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Abstract 

Background:  Interactions between microRNAs and RNA-binding proteins are crucial 
for microRNA-mediated gene regulation and sorting. Despite their significance, 
the molecular mechanisms governing these interactions remain underexplored, 
apart from sequence motifs identified on microRNAs. To date, only a limited number 
of microRNA-binding proteins have been confirmed, typically through labor-intensive 
experimental procedures. Advanced bioinformatics tools are urgently needed to facili-
tate this research.

Methods:  We present DeepMiRBP, a novel hybrid deep learning model specifically 
designed to predict microRNA-binding proteins by modeling molecular interactions. 
This innovation approach is the first to target the direct interactions between small 
RNAs and proteins. DeepMiRBP consists of two main components. The first com-
ponent employs bidirectional long short-term memory (Bi-LSTM) neural networks 
to capture sequential dependencies and context within RNA sequences, attention 
mechanisms to enhance the model’s focus on the most relevant features and trans-
fer learning to apply knowledge gained from a large dataset of RNA-protein binding 
sites to the specific task of predicting microRNA-protein interactions. Cosine similarity 
is applied to assess RNA similarities. The second component utilizes Convolutional 
Neural Networks (CNNs) to process the spatial data inherent in protein structures based 
on Position-Specific Scoring Matrices (PSSM) and contact maps to generate detailed 
and accurate representations of potential microRNA-binding sites and assess protein 
similarities.

Results:  DeepMiRBP achieved a prediction accuracy of 87.4% during training 
and 85.4% using testing, with an F score of 0.860. Additionally, we validated our 
method using three case studies, focusing on microRNAs such as miR-451, -19b, -23a, 
-21, -223, and -let-7d. DeepMiRBP successfully predicted known miRNA interactions 
with recently discovered RNA-binding proteins, including AGO, YBX1, and FXR2, identi-
fied in various exosomes.

Conclusions:  Our proposed DeepMiRBP strategy represents the first of its kind 
designed for microRNA-protein interaction prediction. Its promising performance 
underscores the model’s potential to uncover novel interactions critical for small 
RNA sorting and packaging, as well as to infer new RNA transporter proteins. The 
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methodologies and insights from DeepMiRBP offer a scalable template for future small 
RNA research, from mechanistic discovery to modeling disease-related cell-to-cell 
communication, emphasizing its adaptability and potential for developing novel small 
RNA-centric therapeutic interventions and personalized medicine.

Keywords:  MicroRNAs, RNA binding proteins, Interaction prediction, RNA sorting, 
Deep learning

Introduction
RNA-binding proteins (RBPs), with their ability to bind directly to single and double-
stranded RNA molecules, play a central role in RNA processing and various cellular 
activities linked to RNA’s function [7, 10, 26]. Recently, interactions between proteins 
and small non-coding RNAs, specifically microRNAs(miRNAs), have garnered signifi-
cant attention due to their profound impact on gene expression regulation [4]. Mature 
miRNA molecules, approximately 22 nucleotides in length, assemble into the RNA-
induced silencing complex (RISC) comprised of Ago2, TRBP, PACT, and Dicer, and acti-
vate the complex to target messenger RNA (mRNAs) specified by the miRNA, leading to 
mRNA degradation or translational repression [13]. Beyond maintaining cellular home-
ostasis, disruptions in miRNA regulation have been implicated in many diseases, rang-
ing from cancer to cardiovascular and neurological disorders [22].

Recent studies have revealed that miRNA molecules can be selectively incorporated 
into multivesicular bodies (MVBs) and subsequently released as exosomes, known 
as exomiRNAs. This process hints at RNA transporter proteins and specific sequence 
motifs that might play a role in miRNA sorting [16, 23, 27]. The selective packaging and 
dispatching of miRNAs to circulation and their subsequent integration into recipient 
cells coordinate biological processes across different tissues and organs, demonstrat-
ing the precision and complexity of cellular communication [48]. For example, releas-
ing miR-105 in breast cancer exosomes promotes tumor growth in distant tissues like 
the lungs and brain [14, 52]. Understanding miRNA sorting mechanisms has therapeutic 
potential and implications in disease progression, though the exact mechanisms remain 
understudied, beckoning further exploration.

