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Background
The binding of drugs to targets constitutes the foundation for achieving therapeutic effi-
cacy [1], determining whether drugs can effectively modulate physiological functions 
to treat diseases. A thorough understanding of the interaction mechanisms between 
drugs and targets is a challenging issue crucial for drug design and development [2]. The 
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strength of interaction between drugs and targets determines the effectiveness of drugs, 
which can be assessed by measuring binding affinity. This is typically measured by dis-
sociation constant (Kd) , inhibition constant (Ki) , or half-maximal inhibitory concentra-
tion (IC50) [3]. Utilizing experimentally determined drug–target binding affinity data 
to learn the interaction mechanisms between drugs and targets can guide the develop-
ment of drug discovery. The most dependable approach to ascertain binding affinity is 
through wet lab experimental measurements. Within the realm of biology, two experi-
mental methodologies employed for quantifying binding affinity are protein microarray 
technology [4] and affinity chromatography [5]. To delineate effective and safe drugs tar-
geting specific proteins, thousands of compounds must undergo testing [6]. It is usu-
ally carried out through high-throughput screening in vitro experiments [7]. Due to the 
vast number of drug compounds [8] and protein targets [9], some with unknown struc-
tures [10], and the dynamic conformational changes upon their binding [11, 12], wet-lab 
experiments are time-consuming and resource-intensive.

With the advancement of computer technology, researchers have begun to employ 
computers to predict the interaction between drugs and targets, utilizing docking meth-
ods [13] to simulate the binding process of drugs and targets. Computational drug–tar-
get affinity (DTA) prediction methods can be categorized into structure-based methods, 
ligand-based methods, and hybrid methods [14]. AI has become increasingly popular in 
predicting DTA. In recent years, researchers have developed various AI methods [15] 
for DTA prediction. These methods can handle large amounts of biological and chemi-
cal data, automatically learning useful features to enhance prediction accuracy and 
efficiency. GraphDTA [16] introduced the paradigm of representing drugs as graphs 
and leveraged Graph Neural Networks (GNNs) to predict DTA. Comparative analysis 
against conventional methodologies and alternative deep learning approaches reveals 
the superior predictive efficacy of GNNs. MSGNN-DTA [17] leverages a fused multi-
scale topological feature approach based on GNNs, incorporating a gated skip-connec-
tion mechanism during feature learning to fuse multi-scale topological features, thereby 
yielding information-rich representations of drugs and proteins. This method entails the 
construction of drug atom graphs, motif graphs, and weighted protein graphs to com-
prehensively extract topological information.

Since its inception, transformer [18] has been widely applied in the field of deep learn-
ing. Its ability to capture latent relationships between sequences has rendered it remark-
ably effective in DTA prediction tasks. TransformerCPI [19], a novel transformer neural 
network, introduced a more rigorous label reversal experiment. It can be deconvolved 
to highlight important interacting regions of protein sequences and compound atoms. 
The attention mechanism demonstrated its immense potential in predictive tasks within 
HyperAttentionDTI [20]. It proposed an end-to-end bio-inspired model based on the 
convolutional neural network (CNN) and attention mechanism. Deep CNNs were used 
to learn the feature matrices of drugs and proteins. To model complex non-covalent 
inter-molecular interactions among atoms and amino acids, this study utilized the atten-
tion mechanism on the feature matrices and assigned an attention vector to each atom 
or amino acid.

Although current DTA prediction methods have their respective advantages, many 
still face several challenges, including: (i) Existing methods mostly focus on the 
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information from molecular graphs and Morgan fingerprints, disregarding the rich 
information concealed in other modalities. As a result, they often fail to acquire the 
deep chemical semantic features of drug molecules [21]. Morgan fingerprints primar-
ily concentrate on the local environments within a certain radius of drug molecules 
[21] (the atomic number, the degree of the atom, the formal charge, and the chemi-
cal bonds attached to the atom), overlooking the nuanced features of substructures 
within other ranges. (ii) Moreover, different features of drugs contribute differently to 
DTA prediction tasks, and many existing linear fusion methods may not fully exploit 
the potential of features from each modality [22]. (iii) In fact, during the binding 
process, the conformations of both drugs molecules [11] and targets [12] continu-
ally change, which means that the interaction process between them during fusion is 
highly complex. However, many current methods utilize interaction modules that are 
too simplistic to fully capture the mutual interactions between the two [23].

