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Abstract 

Background:  Over the last decade the drop in short-read sequencing costs 
has allowed experimental techniques utilizing sequencing to address specific biologi-
cal questions to proliferate, oftentimes outpacing standardized or effective analysis 
approaches for the data generated. There are growing amounts of bacterial 3′-end 
sequencing data, yet there is currently no commonly accepted analysis methodol-
ogy for this datatype. Most data analysis approaches are somewhat ad hoc and, 
despite the presence of substantial signal within annotated genes, focus on genomic 
regions outside the annotated genes (e.g. 3′ or 5′ UTRs). Furthermore, the lack of con-
sistent systematic analysis approaches, as well as the absence of genome-wide ground 
truth data, make it impossible to compare conclusions generated by different labs, 
using different organisms.

Results:  We present PIPETS, (Poisson Identification of PEaks from Term-Seq data), an R 
package available on Bioconductor that provides a novel analysis method for 3’-end 
sequencing data. PIPETS is a statistically informed, gene-annotation agnostic meth-
odology. Across two different datasets from two different organisms, PIPETS identified 
significant 3’-end termination signal across a wider range of annotated genomic con-
texts than existing analysis approaches, suggesting that existing approaches may miss 
biologically relevant signal. Furthermore, assessment of the previously called 3′-end 
positions not captured by PIPETS showed that they were uniformly very low coverage.

Conclusions:  PIPETS provides a broadly applicable platform to explore and ana-
lyze 3′-end sequencing data sets from across different organisms. It requires 
only the 3′-end sequencing data, and is broadly accessible to non-expert users.
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Background
The study of alternative and premature bacterial transcription termination is a rapidly 
growing field that aims to understand bacterial responses to changes in environmen-
tal conditions. The current standard for studying this is 3-prime-end-sequencing (3′-
seq)/Term-seq which non-specifically tags the 3′ ends of RNA, allowing for short-read 
sequencing to map these ends and quantify their relative frequencies. Initial studies 
using 3′-seq focused on identifying regulatory elements in the 5′UTRs (UnTranslated 
regions) of annotated genes by focusing exclusively on signal in the 5′- and 3′-UTRs of 
these genes [1–3]. This analysis methodology was used or closely mirrored by several 
studies afterwards, many of which noted an abundance of 3′-seq signal in other genomic 
regions of the data [4–6]. Other studies created their own custom analysis methods 
to study 3′-seq data in order to assess specific regulatory signals or to add additional 
sequencing information [7, 8]. Although many different studies have identified that there 
are biologically relevant 3′-seq signal levels in regions outside of the 3′-UTR of genes, 
there is not a consensus on an analysis method to best analyze 3′-seq data. As a result, 
there are no ground truth data sets for the field to measure metrics of success for analy-
sis methods. Furthermore, while analysis scripts are available in many cases, these are 
typically poorly documented and challenging to implement. Without a standardized 
3′-seq analysis method, findings from different studies are impossible to compare short 
of reanalyzing many large-scale data sets, and it is challenging to contextualize whether 
findings from diverse organisms are due to differences in the biology, the data collection 
method, or the data analysis performed.

In this work, we introduce PIPETS (Poisson Identification of PEaks from Term-Seq 
data). PIPETS is an R package available on Bioconductor that analyzes mapped data 
from 3′-end sequencing, which nonspecifically captures transcript termination signal, 
whether that be from transcript termination, regulatory cleavage, truncation, or other 
biological processes [9–14]. In contrast to many existing approaches for 3′-seq analysis, 
PIPETS analyzes all 3′-seq signal, regardless of annotated gene positions, and uses sta-
tistically informed methods to identify biologically relevant 3′-end signal. PIPETS pro-
vides an analysis platform with many tunable parameters that allows the user to explore 
their 3′-seq data while also providing statistically grounded results. We demonstrate the 
use of PIPETS on two existing 3′-seq datasets.