Prior studies have demonstrated that short sequence motifs of miRNA are respon-
sible for its secretion [15, 48]. For instance, bioinformatics analysis has identified con-
served 4-mers among exosomal miRNAs such as [AGU]G[AG]G in human T cells and 
[CGU][UA][GU]G in colon cancer cells [15, 45]. Experiments show that the mutating 
these motif sequences significantly decreased miRNA levels in exosomes versus cells 
compared to the wild type, indicating that exomiR sorting depends on the presence of 
these motifs. Current research has also identified miRNA-binding proteins responsible 
for sorting miRNAs with specific motifs, such as hnRNPA2B1 in human primary T cells 
[48] and Sdpr and Fus in adipocyte cells [16].

To further elucidate the protein-mediated miRNA sorting and packaging beyond 
motif analysis, we need an efficient discovery tool that can enable the systematic study 
of miRNA-protein interactions in an automated and high-throughput manner by lever-
aging the massive amounts of omics data on sequence, structure, and (mi)RNA-protein 
interactome available in the field. The advent of deep learning has revolutionized the pre-
diction landscape of RNA-protein interactions. A slew of models, including DeepBind 
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[1], DeeperBind [17], and models by Zeng et  al. [11], have harnessed the prowess of 
Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) net-
works. Other models, ranging from iDeep [37], iDeepV [38], iDeepE [39], to iDeeps [40], 
and DanQ [21], have showcased the potential of other architectures in capturing intri-
cate sequence and structure motifs, thereby enhancing the precision of RNA-protein 
interaction predictions. While extensive research has been conducted on RNA-binding 
proteins, the specific domain of miRNA-binding proteins is relatively new. Although a 
general beRBP model based on random forests was applied to explore protein binding 
sites on miRNA precursors [9, 51], none of the existing models were designed for small 
RNA analysis. This gap in the research landscape underscores this work’s novelty and 
pioneering nature. Venturing into this nascent domain, we aim to bridge the existing 
knowledge gap and contribute seminal insights into the intricate dynamics of miRNA-
protein interactions.

Although miRNA-protein binding prediction is burgeoning, it is fraught with signifi-
cant challenges, predominantly due to the sparse availability of specialized miRNA-pro-
tein binding datasets. These datasets are crucial for the training, testing, and validation 
of predictive models, and their scarcity could impede the development of reliable and 
accurate prediction algorithms [5]. The complexity of miRNA-protein interactions, 
which exhibit considerable variability across different biological contexts, further com-
plicates the prediction process. In contrast, validated RBP-RNA interactions from 
ENCODE RIP-chip, eCLIP, and iCLIP experiments include many RBP binding sites on 
RNA, including miRNA precursors [31]. To some extent, such data is expected to cap-
ture the intrinsic RNA-protein binding features important for small RNA analysis.

To address these challenges, we introduce DeepMiRBP, a new multimodal deep neural 
network for miRNA-protein Binding prediction, which integrates sequence and struc-
tural information from both (mi)RNA and RBPs. It comprises two main components. 
The first component leverages transfer learning and cosine similarity [46, 50] for effec-
tively predicting RBP candidates by utilizing the available (mi)RNA-protein interactome 
datasets. The second component, after obtaining the RBP candidates, expands these 
candidates by finding new similar proteins based on structural information. Together, 
both parts offer precise predictions of miRNA-protein interactions. Subsequent sections 
will delve into the model’s details and its implications in molecular biology.

Materials and methods
The overall design

DeepmiRBP is designed to predict miRNA-protein interactions and identify new 
miRNA-binding proteins. The architecture is divided into two primary components, as 
illustrated in Fig. 1.

•	 First Component: This component utilizes transfer learning and cosine similarity to 
identify RBP candidates. The transfer learning module includes the source and tar-
get domains for predicting miRNA-protein binding interactions. The source domain 
is trained using RNA sequences (known as RBP binding sites) to identify features 
within the RNA sequences that facilitate RBP binding. Once the source domain is 
adequately trained, the acquired knowledge is transferred to the target domain, 
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which takes miRNA sequences as input. In both domains, embedding layers convert 
the sequences into unique 128-dimensional vectors. Cosine similarity is employed to 
identify RNA representations most similar to the miRNA representation, leading to a 
ranked list of candidate RBPs based on similarity scores.

•	 Second Component: This component processes the Position-Specific Scoring Matrix 
(PSSM) and the protein structure contact map for each RBP candidate identified 
in the first component, using CNNs to encode these matrices. The primary objec-
tive is to compare all RBP candidates with a comprehensive set of proteins to deter-
mine which proteins exhibit the highest similarity to the RBP candidates based on 
sequence and structural information. Cosine similarity is then utilized to evaluate 
the similarity. The resulting output is an n× n matrix, where n denotes the number 
of proteins. Each cell in this matrix represents the similarity between two proteins. 
From this matrix, we derive a ranked list of proteins with a high probability of bind-
ing to the miRNA sequence based on their similarity scores.