To mitigate these limitations, we propose a method called MTAF–DTA, which is 
a nested fusion network based on multi-type attention mechanisms, and it utilizes 
multi-modal features of drugs for DTA prediction. We extracted the Avalon finger-
print, Morgan fingerprint, and molecular graph features of drugs to enrich drug 
feature information. In drug-related tasks, the combined use of Morgan molecular fin-
gerprints and Avalon molecular fingerprints often demonstrates greater efficacy than 
their individual use [24], and we get 200 molecular properties, e.g. number of rings, 
molecular weight, etc. [24]. For the three types of drug information obtained, we 
designed a drug feature fusion module based on the attention mechanism to update 
their respective contribution weights. Then we obtain the final drug representation, 
thus enhancing the capability to capture relevant information regarding drug efficacy. 
We designed an interaction block SAB, and it involves three times fusion operations 
utilizing attention mechanisms to integrate the interactions of drug and target infor-
mation. MTAF–DTA has shown commendable performance on benchmark datasets, 
comparable to or even surpassing other baseline models. In particular, it attained the 
best CI and MSE score on the Davis dataset under the Novel-protein data partition-
ing scheme, outperforming the SOTA method by 1.1% and 9.2%, respectively. This 
demonstrates its effectiveness in enhancing drug discovery for novel targets. Simulta-
neously, ablation experiments confirm the effectiveness of each component.

In summary, the main contributions of this study are summarized as follows:

• We introduced the Avalon molecular fingerprint and integrated it with Morgan 
fingerprints and molecular graph to capture overlooked chemical semantic infor-
mation. To the best of our knowledge, MTAF–DTA is the first method to use an 
attention mechanism to map useful drug features from different modalities into 
the uniform representation space, thus generating an informative drug representa-
tion.

• To further capture the interactions between drugs and targets, we designed an 
interaction module named as Spiral-Attention Block (SAB), based on multi-type 
attention mechanisms. This module better simulates the interaction processes 
between drugs and target proteins.
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• Our results show the superior predictive capability of MTAF–DTA, with CI and 
MSE metrics showing respective improvements of 1.1% and 9.2% over the SOTA 
method in the Davis novel target settings.

Methods
We frame the prediction of DTA as a regression task, utilizing drug simplified molecular 
input line entry system (SMILES) sequences Sd and protein sequences St as the input 
to predict the affinity score for a given drug–target pair. This work aims to determine 
the binding strength between drugs and target proteins, thereby assisting practical tasks 
such as drug discovery. Figure  1 shows the overall framework of MTAF–DTA, which 
consists of four main parts: drug representation module, protein representation module, 
drug–target feature fusion module, and prediction module.

In the drug representation module, we extract and process three types of features for 
the drugs and perform feature fusion based on an attention mechanism. Within the pro-
tein representation module, an embedding layer maps the amino acid sequences into 
representation matrices, and then we utilize CNN for feature extraction. These repre-
sentations of drug and target are then fed into the SAB part, which serves as the drug–
target feature fusion module. It is employed to simulate the drug–target interaction 
process and depict the interaction information between them. By inputting the interac-
tion information into the prediction module, the affinity scores are derived. Additionally, 
we conducted preprocessing of the dataset before training, as mentioned in Section 3.1.

Drug representation module

Drug feature extraction

To address the issue of information loss in drug molecules and enhance the feature rep-
resentation capability of drugs, we extracted and integrated multiple drug features to 
obtain a more comprehensive representation of drugs. Whereas the majority of current 

Fig. 1 Framework of the proposed MTAF–DTA approach
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DTA methods utilize either molecular graph information or integrate it with Morgan 
fingerprint [also called extended-connectivity fingerprint(ECFP)] [25] as drug represen-
tations, we further augmented this by incorporating Avalon fingerprint [26] features. 
Ablation experiments demonstrate that this addition contributes to enhancing the pre-
dictive accuracy of the model.

• The Avalon fingerprint is derived from the Avalon Toolkit [27]. It is characterized by 
its ability to capture geometric and directional information within molecules, which 
is crucial for depicting molecular shape and spatial conformation.

• The Morgan fingerprint, constructed based on the Morgan algorithm [28], generates 
bit-vector representations by considering the local environment of molecules, which 
are used to describe molecular structure and similarity. The radius parameter deter-
mines the range of atomic neighbors considered when constructing the fingerprints.