Implementation
Overview

The inputs for PIPETS are mapped 3′-seq Bed files that contain at least chromosome, 
read start, read stop, read quality score, and strand information for each read. Alter-
natively PIPETS can use Genomic Ranges objects from the Genom​icRan​ges package 
so long as the input data contains the same information as above [15]. PIPETS begins 
by filtering out reads that do not have a read quality score equal to or greater than the 
user defined value (readScoreMinimum parameter). For the data in this study, we noted 
that using a readScoreMinimum values of 30 resulted in a large reduction in the total 
reads analyzed (Supplemental Table 1). We chose to use read quality score as an initial 
thresholding tool to account for the variance in protocols and organisms used in differ-
ent 3′-seq studies.

https://bioconductor.org/packages/release/bioc/vignettes/GenomicRanges/inst/doc/GenomicRangesIntroduction.html


Page 3 of 17Furumo and Meyer ﻿BMC Bioinformatics          (2024) 25:363 	

This initial trimming step removes reads that do not pass the user defined read qual-
ity score threshold, thus improving the overall confidence of the analysis. (Supplemental 
Table 1). With the quality trimmed reads set by the user inputs, PIPETS calculates the 
3′-end read coverage of every genomic position using the terminal position of each read 
corresponding to the terminal site in the transcript. PIPETS subsequently analyzes this 
data in three main steps: (1) A sliding window function which uses a Poisson Distribu-
tion Test to identify genomic coordinates with significant 3′-end termination read, (2) A 
condensing step that combines the signal of consecutive significant genomic positions 
into one termination “peak” and (3) A peak condensing step that combines proximal 
significant peaks into one signal. These steps ensure that technical or biological error 
do not conflate noise as significant signal while pruning the total number of individual 
peaks reported to make analysis manageable (Fig. 1).

Peak identification

One of the inherent challenges associated with analysis of RNA-seq data generally is the 
large range of read values obtained across different transcripts. Low read coverage does 
not necessarily indicate a lack of biological significance, as some transcripts have a low 
basal expression level. However, in the case of 3′-end sequencing, the “noise” created 
from cleavage of transcripts (either during in vitro RNA processing or within the cell) 
will also be higher for more highly expressed transcripts, potentially much higher than 
true signal for a lowly expressed transcript. To account for this, PIPETS uses a sliding 
window approach to ensure that 3′-seq read coverage significance is assigned locally. 
PIPETS then uses a Poisson Distribution Test to determine if the read coverage of any 
position within the window is significantly higher than expected from the average read 
coverage of the window. To minimize the rate of Type I error from the large number 

Fig. 1  Workflow of PIPETS. Before PIPETS performs analysis, it first trims reads based on read quality and 
separates the passing reads into those that map to the top and complement strands. Then PIPETS analyzes 
the two strands separately through three steps. First, a sliding window-based Poisson Distribution Test is used 
to identify genomic coordinates with 3′-seq read coverage that is significantly higher than the surrounding 
area. The results of this step undergo Benjamini-Hochberg multiple testing correction to control for Type 
I error. Second, consecutive significant genomic coordinates are combined into individual “peaks”. Third, 
proximal peaks are combined into individual larger “peaks”.
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of tests performed, PIPETS uses Benjamini-Hochberg multiple testing correction on all 
significant results. The sliding window approach ensures that genomic positions with 
read coverage dwarfed by distal highly expressed regions are not overlooked.

Even for input data with millions of reads, a vast majority of genomic coordinates will 
have very few or no termination reads mapped to them. On average for the Dar data [1], 
98.80925% (4163345) of the genomic coordinates had 0 reads with a read quality score 
of >=30, 99.9499% (4211406) had less than 10 reads, and 99.99305% (4213224) had less 
than 100 reads. On average for the Warrier data [4], 83.37% (1801494) of the genomic 
coordinates had 0 reads with a read quality score of >=30, 97.46965% (2106165) had less 
than 10, and 99.8122% (2156784) had less than 100. (Supplemental Figures 1 & 2). We 
have higher confidence in genomic coordinates with greater read coverage, however dif-
ferent data sets may have differing definitions of “greater read coverage”. To account for 
such differences in the data, we employ a global minimum read coverage cutoff based on 
the read coverage of all mapped reads that pass read quality checks from the data itself 
rather than an arbitrary predefined minimum read count. Positions with 3′-end read 
depth below this cutoff are not tested for significance, speeding analysis and reducing 
the effect of low-signal noise on analysis. Rather than manually set a specific minimum 
read-depth prior to analysis, PIPETS determines this global cutoff using the read cover-
age of all mapped reads that pass read quality checks in an individual data file.