The first component provides a comprehensive representation of RBP-RNA interactions 
and RBP recommendations. Subsequently, the second component refines these predic-
tions by incorporating structural information, ensuring a robust and accurate identifica-
tion of miRNA-binding proteins.

To ensure the selection of the optimal model architecture and meticulous hyperpa-
rameter optimization, over 45 different architectures were initially explored, including 
various LSTM, CNN, and hybrid models with attention mechanisms. Key hyperparam-
eters were fine-tuned, including embedding dimensions (32, 64, 128, 256, 512, 1024), 
LSTM units (32, 64, 128, 256, 512, 1024), dropout rates (0.1, 0.2, 0.5), batch sizes (32, 64, 
128), and learning rates (0.001, 0.0001). This thorough optimization ensured the mod-
el’s robustness and high performance across diverse input data types. The choice of 128 
dimensions was also fine-tuned through hyperparameter optimization to achieve opti-
mal performance, which renders a balance between capturing detailed information and 
maintaining computational efficiency. In the following sections, we detail the datasets 
collected, data preprocessing and refinement techniques, embedding representations, 
and the design intricacies of the model architectures.

Fig. 1  The schematic workflow of the DeepMiRBP model. In the first component, the source-domain model 
is trained based on RNA sequences related to known binding sites of different RBPs(RNA-binding proteins). 
After this training phase, the learned parameters are transferred to the target domain using a transfer learning 
approach. The target model is then retrained using sequences of protein-interacting miRNAs as input. A 
cosine similarity measure is applied to identify and rank RBP sequences from the source domain that are most 
similar to the given miRNA, resulting in a ranked list of candidate proteins. The candidate proteins identified 
in the first component undergo further analysis in the second component. Position-Specific Scoring Matrices 
(PSSM) and contact maps are utilized for each candidate protein to perform a more comprehensive similarity 
assessment. This step enhances the understanding of miRNA-protein interactions, thereby improving the 
model’s prediction accuracy
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Data collection and preprocessing

This study’s foundation is underpinned by meticulously curated datasets encompassing 
RNA, protein, and miRNA sequences. Herein, we detail the sources and specifics of the 
data utilized.

•	 RNA Sequences: Our study utilizes a comprehensive dataset of RNA-binding site 
sequences and their corresponding RNA-binding proteins (RBPs). The primary data-
set consists of RNA binding site sequences associated with 154 RBPs, sourced from 
the benchmark dataset used in RBPSuite [41]. Additionally, sequences for 31 RBPs 
were extracted from the dataset employed in iDeepS [40], obtained from ENCODE. 
We further incorporated 65,301 interactions involving 147 RBPs and 1,494 miRNAs, 
downloaded from the EVPsort database [9], and 18,515 AGO-related human miRNA 
and mRNA sequences from the CLASH dataset by Helwak et al. [18]. To enhance 
the robustness of our model, we utilized an extensive dataset comprising 18,380,117 
sequences, of which 8,822,297 contain binding sites, while 9,557,820 do not. Each 
protein file typically contains around 120,000 binding-site sequences, with approxi-
mately 60,000 labeled as positive and 60,000 as unfavorable. This dataset provides a 
substantial foundation for analyzing RNA-protein interactions. The data is further 
divided into two domains: the source domain, containing the broader dataset for 
model training and testing, and the target domain, focused on miRNA sequences, 
which offers a smaller, specialized dataset for investigating miRNA-protein interac-
tions. Details of the source and target domain datasets are summarized in Table 1, 
illustrating the sequence distribution and highlighting the distinction between RNA 
and miRNA datasets.

•	 Protein Sequences and Structures: Protein sequences were primarily derived from the 
UniProt database [47] and the NCBI Protein Database [44]. To augment our research 
with protein structural insights, we extracted the contact map information from 
AlphaFold [43] and ResPRE [28].