• The drug’s SMILES input is preprocessed using the RDkit tool [29] to generate a 
graph with node features and an adjacency matrix. Then the molecular graph feature 
is extracted by GNN and utilizes residual connections [30, 31] between layers to pre-
vent information loss. The features of every vertices are acquired through iterative 
aggregation and propagation of features from neighboring vertices. Eq. (1) shows the 
message-passing phase: 

 where y(k)i ǫRm represents the feature vector of vertex i at time step k, Fk is a vertex 
update function, N(i) is the set of neighboring vertices of vertex i, and ω is a learnable 
parameter. The feature of vertex i updates at the next time step. The entire graph’s 
feature vector is calculated as Eq. (2). 

 where V represents the set of vertices in the graph.
 Inspired by previous work [31], We implemented a technique of random subgraph 
removal for data augmentation. We randomly select an atom in the drug molecular 
graph as the initial node. Subsequently, this node is removed, along with its neighbor-
ing nodes recursively, until a predetermined proportion of the subgraph is eliminated 
(0.2 for the Davis dataset and 0.1 for the KIBA dataset) while maintaining the affinity 
scores of drug–target pairs and the Morgan and Avalon fingerprints of drug molecules 
unchanged. During the training phase, multiple new pairs are generated, whereas no 
subgraph removal operation is conducted during the testing phase.

Drug feature fusion module

The information extracted from drug molecules, including Avalon fingerprint FAǫRd , 
Morgan fingerprint FMǫRd , and molecular graph information FGǫRd , contains different 
information in DTA prediction tasks. To compute the contribution weights of different 
drug features and fuse them, we designed a feature fusion module based on the attention 
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mechanism. We first integrated FG and FM , then subsequently incorporated FA into the 
fusion result of the two. This module generates the final drug representation that inte-
grates the effective information from these three types of features.

• We fused FG and FM initially. They are represented in the same dimension (denoted 
as d). The attention weight WMG can be calculated as follows: 

 where τ denotes a linear layer, B represents the Batch Normalization, δ denotes the 
Rectified Linear Unit (ReLU), and σ represents the sigmoid function. ◦ takes the out-
put of the right function as the input of the left function, which means operations in 
the formula are executed from right to left sequentially. Then, the first fusion can be 
computed as follows: 

To fully comprehend and efficiently process information about drugs, we designed a 
model equipped with the ability to learn and integrate multi-modal features. Finally, we 
incorporate FA into this experiment to achieve complementarity between various het-
erogeneous information.

• We calculate new fusion weights WAMG according to the above process using FMG as 
the new input, and generate a new output after fusion: 

 The output FAMG after two rounds of fusion serves as the final output of the drug 
representation module, and will participate in the subsequent fusion operation with 
protein representations.

Compared to other methods, We further address the information loss problem of drugs. 
Mapping useful drug features from different modalities into the uniform representation 
space allows us to generate an informative drug representation, thereby further enhanc-
ing the accuracy of DTA prediction.

Protein representation module

Proteins are represented by amino acid sequences, with each amino acid being denoted 
by a single uppercase letter, forming a string of uppercase letters. To represent them in 
a form that deep learning models can process, integer variables are used to encode dif-
ferent amino acids for feature representation. We define this transformation as follows: 
Let convert = (a → i; aǫA, iǫI) , where A is the set of amino acids, for example, “F” rep-
resents phenylalanine. And I is an integer set ranging from 1 to 25. Each amino acid 
sequence is mapped to an integer sequence of uniform length up to 1200. Sequences 
exceeding this length are truncated, whereas those shorter are padded with zeros. Sub-
sequently, an embedding layer maps each integer in the sequence to a 128-dimensional 
vector, as shown in Fig. 2.

(3)
WMG = Fusion Block(FM + FG)

= σ ◦ B ◦ τ ◦ δ ◦ B ◦ τ (FM + FG)

(4)FMG = FG ·WMG + FM · (1−WMG)

(5)WAMG = Fusion Block(FMG)

(6)FAMG = FMG ·WAMG + FA · (1−WAMG)
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This yields the representation matrix MtǫR
N×E of the amino acid sequence, where 

N represents the maximum length of the amino acid sequence, and E represents the 
embedding size of the amino acid. It is then passed into the protein representation mod-
ule, which consists of three layers of 1D-CNN. The feature processing performed at each 
layer can be represented as:

where R(i)
t  is the i-th hidden protein representation. R(0)

t = Mt , and C denotes a CNN 
layer.