To determine the global minimum read coverage cutoff, PIPETS first sorts the 
genomic coordinates from highest to lowest read coverage and identifies the positions 
that account for a percentage of the total read coverage of the file (defined by threshAd-
just, 0.75 by default). The average of these high read coverage values of each file, which 
are most likely to be derived from biologically significant signal, is the minimum read 
coverage cutoff for an individual input file. This results in a global cutoff that is informed 
by the sequencing depth and signal in the individual experiment rather than an arbitrar-
ily assigned cutoffs. This cutoff can then be used to filter out noise and reduce run-time 
by reducing the total number of genomic positions tested.

For the data sets analyzed in this paper, we found that a threshAdjust value of 0.75 
provided a cutoff with values in the hundreds and a runtime that made analysis of 
many samples quick (Supplemental Table 1). However, for data sets with different read 
depths or for organisms with potentially different distributions of 3′-seq signal across 
the genome we anticipate users will modulate threshAdjust to explore their data and 
best identify peaks at differing levels of confidence. A global cutoff of 5000 3′-seq reads 
might be an extremely high stringency for some data sets, but could also be required to 
study 3′-seq data sets with extremely high read depth. To account for possible high read 
coverage outliers, the parameter highOutlierTrim defines the top percentage (0.01 by 
default) of these highest read coverage positions that are excluded from the calculation 
of the global read coverage cutoff. All positions removed this way will still be analyzed 
by PIPETS, but this helps to ensure that the minimum read coverage cutoff is not heavily 
biased by read coverage outliers.

Peak condensing steps

The data structure of a biologically significant bacterial termination site for 3′-seq data 
resembles a peak, with a position of highest read coverage and flanking positions of 
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lesser read coverage that are still higher than surrounding noise. This signal is the result 
of several factors, namely imperfect bacterial termination [16, 17], RNA degradation 
[18], and technical noise/bias from the library preparation and sequencing itself [19]. 
Each genomic position from the significant results of The Poisson Distribution test in 
Step One of PIPETS is unlikely to be an independent termination signal; many of these 
positions are adjacent to others and together they are likely to represent one favored 
site of termination (Supplemental Fig. 3). To better reflect the biological context of these 
data, the significant genomic positions identified in Step One undergo two condensing 
steps: (1) Combine consecutive significant positions into single termination peaks, and 
(2) Combine proximal termination peaks to abbreviate total results volume (Fig. 1). Both 
condensing steps preserve the total range of the data combined, so that the information 
about the breadth of peaks is not lost. However, by reducing the total results pool, these 
steps help to make the results of PIPETS easier to digest and study.

Step Two of PIPETS identifies significant positions that are within 2 nucleotides 
of each other. These significant positions are then combined into a single termination 
“peak” which contains the full range of consecutive positions and uses the highest read 
coverage position within for downstream analysis. Step Three of PIPETS combines 
proximal termination peaks within 20 nucleotides of each other as termination signals 
so close to each other are likely not independent sites of transcript termination as both 
Rho-dependent and independent termination require RNAP pausing (reviewed in [17, 
20]), which typically occurs on strong hairpin structures of at least 7–8 base pairs in 
length yielding a minimum distance of 15-20 nucleotides between termination sites 
[20–22].

PIPETS parameters

PIPETS relies on a number of parameters, the values of which initially were generated 
in an ad hoc manner. These include the size of the sliding window (slidingWindowS-
ize), the distance the sliding window moves with each step (slidingWindowMovement-
Distance), the p-value used for the Poisson distribution test and Benjamini-Hochberg 
multiple testing correction (user_pValue), the proportion of data used to determine the 
global minimum read cutoff (threshAdjust), the proportion of data considered to be high 
outliers in the calculation of the global minimum read cutoff (highOutlierTrim), the dis-
tance between adjacent positions considered to be a single peak during the first peak 
condensing step (adjacentPeakDistance), and the maximum distance between adjacent 
peaks condensed in the second peak condensing step (peakCondensingDistance).

