functionality of the consensusOV R package within the intuitive GUI. The ‘Hel-
land’, ‘Verhaak’ and ‘Konecny’ classifiers can assign subtype scores to each sample based 
on subtype-specific linear coefficients, subtype-specific ssGSEA, and nearest-centroids 
with Spearman’s rho respectively [15, 19, 20]. The ‘Bentink’ classifier assigns an angio-
genic and non-angiogenic probability score to each sample using the genefu package [17, 
36]. Once the chosen classifiers are selected, ClassifieRov applies DESeq2 normalisation 
to the count matrix, if normalisation has not already been performed, preparing it for 
utilisation within the consensusOV package.

Upon accessing the Subgrouping tab, users are presented with a comprehensive table 
showcasing subtype confidence scores assigned to each sample, alongside their respec-
tive subtypes (Additional File 1A). Additionally, a simplified downloadable table contain-
ing only sample names and subtypes is provided. Furthermore, a bar plot illustrates the 
frequency distribution of molecular subtypes (Additional File 1B).

The Complete Report tab aggregates data from all selected classifiers into a down-
loadable table. Additionally, it features two interactive box plots, enabling visu-
alisation of distinct transcription factor or cell type abundances across molecular 
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subtypes. Here we show increased TF activity of MYC (Fig. 3A), a commonly ampli-
fied TF in HGSOC responsible for promotion of uncontrolled cellular proliferation 
in the proliferative subtype of ovarian cancer [34]. As anticipated, we also observe 
elevated MCP-Counter score for T cells in the immunoreactive subtype (Fig.  3B), 

Fig. 2  ClassifieRp use case conducted on demo data obtained from prostate cancer gene expression dataset 
(GSE116918) [29]. A. Patient subgroup table and frequency bar plot from sigInfer. B. Boxplot of Fibroblast 
scores from the MCP-counter R package for the patient subgroups 1 and 2 from sigInfer. C. Boxplot of MYC 
TF activity scores from the DoRothEA R package for the patient subgroups 1 and 2 from sigInfer. D. Boxplot 
of androgen receptor (AR) TF activity scores from the DoRothEA R package for the patient subgroups 1 and 2 
from sigInfer. E. Kaplan–Meier survival curves from the surviveR application for time to metastatic disease of 
the patient subgroups 1 and 2 from sigInfer
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aligning with the expected heightened immune cell infiltration in this subtype [13, 
16, 18–20, 35]. Additionally, estimates of immune and stromal cell populations gen-
erated using MCP-counter for each tumour sample are displayed as a heatmap, with 

Fig. 3  ClassifieRov use case conducted on demo data obtained from GSE14764 [37]. A. Interactive boxplot 
from the Complete Report tab showing distribution of MYC TF-activity scores amongst consensusOV 
molecular subgroups. B. Interactive boxplot from the Complete Report tab showing distribution of 
MCP-Counter scores for T cells amongst consensusOV molecular subgroups. C. Updated heatmap with 
sample annotations for MCP-Counter scores. D. Boxplots showing enrichment score distribution of the 
MSigDB epithelial-to-mesenchymal transition signature obtained from MSigDB across molecular subtypes. 
DIF_consensus (differentiated), IMR_consensus (immunoreactive), MES_consensus (mesenchymal) and 
PRO_consensus (proliferative)



Page 10 of 13McCabe et al. BMC Bioinformatics          (2024) 25:362 

subtype assignments represented as column annotations (Fig. 3C). The heatmap visu-
alizes clustering of samples based on their gene expression profiles, while integrating 
cell composition, offering a comprehensive view of the tumour microenvironment’s 
contribution to each subtype. Finally, users can functionally annotate molecular sub-
groups using ssGSEA. Here we assessed the enrichment of the MSigDB epithelial-
to-mesenchymal (EMT) transition signature across molecular subtypes (Fig. 3D). We 
observed that the mesenchymal subtype exhibited the highest enrichment, indicating 
a strong association between this subtype and EMT, which has been observed previ-
ously [36]. As with ClassifieR, all plots and tables are downloadable, allowing for fur-
ther post-ClassifieR 2.0 analysis if deemed necessary.

The integration of consensusOV with cellular deconvolution analysis is particularly 
important for HGSOC due to the heterogeneity of the TME. Recent studies utilising sin-
gle cell RNA-seq have highlighted how the TME influences subtype assignment [38–40]. 
For example, the immunoreactive subtype is largely driven by the presence of immune 
cells, namely macrophages, whereas the mesenchymal subtype is associated with high 
fibroblast content [38–40]. These subtypes often reflect the influence of non-cancerous 
cells, which can obscure the transcriptional programmes of cancer cells themselves [40]. 
In contrast, cancer/epithelial cells typically exhibit either a differentiated or proliferative 
programme of gene expression program [38–40]. Without incorporating the broader 
cellular context provided by deconvolution methods, subtyping based on bulk RNA-seq 
alone may lead to ambiguous interpretations. ClassifieRov integrates tools like MCP-
Counter and xCell, enabling users to better interpret the heterogeneity within HGSOC 
tumours. By integrating cellular deconvolution with molecular subtyping, researchers 
can more accurately identify whether a subtype’s expression pattern is driven by cancer 
cells themselves or by the tumour microenvironment, thus refining subtype classifica-
tion and improving the biological relevance of the findings.

Conclusion
The introduction of ClassifieRp and ClassifieRov addresses the critical issue of acces-
sibility faced by researchers when stratifying their transcriptomic datasets. These tools 
eliminate the need for specialised bioinformatics expertise to streamline the process of 
molecular classification and functional annotation for two pervasive diseases. In com-
parison to existing tools, ClassifieR 2.0 offers an integrated environment where research-
ers can not only infer established gene signatures but also venture into exploratory 
analysis by incorporating custom gene signatures. This versatility is further enhanced by 
the inclusion of methods for immune and stromal cell type estimation, pathway analysis, 
and transcription factor activity assessment, making it a comprehensive suite for molec-
ular analysis.

Available freely at https://​class​ifier.​cloud​cix.​com/​class​ifieRP/ and https://​class​ifier.​
cloud​cix.​com/​class​ifieR​ov/, the user-friendly interface allows researchers to further 
functional insights within their datasets, decipher patient prognosis and predict 
responses to therapy. As with the original framework, ClassifieR 2.0 extends acces-
sibility to tools typically restricted to bioinformaticians, facilitating quicker and con-
current analyses compared to utilising standalone tools. Ultimately, ClassifieR 2.0 

https://classifier.cloudcix.com/classifieRP/
https://classifier.cloudcix.com/classifieRov/
https://classifier.cloudcix.com/classifieRov/
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aims to expedite the integration of molecular profiling into the clinic, which is crucial 
for precision oncology and medicine.
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