Drug–target feature fusion module

To better capture the interaction between drug molecules and target proteins, and 
to minimize errors resulting from insufficient fusion, we devised a drug–target fea-
ture fusion module named SAB. It is based on attention mechanisms, which enables 
the model to concentrate on the most informative features in the interaction process 
between drugs and targets. The SAB consists of three components:

• First, the drug feature FD and protein feature FT are inputted into the Fusion Module 
to get the fusion feature FDT . The formulas are as follows: 

• Next, the drug feature FD and protein feature FT are passed into a cross-attention 
module. In the cross-attention mechanism, for each input sequence, similarity scores 
with other sequences are calculated, and these scores are used to weightedly average 

(7)R
(i+1)
t = B ◦ δ ◦ C(R

(i)
t )

(8)W1 = Fusion Block(FD + FT )

(9)Ffusion1 = FD ·W1 + FT · (1−W1)

(10)W2 = Fusion Block(Ffusion1)

(11)FDT = FD ·W2 + FT · (1−W2)

Fig. 2 Generation process of the protein representation matrix
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the representations of the other sequences, thereby obtaining a cross-modal context 
representation Fcross1 for the current sequence: 

 where S in Eq. (14) is a Softmax function outputting attention weights. C and d are 
the embedding dimensions and number of heads, respectively. The obtained output 
is added to the drug representation and then passed through a self-attention block, 
then we get Fself  : 

• Finally, the two aforementioned outputs are reintroduced into the cross-attention 
mechanism module for final fusion. The operation can be represented as follows, 
which represents the final fusion result of the drug–target features: 

As shown in Fig. 3, the self-attention mechanism differs from the cross-attention mecha-
nism in that it only takes a single-source input.

(12)Q = FT

(13)K = V = FD

(14)attention_score = S

(

QKT

√

C/d

)

(15)
Fcross = Cross Attention(Q,K ,V )

= attention_score · V

(16)Q = K = V = Fcross + FD

(17)
Fself = Self Attention(Q,K ,V )

= attention_score · V

(18)Fd⇔t = Cross Attention(Fself , FDT , FDT )

Fig. 3 Demonstrations of self-attention and cross-attention mechanism
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In conclusion, the comprehensive fusion of drug–target features in our experiment 
partially simulates the process of drug–target binding, thereby enhancing the prediction 
accuracy of the model.

Drug–target affinity prediction

The fusion result of drug and target features Fd⇔t leads to the following equation for the 
prediction process:

ŷ represents the predicted affinity score of the drug–target pair. “3” denotes that the pro-
cess within the parentheses is repeated three times.

The overall DTA prediction model is trained by minimizing the following Mean 
Squared Error (MSE) loss function, which is used to quantify the disparity between pre-
dicted values and true values:

where yi is the true affinity score of i-th drug–target pair, and N is the sample size. A 
smaller MSE indicates a closer alignment between predicted and true values, which is 
indicative of enhanced model performance.

Algorithm 1 provides a detailed description of the algorithm for training the proposed 
MTAF–DTA model. 

Algorithm 1 Algorithm Description for Training MTAF–DTA

Results
Dataset

We benchmarked performance on two commonly used datasets: Davis [32] and KIBA 
[33]. Additionally, we expanded our investigation by model downstream studies on four 
datasets, including BindingDB [34] and Metz [35], in addition to the aforementioned 
datasets. Furthermore, we conducted a case study on the DrugBank [36]. Detailed infor-
mation regarding each task will be presented in their respective sections. The detailed 
information of Davis and KIBA utilized in the regression tasks is as follows:

(19)ŷ = (σ ◦ B ◦ τ◦)3Fd⇔t

(20)LossMSE =
1

N

N
∑

i=1

(ŷi − yi)
2
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• The Davis dataset, created by Davis et al. comprises 68 compounds along with their 
binding affinity data for 442 protein targets. Each compound has experimentally 
determined dissociation constant (Kd) values with their respective targets. This value 
reflects the strength of binding between the drug molecule and the target protein. 
The Kd values obtained in the experiment are transformed as follow: 

• Tang et al. introduced a model-based integration approach called KIBA to generate 
an integrated drugâ€“target bioactivity matrix. The KIBA dataset comprises approxi-
mately 2111 compounds along with binding affinity data for 229 targets. It uses the 
KIBA score to represent the interaction between the drug and the target protein.

We discovered that the datasets suffer from data duplication problems, wherein iden-
tical drug–target pairs are associated with different affinity scores. It may affect the 
training process, thereby reducing the predictive performance of the model. Table 1 
shows the statistical information of the two datasets.

Redundancy represents the quantity of duplicated drug–target pairs within the 
dataset, and the Redundancy rate is computed as follow:

where N represents the total number of drug–target pairs of the dataset.
This study implemented distinct preprocessing strategies for the two datasets based 

on the proportion of duplicated drug–target pairs within the entire dataset. As for 
Davis, we averaged the affinity scores of all duplicate drug–target pairs to obtain the 
final value used in training. For the KIBA dataset, we removed all duplicate pairs. The 
Davis dataset exhibits a high redundancy rate of 18.3% , thus implementing a dedu-
plication measure would impact the overall distribution of the dataset. As shown in 
Fig. 4, our operations do not change the overall distribution of the datasets.