We established the default values of these parameters using S. pneumoniae 3′-seq 
data generated in our lab [4] with the intention of identifying as many results as pos-
sible that we were confident had the potential to be biologically significant (which may 
be distinct from statistically significantly greater than background). To systematically do 
so, we assessed the impact that changes to values of each parameter had on results sets. 
We first tested the sliding window portion of the analysis. By default, the sliding win-
dow spans 51 genomic positions, moving 25 nucleotides with each step. Alternative sizes 
and movement distances were tested, but did not confer any notable change to analysis. 
We selected this size because it provides a small enough snapshot of genomic regional 
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context for analysis while also containing enough total genomic coordinates to ensure 
that the Poisson test conducted within the range is sufficiently populated.

For the peak condensing steps, we found that, outside of extremely high or low val-
ues, these parameters had little impact on the total number of results and did not heav-
ily impact the read depth cutoffs or the total count of significant results (Supplemental 
Figures 4 & 5). However, changes to the global minimum read coverage cutoff substan-
tially impact the number of peaks returned by PIPETS. This value is determined from 
the input data by two PIPETS parameters: threshAdjust and highOutlierTrim, and test-
ing revealed that minor adjustments to these values can greatly affect the distribution of 
read coverage values that are assessed. Altering the threshAdjust and highOutlierTrim 
values changes the strictness of PIPETS. In datasets with very high read depths or data-
sets from very long genomes, we recommend increasing the strictness of PIPETS’ noise 
filtering by lowering the value of threshAdjust (from 0.75 to values from 0.50–0.60). This 
will reduce the effect of global increases to basal noise levels and ensure that PIPETS 
does not consistently misidentify lower read coverage events as significant 3′-seq signal. 
Alternatively, increasing the value of threshAdjust (from 0.75 to values from 0.80 - 0.95) 
will make PIPETS less strict and is useful when studying data sets with low read cover-
age or data from smaller genomes. In the event where a small portion of the genomic 
positions in the data account for a disproportionately large percentage of the total read 
coverage for a data set (for example in samples with poor rRNA depletion), increasing 
the value of highOutlierTrim (from 0.01 to values from 0.025–0.05) can reduce the bias 
imparted by these outliers. highOutlierTrim is the more sensitive parameter and its val-
ues may be more variable from dataset to dataset. Although threshAdjust and highOut-
lierTrim had the largest impact on analysis for the data sets used in this study, we invite 
users to change the other parameters for their data to better explore the transcription 
termination profile of different data sets from different organisms.

Comparison methodology

In this work we compared the results of PIPETS with the results of the original 3′-seq 
analysis method that was used for data sets from two organisms. Our goals were to 
ensure that PIPETS was identifying significant 3′-seq termination signal across all 
regions of the input data and that PIPETS maintained the ability to detect the high 
read coverage 3′-seq termination signal found by the previous analysis methods. First, 
we examined S. pneumoniae 3′-seq data from two conditions (no-drug-control time 0 
and no-drug-control time 30) that were generated in our lab (available at NCBI SRA: 
SRP136114) [4]. We ran this data at default parameters (threshAdjust = 0.75 and hig-
hOutlierTrim = 0.01) before categorizing the results as 3′-UTR (less than or equal to 
150 bp downstream of the STOP codon with respect to strand), 5′-UTR (less than or 
equal to 450 bp upstream of the START codon with respect to strand), coding region 
(inside of the coding region of a gene), 3′-UTR & Coding region (less than or equal to 
150 bp downstream of the stop codon of one gene with respect to strand and inside the 
coding region of a different gene), and intergenic (none of the other categories). To stay 
consistent with the previous analysis method [1], we chose for 5′-UTR signal to override 
3′-UTR in our reported metrics. In Fig. 2A we represent the originally reported peaks 
all as 3′ ends as originally reported. We used the TIGR4 genome annotation (refseq: 
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NC_003028.3) to assign the above categories. When comparing the results of the origi-
nal Warrier method and PIPETS, we classified overlapping results when two peaks 
reported from the different analyses were within 5bp of each other (Fig. 2A, B). When 
studying the Warrier results specific peaks, we calculated the read quality trimmed read 
coverage values based on the combined 3′-seq read coverage from the ND0 and ND30 
samples combined (Fig. 2D).