The preprocessing of the sequencing-based RNA-RBP binding dataset encompassed 
several stages. Initially, we merged the binding site peak files for each RBP to con-
solidate the data. Regions overlapping with the reference gene were selected using 
the intersect Bed function of bedtools [42]. We extended these regions for gene-
overlapped regions with less than 101 base pairs (bp) downstream and upstream to 
ensure they qualified as positive regions for RBPs. Negative RBP binding regions, 
each 101 bp, were generated using shuffleBed from bedtools. Fasta files for positive 

Table 1  Overview of Source and Target Domain Datasets

Domain Data Positive (Sequence) Negative (Sequence)

Source Training 7,940,067 8,602,038

Testing 882,230 955,782

Target Training 16,665 15,801

Testing 1850 1755
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and negative regions were retrieved using fastaFromBed of bedtools. To maintain a 
balanced dataset, only 60,000 positive and 60,000 negative sites for each RBP were 
retained if the extracted samples exceeded this number; otherwise, all extracted sam-
ples were utilized.

Input representation using embeddings

Different embedding techniques were applied to represent RNA and protein 
sequences, including the following.

•	 RNA Embedding: For RNA sequences of 101 characters, each character is trans-
formed into a unique 128-dimensional vector, resulting in a matrix of size 
101× 128 . To obtain a single embedding for the entire sequence, vectors are 
summed along the columns: 

 miRNA sequences, typically shorter than 25 characters, are padded with zeros to 
match the required input length of 101 characters. Each character is transformed 
into a 128-dimensional vector. For miRNA embedding, we sum only up to the origi-
nal sequence length: 

•	 Position-Specific Scoring Matrix (PSSM) was utilized for a more nuanced repre-
sentation of protein sequences, capturing evolutionary information and sequence 
conservation. Derived from multiple sequence alignments of related proteins, 
PSSMs provide log-odds scores for each amino acid at specific positions. These 
scores indicate the significance of observing a particular amino acid at a specific 
position relative to its expected frequency [2, 19, 20, 25]. The formula for the log-
odds score is: 

•	 Protein Structure Contact Map (PSCM): To incorporate the spatial relationships 
between amino acid residues and the tertiary structure into our model, we utilized 
PSCMs as a two-dimensional matrix representation of the three-dimensional pro-
tein structure. The ResPRE algorithm, a deep learning-based method for predicting 
residue-level contacts [28], was integrated to generate these maps as part of our pipe-
line. Additionally, contact maps predicted from AlphaFold were downloaded. In the 
PSCM, residues are marked as ’1’ if the distance between them falls below a defined 
threshold, typically within 6–8 Ångstroms, indicating they are in contact. Otherwise, 
the matrix cell is marked as ’0’. This approach results in a symmetric matrix represen-
tation of protein structures.

vRNA =

101
∑

i=1

vi

vmiRNA =

Len(miRNA)
∑

i=1

vi

Log-Odds Score (a,i) = log2

(

Frequency of a at position i

Background frequency of a

)
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These embedding techniques play a crucial role in our study, transforming raw sequence 
data into formats more amenable to analysis and interpretation by our deep learning 
models.

Model architecture

Figure 2 shows the detailed architecture of the multimodal deep-learning framework of 
DeepMiRBP. Primary methods are described in the following sections.

First component: transfer learning framework

In a transfer learning framework, the source domain is trained using a large set of RNA 
binding sites known to interact with RBPs. The knowledge acquired from this source 
domain is transferred to the target domain, where miRNA sequences serve as input. The 
supplementary document provides detailed explanations of the architecture, including 
the embedding layer, LSTM, attention mechanisms, and the training process.

Sampling methodology

Following the initial training of the first model component, it was essential to evaluate 
the similarity between RNA-binding proteins (RBPs) and microRNAs (miRNAs) using 
cosine similarity. Due to the vast number of sequences associated with each RBP, com-
puting similarity across all RNA sequences presented substantial computational chal-
lenges. To address this, we employed a targeted sampling strategy.

To ensure efficiency and relevance in our analysis, we exclusively sampled 1000 RNA 
sequences for each RBP, focusing solely on those confirmed to bind to proteins ( posi-
tive sequences). This focus on positive sequences was crucial, as our primary objective 
was to identify similarities between RNA sequences with known binding activity and 
miRNAs. Including only positive sequences allowed us to maintain the relevance of the 
similarity analysis, avoiding any noise introduced by non-binding (negative) sequences.