Randomly splitting datasets (where drugs and targets in the test set have already 
appeared in the training set) may cause information leakage and make the results 
overly optimistic [37]. From an application perspective, most proteins or drugs do not 
appear in the training [38]. In this study, we followed the given methodology to divide 
the dataset, which was implemented by the open-source software DeepPurpose [39]:

(21)pKd = − log10(Kd/10
9)

(22)Redundancy rate =
Redundancy

N

Table 1 Statistical information of benchmark datasets and that of processed datasets

Dataset Drug Target Affinity Redundancy Redundancy rate

Davis 68 442 30,056 5508 18.3%

KIBA 2111 229 118,254 1070 0.9%

Davis-mean 68 379 25,772 − −
KIBA-nofalse 2052 229 117,184 − −
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• Novel-protein: There is no overlap between the proteins in the test set and those in the 
training set. Additionally, all drugs will be present in both sets.

• Novel-drug: The drugs used in the test set do not overlap with those used in the training 
set, whereas all proteins are present in both the test and training sets.

• Novel-pair: There is no intersection between drugs and proteins in either the test or 
training sets.

 Each of the three data partitioning methods above addresses different research objectives. 
The model trained using the Novel-protein partitioning approach facilitates drug discov-
ery for novel proteins. Models trained using the Novel-drug partitioning method are useful 
for identifying interacting proteins for newly developed drug compounds. The Novel-pair 
approach provides valuable information on the binding of novel proteins to newly devel-
oped drugs.

Performance evaluation metrics

To evaluate the performance of various models, our study employed regression evaluation 
metrics MSE loss, and the Concordance Index (CI) [40]. CI is defined as the proportion of 
label pairs for which the predicted outcome is consistent with the actual outcome. The for-
mula for CI is as follows:

(23)CI =
1

Z

∑

di>dj

h(bi − bj)

Fig. 4 Comparison of data distribution before and after processing the Davis and KIBA dataset. a Distribution 
of SMILES sequence length. b Distribution of amino acid sequence length. c Distribution of affinity score for 
Davis dataset. (d) Distribution of affinity score for KIBA dataset
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where di and dj are distinct true label values, with di > dj , and bi and bj are the corre-
sponding predicted values. If the relative ordering of two predicted values matches that 
of the true values, the indicator function h(x) returns a value of 1. It returns 0.5 or 0 if 
they are equal or opposite. In Eq. (23), Z represents the number of ordered pairs of affin-
ity label values in the dataset. CI value ranges from 0 to 1. A CI of 1 indicates that all 
ordering of affinity scores is correctly predicted, whereas a CI of 0 signifies that all order-
ing is incorrectly predicted. Higher CI values imply stronger predictive capability.

Settings of hyperparameters and experimental environment

All experiments in this study were conducted on four NVIDIA RTX A6000 (48G) GPUs. 
The implementation was carried out using Python version 3.8.0 (default, Nov 6, 2019, 
21:49:08) and PyTorch [41] version 2.0.1, with training facilitated by the Adam optimizer 
[42]. Additionally, we employed the Cosine Annealing scheduler (CosineLRScheduler) 
encapsulated in the timm library, with parameter configurations detailed in Table  2. 
Batch sizes for each dataset were determined within the range: [32, 64, 128, 256], with 
a batch size of 64 set for the Davis dataset and 128 for the KIBA dataset. The training 
epochs were set to 3000, with early stopping applied at 500 epochs.

Performance comparison with baseline methods

Baseline methods

This section presents a comparative analysis of the experimental results between 
MTAF–DTA and baseline methods on benchmark datasets Davis and KIBA. To validate 
the effectiveness of the proposed MTAF–DTA model, we compared it against the fol-
lowing baseline methods: Support Vector Machine (SVM), Random Forest (RF); Deep-
DTA [3]; TransformerCPI [19]; MGraphDTA [43]; ColdDTA [31]; AttentionMGT-DTA 
[44].