Second, we assessed B. subtilis data from the first paper to present 3′-seq as a method 
(Bioproject PRJEB12568) [1]. This study had 9 experimental conditions with three rep-
licates for all conditions but one, resulting in 26 total files. We analyzed all of these 
files individually and followed the Dar protocol of subsetting the results to only those 
that were present in all three replicates of a given condition. We then performed the 
same categorization and comparative results overlapping as above. We used the NCBI 
AL009126 genome annotation for B. subtilis in our results categorization. For this part 
of the work, we ran PIPETS twice, once with default parameters (threshAdjust = 0.75 
and highOutlierTrim = 0.01) and once with only one changed parameter (threshAdjust 
= 0.85).

Results and discussion
We first tested PIPETS on Streptococcus pneumoniae data generated by our own lab [4]. 
Previous analysis of this data was performed using an analysis method that mirrored 
that of the first 3′-seq paper [1]. We developed PIPETS to analyze this data to better 
capture 3′-seq signal outside of just the 3′-UTR of annotated genes and thus we wanted 
to compare PIPETS’ results with the original method. The original method identified 
1864 termination sites across three conditions, and as a result of the analysis param-
eters many of these identified sites had very low read coverages. PIPETS, when run with 
default parameters, identified 2220 significant peaks between just two of these condi-
tions (no-drug-control samples at 0 and 30 minutes). Of these 2220 peaks, 136 were in 
intergenic regions, 340 were in the 5′-UTR of a gene, 1077 were inside coding regions, 
419 were in the 3′-UTR of a gene, and 248 that were present in the 3′-UTR of one gene 
and inside the coding region of a different adjacent gene (Fig. 2A, Supplementary Data). 
PIPETS identified 1801 significant peaks outside of 3′-UTR regions, all of which would 
not have been considered by the original analysis method.

Although PIPETS was successful in identifying 3′-seq signal outside of 3′-UTR 
regions, we still wanted to identify how successful PIPETS was at identifying the results 
from the original analysis. Of the 1864 sites from the original analysis, PIPETS identified 

Fig. 2  PIPETS analysis of Warrier 3′-seq data. We analyzed the Warrier 3′-seq data on PIPETS using default 
parameters (threshAdjust = 0.75, highOutlierTrim = 0.01). A Compared to the 1864 significant sites reported 
in the 3′-UTR of annotated genes from the original results [4], PIPETS identified 2220 significant peaks. 419 
of these peaks were in of the 3′-UTR (within 150 bp of the stop codon) of annotated genes, while the other 
1801 were found in other genomic contexts that are unique to PIPETS. B When comparing the two results 
sets, PIPETS and the Warrier analysis identified 790 shared peaks. C When using the raw 3′-seq read coverage 
of the remaining 1074 results that were unique to the Warrier analysis, only 153 had 3′-seq read coverage 
greater than 300. D When using only reads with a read quality score of 30 or higher, only 6 of the Warrier 
analysis specific results had read coverage greater than 300.

(See figure on next page.)
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790 (Fig. 2B). It was expected that not all of the sites identified by the original analysis 
would be identified as significant by PIPETS due to the substantially more lax method of 
peak identification in the original method [4]. Of the 1055 unique remaining sites of the 

Fig. 2  (See legend on previous page.)
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original analysis, 902 had 3′-seq read coverage values less than 300 (Fig. 2C). We wanted 
to identify the cause of PIPETS “missing” 153 of the results from the original method 
that had high read coverage values. An important distinction in analysis between 
PIPETS and the original method is the read quality trimming that PIPETS performed. 
We compared the raw read coverage and quality score trimmed read coverage at the 
locations identified by the original analysis and saw that only 6 of the results from the 
original analysis had more than 300 reads that passed read quality cutoffs (Fig. 2D). We 
further investigated the specific peak identified by the original analysis with the highest 
3′-seq read coverage not identified by PIPETS. This position was identified as significant 
by PIPETS, however, it was placed into a larger 3′-seq peak with a different highest read 
coverage coordinate that may have been outside the distance parameters in the original 
analysis.