Fig. 2  The detailed architecture of DeepMiRBP in both components for predicting microRNA-protein 
interactions. a First component architecture: This model focuses on training RNA sequences that bind to 
RBPs to capture intricate features of RNA-protein interactions. Initially, the model learns from RNA sequences 
bound by RBPs and transfers this knowledge to the target domain. Here, miRNA sequences serve as input, 
generating embedding codes. Cosine similarity is then applied to identify RNA sequences most similar to the 
miRNA sequences. b Second component architecture: In this model, each RBP candidate identified in the 
first part is processed using PSSM and contact maps. CNN layers and max-pooling are employed to encode 
these matrices. Subsequently, cosine similarity is calculated to compare RBP candidates with other proteins, 
resulting in a matrix that identifies proteins with a higher probability of binding to the miRNA sequence
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This sampling strategy was designed to capture the essential characteristics and vari-
ability of the dataset without exhaustive computations, ensuring the robustness and 
representativeness of the model. The Central Limit Theorem (CLT) underpins this 
approach, guaranteeing that the distribution of sample means approximates a nor-
mal distribution when the sample size is sufficiently large. In our context, the CLT is 
expressed as:

where X̄n represents the sample mean, µ denotes the population mean, σ 2 indicates the 
population variance, and n is the sample size.

By selecting 1000 positive RNA sequences for each RBP, we ensured that the sam-
ple size was sufficient to approximate the underlying data distribution’s normality. To 
achieve a comprehensive understanding and capture the variability within the dataset, 
we repeated this sampling process multiple times, we conducting 30 independent sam-
pling iterations for each RBP. This repeated sampling approach helps capture a wide 
range of possible data variations, providing a statistically sound basis for subsequent 
analyses. By concentrating on positive samples, we avoided the inclusion of irrelevant 
negative samples, which could introduce noise and dilute the accuracy of our findings.

This targeted sampling approach not only streamlined the computational process but 
also preserved the statistical integrity of the dataset, ensuring that our model’s training 
and similarity assessments were based on a representative and meaningful subset of the 
data.

After completing the sampling and training phases, we computed the similarity 
between the sampled RBP-binding RNA sequences and miRNAs. This method substan-
tially reduced computational overhead while retaining the accuracy and effectiveness of 
our similarity assessments by focusing on RNA sequences with confirmed binding activ-
ity, aligning precisely with the study’s objectives.

Similarity calculation

The main objective of the first component is to identify RNA sequences similar to the 
miRNA using cosine similarity. Cosine similarity is a metric that measures the similarity 
between two non-zero vectors in an inner product space. It is calculated as the cosine of 
the angle between the vectors, providing a measure to evaluate the degree of similarity 
between sets of embeddings. This metric is particularly advantageous in high-dimen-
sional spaces where traditional Euclidean distance may not accurately capture subtle 
nuances of vector similarity.

The cosine similarity between two vectors A and B is given by:

where A · B denotes the dot product of vectors A and B , and ‖A‖ and ‖B‖ represent the 
Euclidean norms (magnitudes) of the vectors. Mathematically, the dot product A · B is 
calculated as:

X̄n ≈ N

(

µ,
σ
2

n

)

cosine_similarity =
A · B

�A��B�
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The Euclidean norm of a vector A is calculated as:

Similarly, the Euclidean norm of a vector B is:

The embedding codes derived from RBP sequences (Source Domain) and miRNA 
sequences (Target Domain) serve as input vectors for calculating cosine similarity. 
This computation generates a list indicating which RBPs are most likely to bind to the 
miRNA, summarized as a vector across all trained data.

Cosine similarity measures the cosine of the angle between two vectors. A cosine simi-
larity of 1 indicates maximum similarity (if the vectors are identical), while a similarity of 
0 suggests no similarity (if the vectors are orthogonal, at a 90-degree angle). This angular 
measure provides a normalized similarity score independent of the vectors’ magnitudes, 
which is particularly advantageous in applications where vector scales vary significantly.

Model evaluations

The performance of the source domain in the first component of our model was evalu-
ated using a dataset consisting of 188 RBP sequences. We employed a 90/10 split for data 
division, allocating 90% of the data for training and 10% for testing. To ensure robust-
ness and reliability, we implemented a 10-fold cross-validation approach, repeated ten 
times to mitigate the impact of any potential randomness in the training process. The 
Adam optimizer was utilized for optimization during the training process. To evaluate 
the model’s performance on training and testing datasets, we employed the following 
metrics:

•	 Accuracy measures the overall correctness of the model by calculating the ratio of 
correctly predicted interactions (both true positives and true negatives) to the total 
observations. 

•	 Precision indicates the quality of positive predictions by measuring the ratio of cor-
rectly predicted positive interactions to the total predicted positives. 