However, as shown in Table  3, these methods insufficiently extract and fuse drug 
features, leading to drug information loss, which negatively impacts model predic-
tion outcomes. Furthermore, approaches relying on linear concatenation for drug–tar-
get integration lack a simulation of the fusion process between them. In response to 
these limitations, MTAF–DTA incorporates enhanced drug representation fusion and 
employs a multi-type attention mechanism for drug–target integration, effectively miti-
gating some of these issues. In comparison with the method that leverages AlphaFold2 

(24)h(x) =







1, if x > 0
0.5, if x = 0
0, if x < 0

Table 2 Values of hyperparameters for CosineLRScheduler

Hyperparameter Value

t_initial 500

lr_min 1e−5

warmup_t 20

warmup_lr_init 3e−4



Page 13 of 21Sun et al. BMC Bioinformatics          (2024) 25:375  

for protein information extraction, MTAF–DTA still demonstrates superior competi-
tiveness. Under the cold-start partitioning of the Davis dataset, our CI and MSE met-
rics consistently surpass that of AttentionMGT-DTA. Specifically, we expanded the 
types of drug features to include molecular graph information, Morgan fingerprints, and 
Avalon fingerprints, thereby extracting a richer set of chemical semantic information 
compared to existing methods. Furthermore, we employed an attention-based fusion 
module to map the various modalities of drug features into a uniform representation 
space, resulting in the final drug representation. This operation assigns different atten-
tion weights to the diverse modal features, maximizing the exploitation of their respec-
tive contributions.

Performance comparison

The superior performance of MTAF–DTA underscores its effectiveness in the task of 
DTA prediction. We employed a five-fold cross-validation method, in which all data 
were evenly partitioned into five parts, with one part used as the test set and the remain-
ing four parts used for training. The results for each evaluation metric were derived as 
the average of five cross-validation iterations. To ensure fairness, we trained baseline 
models using the optimal parameter settings determined by the baseline method or 
directly utilized results reported in their published papers. This approach was adopted 
to mitigate potential errors that may arise during the experimental execution. However, 
differences in dataset partitioning randomness and variations in experimental machine 
performance may lead to discrepancies between our experimental outcomes and those 
reported in other studies.

Supplementary Table  1, Additional file  1 illustrates the comparison between dif-
ferent baseline methods and MTAF–DTA on the Davis dataset. The results indicate 
that MTAF–DTA achieves the best prediction performance in terms of the CI met-
ric across three distinct data partitioning schemes: Novel-drug, Novel-protein, and 
Novel-pair. Specifically, under the Novel-protein partitioning scheme, MTAF–DTA 

Table 3 Comparison of MTAF–DTA with baseline methods

Methods Number-of drug 
feature(s)

Drug 
feature 
fusion

Target feature 
type

Target feature 
extractor

Drug–target 
feature fusion

SVM 1 (SMILES) – Sequence – Kernel methods

RF 1 (SMILES) – Sequence – DecisionTree 
ensemble learning

DeepDTA 1 (SMILES) – Sequence CNN Concatenate

TramsformerCPI 1 (SMILES) – Sequence CNN+GLU Transformer 
Decoder

coldDTA 1 (Graph) – Sequence CNN Single-type atten-
tion

MGraphDTA 1 (Graph) – Sequence MCNN Concatenate

AttentionMGT-
DTA

1 (Graph) – Protein Pocket 
Graph

ESM2 GraphTrans-
former

Einsum

MTAF–DTA 3 (Graph, Morgan, 
Avalon)

Attention 
mecha-
nism 
fusion

Sequence CNN Multi-type atten-
tion
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outperforms the SOTA method by 1.1% in CI and reduces the MSE by 9.2%, yielding 
values of 0.840 and 0.330, respectively. These results signify that our designed drug 
feature extraction and fusion modules bolster the representation capability of drug 
features, effectively enhancing the predictive capacity for the affinity between known 
drugs and novel protein targets.

On the KIBA dataset, as shown in Supplementary Table 2, Additional file 1, we com-
pared MTAF–DTA with SVM, RF, DeepDTA, TransformerCPI, and MGraphDTA. 
Traditional machine learning method random forest achieved the best performance 
on the Novel-drug partitioning, with CI and MSE reaching 0.785 and 0.348, respec-
tively, indicating that machine learning methods still possess competitive capability 
in DTA prediction tasks [45]. Under this partitioning scheme, MTAF–DTA demon-
strated improvements compared to other methods. Specifically, it outperformed SVM 
by 5.4%, DeepDTA by 6.4%, TransformerCPI by 7.9%, and MGraphDTA by 1.6% in 
terms of CI. Notably, our proposed method continued to achieve the best perfor-
mance on the Novel-protein partitioning. Here, the CI reached 0.769, surpassing the 
values of other methods: SVM (0.596), RF (0.647), DeepDTA (0.728), Transformer-
CPI (0.627), and MGraphDTA (0.708), with respective improvements of 17.3%, 12.2%, 
4.1%, 14.2%, and 6.1% in CI.