The largest disparity between the PIPETS results and the Warrier results was the dra-
matic increase in significant 3′-seq peaks identified outside of 3′-UTR’s of genes for the 
PIPETS results. Among these results, there are clear instances of 3′-seq signal inside 
of coding regions of genes, and there are several instances of 3′-seq peaks that could 
potentially function as premature terminators in genes. Observing the read pile up data 
for these sites in IGV, it is clear that there are 3′-seq read buildup events that are of 50% 
or greater magnitude in relation to the read buildup at the expected termination site at 
the end of the gene. These premature sites identified by PIPETS strongly indicate that 
the ptsP and SP_RS10700 (Fig. 3A and B respectively) genes have biologically relevant 
premature termination sites. These events are 172 and 207 bp past the start codon of 
their respective genes, and would not be captured by existing 3′-seq analysis methods. 
Additionally, PIPETS identified a novel un-identified site in the data between the rpsG 
and fusA genes (Fig.  3C). PIPETS identified significant 3′-seq peaks at the annotated 
termination sites of both genes (indicated with black arrows) but it also identified sig-
nificant amounts of 3′-seq signal in a region between both genes. IGV read buildups and 
PIPETS read coverage outputs suggest that there is biologically significant event causing 
substantial 3′-end coverage in this area. This signal too, would have been entirely missed 
by the original analysis method since the signal does not fall within the close constraints 
of being within 150 bp of the stop codon of a gene.

We next tested PIPETS on Bacillus subtilis data from the first paper to implement 
3′-end sequencing as a method of studying bacterial termination [1]. The sequencing 
depth of the original data was low relative to modern sequencing standards, with no rep-
licate sequencing file with more than 3 million aligned reads. Their analysis methodology 

(See figure on next page.)
Fig. 3  Representative selection of PIPETS specific results from Warrier data. A PIPETS uniquely identified a 
significant 3′-seq peak inside of the ptsP gene 172 bp after the start codon. IGV display of read pileup data 
shows that this peak has read coverage within the same range of the likely true terminator signal in the 
3′-UTR. B PIPETS uniquely identified a 3′-seq peak inside of the SP_RS10700 gene. This peak has roughly half 
of the read pileup of the likely terminator signal, but its read pileup in comparison to the surrounding area 
indicates likely biological relevance. C PIPETS identified significant 3′-seq signal in the expected 3′-UTRs of 
rpsG and fusA genes (black arrows), but also identified a significant peak in the intergenic region between 
these two genes (red arrow). This PIPETS specific peak has read pileup values higher than the rpsG terminator 
signal and half as much as the potential fusA terminator suggesting biological significance.
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focused only on the position of highest termination signal in the 5′-UTR and 3′-UTR of 
annotated genes, did not consider reads strand specifically, and excluded all other data 
from analysis. We were curious whether a more systematic analysis method would alter 

Fig. 3  (See legend on previous page.)
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conclusions of the original work. From their combined data, Dar et al. identified 1443 
total termination positions that passed their minimum read thresholds and were in the 
5′-UTR or 3′-UTR of genes of interest.

We first ran PIPETS on the default parameters and compared that results set to the 
results of the Dar method. With “threshAdjust” set to 0.75, PIPETS identified 362 sig-
nificant peaks: 5 were in intergenic regions, 154 were in the 5′-UTR of genes, 14 were 
inside coding regions, 170 were in the 3′-UTR of a gene, and 19 were present in the 
3′-UTR of one gene and inside the coding region of a different adjacent gene (Fig. 4A). 
PIPETS identified 240 of the 1443 sites identified by the original method (Fig. 4B), and 
while more than half of these remaining sites had 3′-seq read coverage values less than 
50 (Fig. 4C), we still wanted to ensure that PIPETS was properly able to study this data 
even if most of the identified results had low 3′-seq read coverages.

In order to improve PIPETS’ performance for this data, we changed the “threshAdjust” 
parameter from 0.75 to 0.85 to make PIPETS more sensitive to lower 3′-seq read cover-
ages. With this change, PIPETS identified 1158 significant peaks, 25 were in intergenic 
regions, 417 were in the 5′-UTR of a gene, 126 were inside coding regions, 522 were in 
the 3′-UTR of a gene, and 68 that were present in the 3′-UTR of one gene and inside 
the coding region of a different adjacent gene (Fig. 4D). Notably, this singular change to 
PIPETS increased the number of significant peaks from 362 to 1158, and also helped to 
greatly increase the number of significant peaks identified inside of coding regions as 
well as peaks present in the 3′-UTR of one gene and inside the coding region of a differ-
ent adjacent gene. When compared to the original results set, PIPETS was now able to 
identify 745 of the original method’s peaks (Fig. 4E). With only 64 of the remaining uni-
dentified peaks having 3′-seq read coverage greater than 50 (Fig. 4F), we were confident 
that PIPETS was appropriately analyzing this data set and identifying most 3′-seq sig-
nal that originated from biologically significant events, yet not imposing arbitrary con-
straints on which data are included in the analysis.

We were curious if the dramatic increase in significant peaks identified by PIPETS 
upon parameter changes had any recognizable pattern in the data. We tested if the 
change in number of peaks found in coding regions had any preferential changes. 
A large increase in the number of genic peaks identified within a small number of 
highly expressed genes would potentially indicate an increase in calling noisy 3′-end 
coverage within high coverage areas as legitimate peaks. The results run with “thre-
shAdjust” = 0.75 had very few genes with any significant peak identified inside, and 

Fig. 4  PIPETS analysis of Dar data. A Using default parameters on the Dar data, PIPETS identified 362 
significant peaks, primarily in 3′-UTR and 5′-UTR regions. 3′-UTR peaks for Dar data are as originally reported 
[1] B PIPETS identified 240 of the results from the original Dar data and had 122 unique results. C Of the 
remaining 1203 Dar analysis specific results, 1085 had 3′-seq read coverage values less than 150 and 800 
had read coverage less than 50, which can be too low to distinguish from noise. D To increase the number 
of peaks that PIPETS identified, we reduced the strictness of PIPETS by increasing threshAdjust to 0.85. This 
resulted in PIPETS identifying 1158 significant peaks across a broader range of genomic regions. E PIPETS 
identified 745 of the peaks found by the original analysis with these parameter changes, and identified 413 
unique 3′-seq peaks. F Of the 698 Dar analysis specific peaks, only 14 had read coverage values greater than 
150. The parameter change of the PIPETS analysis increased its sensitivity to identifying lower read coverage 
3′-seq signal.

(See figure on next page.)
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there were no genes that had more than one peak inside for the top strand and no 
genes with more than 2 peaks for the complement strand (Fig. 5). When PIPETS was 
run with “threshAdjust” = 0.85, while there was a large increase in the total number 

Fig. 4  (See legend on previous page.)
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of genes with significant peaks inside, there was not a proportional increase in the 
number of genes with more than one significant peak inside (Fig. 5). While there is 
no expected value of potential alternative termination sites inside of any given cod-
ing region, we would not expect there to be many genes with several termination 
sites (greater than 5) due to potential negative overcomplexity. The increased sen-
sitivity PIPETS ("threshAdjust” = 0.85) rarely identified more than 3 peaks within 
a single gene, suggesting that the parameter change increases PIPETS sensitivity 
to identifying signal, without mistakenly over-identifying noise within gene coding 
regions as significant results.

Among the significant peaks identified by PIPETS that were not identified in the Dar 
method, there are many instances of clear 3′-ends occurring within genes. We identified 
two examples of PIPETS specific significant peaks that corresponded with clearly biolog-
ically relevant sites for genes in the B. subtilis genome. When visualized with IGV, read 
buildups at the annotated ends of the rlmKB and recQ genes (Fig. 6A and B respectively) 
drops off dramatically after the position identified by PIPETS as a significant 3′-seq read 
coverage peak. This indicates a standard termination signal where the large buildup of 
3′-seq reads at the site identified by PIPETS provides insight to a termination event that 
was undetected by the Dar analysis. We also noted that the Dar method largely ignored 
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Fig. 5  Peaks per gene changes based on threshAdjust for Dar Data. While the number of total significant 
peaks identified by PIPETS increases with change to threshAdjust, the number of genes with multiple peaks 
per gene does not disproportionately increase. This means that PIPETS is increasingly sensitive to 3′-seq 
signal inside of more total genes without increasing the rate of misidentifying excess peaks from noise inside 
of genes.

Fig. 6  Representative selection of PIPETS specific results from Dar data. A PIPETS uniquely identified a 3′-seq 
peak that is inside of the rnpB gene and in the 5′-UTR of the rlmKB gene. The positioning of this peak could 
allow it to function as a regulating signal for both genes. B PIPETS uniquely identified a significant peak in 
the 5′-UTR of the recQ gene. The IGV displayed read buildup indicates that this peak has dramatically higher 
read coverage than the surrounding region, suggesting biological relevance. C PIPETS uniquely identified 14 
significant 3′-seq peaks from 14 tRNA’s in a ~2000 bp region. Each of the peaks indicated by arrows were not 
identified by the Dar analysis, and while tRNA’s are often not the focus 3′-seq studies, these peaks account for 
all of the 3′-seq signal in these areas and the magnitude of these peaks suggests biological relevance.