To visualize the performance improvement of MTAF–DTA, we plotted the CI 
and MSE from Supplementary Table 1, Additional file 1 and Supplementary Table 2, 
Additional file  1, as shown in Fig.  5. It is evident that our method exhibits signifi-
cant advantages. MTAF–DTA has achieved notable performance improvement on the 
Novel-protein partitioning, attributed to the extraction and integration of richer drug 
features. Additionally, the SAB part further enhanced the prediction performance of 
the model.

Performance of the model on downstream tasks

The insufficient simulation of the drug–target binding process is indeed a chal-
lenge faced by current AI methods, and this is one of the primary motivations for 
our research. Given the extensive exploration of drug features in our method and the 
demonstrated potential of our research in identifying potentially effective drugs for 
novel proteins in the regression tasks, this section primarily focuses on experimental 
validation under the Novel-protein partitioning scheme.

We conducted our study on the BindingDB, Metz, Davis, and KIBA datasets. 
Considering the different distributions of affinity values in each dataset, we applied 

Fig. 5 Visual comparison of our results on two datasets. a, b On Davis. c, d On KIBA
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different thresholds to classify them into strong and weak bindings. To balance the 
datasets, we undersampled 16,699 entries from the BindingDB dataset. For the Davis 
dataset, we either undersampled 1037 drug–target pairs with affinity values of 5 or 
completely removed them. The statistics of each dataset are presented in Table 4.

We visualized the normalized confusion matrices obtained after MTAF–DTA’s pre-
diction. Figure 6 presents the results of BindingDB-undersampling, Metz, Davis-drop5, 
Davis-undersampling, and KIBA under five-fold cross-validation. It is evident that the 
majority of molecules can be accurately predicted across all datasets. And our approach 
demonstrates a relatively low probability of predicting false positives. For the undersam-
pled BindingDB dataset, our method achieved an average false positive rate of 19.4% 
under five-fold cross-validation, whereas Metz reported 24.4% and KIBA 34% . The bal-
anced Davis dataset, which excluded affinity values of 5, exhibited a false positive rate of 

Table 4 Dataset statistics

Dataset Affinity Threshold Weak binding Strong binding

BindingDB-undersampling 44,596 6 22,298 22,298

Metz 35,307 6 15,549 19,758

Davis-drop5 7429 6.244125 3957 3472

Davis-undersampling 7918 6 3959 3959

KIBA 117,184 11.6 64,479 52,705

Fig. 6 Normalized confusion matrix visualization under five-fold cross-validation (W: “Weak Binding”; S: 
“Strong Binding”). a BindingDB-undersampling. b Metz. c Davis-drop5. d Davis-undersampling. e KIBA
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27.6% , while the undersampled dataset showed a false positive rate of 25.2% . In conclu-
sion, MTAF–DTA performs well in predicting DTA for potential drugs targeting novel 
proteins.

Comparison and analysis of data processing

Our experiments, like most studies, were conducted on public datasets. However, unlike 
previous approaches, we addressed the problem of the dataset containing different 
affinity scores for the same drug–target pairs. To justify this procedure, we conducted 
a comparative experiment between the processed and unprocessed datasets. All other 
hyperparameters and experimental conditions remained consistent throughout the 
study.

Figure  7a illustrates a significant optimization in MSE following data processing, 
affirming that the presence of diverse affinity scores indeed influences the model train-
ing process, potentially diminishing the predictive capability of the model. The CI metric 
results in Fig. 7b further validate this observation, showing enhancements in two par-
titioning schemes for the processed dataset (Novel-protein: 0.840, Novel-drug: 0.726, 
Novel-pair: 0.679) compared to the unprocessed data (Novel-protein: 0.836, Novel-drug: 
0.741, Novel-pair: 0.673). Based on the comprehensive experimental results, we ulti-
mately retained the data preprocessing step. It is noteworthy that the results obtained 
from training on the raw data still exhibit advantages in comparison to baseline meth-
ods, demonstrating the superiority of MTAF–DTA in DTA prediction tasks.

Ablation study

To validate the effectiveness of the components proposed in our method, we conducted 
the following ablation experiments on the Davis dataset. Specifically, we examined the 
impact of drug–target fusion methods, drug feature fusion methods, and the quantity 
and types of drug features on the DTA prediction task. The procedures are as follows:

• AMG − LdpSAB : Replacing the multi-modal fusion of drug and protein features with 
a simple linear operation.

• LAMG − SAB : Replacing the complex fusion method in our approach with a simple 
linear summation of drug features.