(See figure on next page.)
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signal associated with various non-coding sequence annotations, including tRNAs. 
While tRNA’s are not often considered in analyses of this nature, they still make up a 
significant portion of the total 3′-seq read depth for these files. We highlight here that 

Fig. 6  (See legend on previous page.)
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PIPETS identified significant 3′-seq peaks for a set of 14 tRNA’s in a ~2000 bp region 
that directly correspond with IGV signal in the same positions (Fig.  6C). While such 
sites are accessible via reanalysis of the raw data, this omission during initial analysis 
points toward the challenges of comparing different datasets, generated by different labs, 
using different organisms, analyzed with ad hoc tools, in order to gain broader insight 
into how 3′-end generation differs across bacterial species.

Conclusions
The number of studies utilizing 3′-seq is rapidly increasing across diverse sets of 
organisms, yet there is not an easy to download, standardized analysis method cur-
rently available. Here we present PIPETS, a new 3′-seq analysis method that identi-
fies statistically significant 3′-seq signal in a gene annotation agnostic fashion. When 
compared to existing 3′-seq analysis methodologies, PIPETS identified many signifi-
cant 3′-seq signals outside of the 3′-UTR of genes, without sacrificing the ability to 
identify most of the highly expressed 3′-seq sites in the 3′-UTRs. The tunable param-
eters of PIPETS allow for the adjustment of the sensitivity of the analysis, which 
allows PIPETS to analyze data of varying read depths as well as account for biological 
differences between different species.

When studying the data presented here, we noted a large proportion of the signif-
icant identified peaks were present outside the 3′-UTR of annotated genes. While 
altering the ad hoc definitions of 5′- and 3′-UTR to be more inclusive of coding 
regions may capture more of these peaks, such definitions may vary across diverse 
organisms and ultimately remove biologically relevant sites from analysis based on 
arbitrary constraints. Given the likely biological implications of 3′-seq signal inside of 
gene coding regions and other genomic regions, and the mixed accuracy of available 
annotations, it is important to ensure that 3′-end data is comprehensively assessed in 
annotation agnostic ways.

While providing a cohesive and statistically grounded approach to 3′-seq analysis, 
PIPETS is also designed to be adjustable to account for differences between data sets. 
We invite users to analyze their data with different strictness levels of PIPETS to iden-
tify a global threshold that they are comfortable assigning biological significance to. 
In the case of data with low total read depth, we recommend running PIPETS with a 
lax strictness (increasing threshAdjust) to ensure that low read coverage values are not 
ignored. Conversely, data with high total read depth should be analyzed with a more 
strict (decreasing threshAdjust) version of PIPETS. In both circumstances, the ideal 
outcome is the identification of all large read coverage positions while also ensuring 
that low read coverage positions that derive from biologically significant events are not 
missed. However, even with the best possible set of parameters, PIPETS will likely fail to 
identify some biologically relevant 3′ sites or under analyze certain proportions of the 
data. However, unlike previous 3′-seq analysis approaches, PIPETS does not arbitrarily 
exclude annotated coding regions from analysis, allowing users to fully utilize their data 
to inform biological conclusions.

In conclusion, PIPETS provides a novel, easily accessible platform with which to 
explore 3′-seq data from different organisms for the entire field. Even with compre-
hensive data sets and annotations from well-studied model organisms like E. coli and B. 
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subtilis, there is still a fundamental lack of study across data sets from different species. 
As there are no genome wide-ground truth data from orthogonal methods available, it 
is difficult to assess the validity of 3′-seq data generally. However, with its statistically 
informed significance measures, PIPETS is able to more confidentially parse signal from 
noise in 3′-seq data, and identify potentially biologically significant results in genome 
regions that have previously been un-analyzed. Furthermore, the parameterization of 
PIPETS enables users to explore their data, potentially adding whatever post-process-
ing filters they see fit, while at the same time providing a common framework that can 
applied across data sets of diverse sizes from diverse organisms.
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