Fig. 7 The comparison of metrics before and after data processing. a MSE results. b CI results
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• MG − SAB : Reducing the fusion of drug features from molecular graph features, 
Morgan fingerprint, and Avalon fingerprint to a fusion of molecular graph features 
and Morgan fingerprint, employing the same fusion method as the full MTAF–DTA 
model which was denoted as baseline.

 The experimental results, as depicted in Supplementary Table  3, Additional file  1, 
demonstrate the effectiveness of the aforementioned modules in the DTA predic-
tion task. Under the Novel-drug partitioning scheme, selecting only Morgan finger-
print and molecular graph features as drug features resulted in a 1.5% decrease in 
CI. This result validates the effectiveness of our approach in selecting drug features 
for the DTA prediction task. Within the Novel-protein partitioning scheme, the 
AMG − LdpSAB operation led to a 1.3% decrease in the CI metric. In the LAMG − SAB 
ablation experiment, only the MSE metric showed a 0.5% improvement under the 
Novel-pair partitioning scheme, whereas the CI metric decreased by 1.8%, indicat-
ing the crucial importance of both drug feature fusion and drug–target feature fusion 
across the entire DTA prediction task.

Case study

In this section, we present case studies focusing on specific drugs and proteins. We 
randomly selected two proteins from DrugBank and a subset of drugs associated with 
each protein, as well as two drugs and a subset of proteins associated with each drug, 
to constitute our test set.

As shown in Tables 5 and 6, MTAF–DTA achieved a prediction accuracy of 100% 
for proteins related to Moxisylyte, and the prediction accuracy for Lindane reached 
90%. For the proteins lg gamma-1 chain C region and Microtubule-associated protein 
tau (MAPT), we achieved prediction accuracies of 90% and 80%, respectively. These 
experimental results effectively demonstrate the capability of MTAF–DTA to screen 
relevant drugs for specific target proteins and also validate its superior ability in DTA 
prediction tasks.

Table 5 Prediction results of drugs moxisylyte and lindane

Drug True Prediction Drug True Prediction

Moxisylyte DB09205 0 0 Lindane DB00431 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 1 1 1

1 1 1 1

1 1 1 0

1 1 1 1

1 1 1 1

Accuracy 100% Accuracy 90%
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Discussion
Despite the significant improvement in predictive performance achieved by MTAF–
DTA, it still possesses certain limitations. The improvement in predictive performance 
of our method on Novel-drug and Novel-pair partitioning is not as pronounced as that 
on Novel-protein partitioning, suggesting a substantial room for improvement in iden-
tifying potential proteins that may interact with new drugs. This could be attributed to 
our sufficiently comprehensive extraction of drug information, whereas enhancing the 
extraction of protein information, such as augmenting the extraction of protein 3D 
structural information, represents a direction for our future improvements. Indeed, the 
emergence of novel drugs and proteins does not adhere to specific patterns, presenting a 
new challenge in accurately predicting DTA with limited data. This also implies that the 
iterative updates of datasets will accompany the development of DTA prediction tasks. 
Furthermore, the prediction of DTA may even necessitate the application of few-shot 
learning methods, such as meta-learning. These aspects warrant further investigation 
and consideration in future research endeavors.

Conclusion
In this paper, we introduce MTAF–DTA, a model developed in response to the limita-
tions of current machine learning methods used for predicting DTA. MTAF–DTA maps 
useful drug features from different modalities into the uniform representation space to 
generate an informative drug representation, addressing the drug information loss prob-
lem in current methods. Additionally, the SAB fusion strategy of MTAF–DTA improves 
upon existing fusion approaches, effectively capturing the complex relationship between 
drugs and targets. It mitigates the DTA prediction errors caused by conformational 
changes during their binding process. We conducted DTA prediction under cold start 
settings, according to practical application scenarios. Experimental results demonstrate 
that MTAF–DTA achieves SOTA performance in the novel target setting and is com-
petitive or superior to baseline models in both novel drug and novel pair settings. These 
findings showcase that MTAF–DTA effectively enhances the prediction accuracy of 
DTA. Extensive downstream tasks and case studies further substantiate the potential of 

Table 6 Prediction Results of Proteins Ig Gamma-1 Chain C Region and Microtubule-associated 
Protein Tau

Protein True Prediction Protein True Prediction

Ig gamma-1 chain C 
region P01857

0 0 MAPT P10636 0 0

0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

1 1 1 0

1 1 1 1

1 1 1 1

1 0 1 1

1 1 1 1

Accuracy 90% Accuracy 80%
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MTAF–DTA in drug discovery tasks, particularly in identifying potential effective drugs 
for novel disease proteins.
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