A · B =

n
∑

i=1

AiBi

�A� =

√

√

√

√

n
∑

i=1

A
2
i

�B� =

√

√

√

√

n
∑

i=1

B
2
i

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP
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•	 Recall (sensitivity) measures the model’s ability to identify all relevant positive inter-
actions by calculating the ratio of correctly predicted positive observations to all 
observations in the actual class. 

•	 F1 Score is the harmonic mean of precision and recall, providing a single metric that 
balances the trade-off between precision and recall. 

Design of the case studies

To comprehensively evaluate DeepmiRBP’s performance in identifying miRNA-binding 
proteins, we designed three case studies:

•	 Case Study 1: based on miRNA interactions with RBPs that are included in the 
model. The source domain comprises 188 RBPs. We curated new miRNA interac-
tions validated with RBPs from recent literature. This case study aims to assess 
whether the model accuractely identifies the binding proteins for these miRNAs 
based on its training data.

•	 Case Study 2: based on miRNAs interactions with new RBPs that are excluded in 
the model. In this scenario, we focus on miR-223 known to interact with exosomal 
protein YBX1. YBX1, although not included in our training data, plays a crucial role 
in packaging miR-223 into exosomes through liquid-liquid phase separation, as evi-
denced by Liu et al. [29]. This case study tests DeepmiRBP’s ability to generalize to 
new RBPs not encountered during training.

•	 Case Study 3: to identify novel miRNA sorting proteins for selected exosomes. This 
case study aims to illustrate how to use DeepmiRBP to identify miRNA transporter 
proteins in exosomes of interest, e.g., from cancer cells by leveraging miRNA and 
protein profiles of cancer-derived exosomes. Taking let-7 as an example, this miRNA 
family has been extensively studied for its tumor-suppressive properties. According 
to Johnson et al. [24], the miR-let-7 represses cell proliferation pathways in human 
cells, highlighting its potential as a therapeutic target. Furthermore, Nwaeburu et al. 
[35] demonstrated that the up-regulation of miRNA-let-7c by quercetin inhibits pan-
creatic cancer progression by activating Numbl. These findings underscore the criti-
cal role of the let-7 family in combating cancers. We utilized EVPsort [9] and public 
data of miRNA and protein profiles specific to cancer-derived exosomes to obtain 
data for this test case. This case study highlights the importance of combining public 
and user data to advance our understanding of miRNA-protein interactions in dis-
ease contexts. We aim to uncover novel miRNA transporter proteins that could serve 
as potential cancer therapeutic targets.

We will discuss these case studies in the next section, focusing on the model’s perfor-
mance evaluation and its implications for predicting miRNA-protein interactions.

Recall =
TP

TP + FN

F1 Score = 2×
Precision× Recall

Precision+ Recall
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Results
Model performance

After training, the comprehensive evaluation of the source and target domains, as 
summarized in Table 2, indicates DeepMiRBP’s robust capability and effectiveness in 
predicting RNA-binding proteins.

In the source domain, the model demonstrated commendable performance metrics, 
with an accuracy of 82.4% on the test dataset across all RBPs (see Table 2), indicat-
ing the model’s robust capability to identify RNA-binding sites correctly. A precision 
of 81.1% reflects the model’s proficiency in accurately detecting true positive inter-
actions while minimizing false positives. A recall of 85.1% highlights the model’s 
ability to identify a substantial proportion of true interactions. Last, the F1 score of 
0.831, balances precision and recall, confirming the model’s overall reliability and 
robustness.

The confusion matrix for the source domain test data (Fig.  3) further illustrates the 
model’s performance, providing a detailed view of the true positive, true negative, false 
positive, and false negative predictions. This visualization reinforces the quantitative 
metrics in Table 2 and offers deeper insight into the model’s prediction accuracy.

Table 2  Performance metrics for source and target models

Domain Data Accuracy Precision Recall F1

Source Training 0.862 0.849 0.885 0.867

Testing 0.824 0.811 0.851 0.831

Target Training 0.874 0.864 0.896 0.880

Testing 0.854 0.843 0.877 0.860

Fig. 3  Confusion matrix for test data in the source domain
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Following the training of the source domain, the acquired knowledge and parameters 
were transferred to the target domain through transfer learning. In this phase, miRNAs 
known to bind to AGO family proteins were input to ensure the comprehensive func-
tionality of the entire framework. The target domain’s performance, with an accuracy of 
85.4% on the test data, demonstrates the successful integration and efficacy of both the 
source and target domains.

Additionally, the source domain’s training set achieved an accuracy of 86.2%, a preci-
sion of 84.9%, a recall of 88.5%, and an F1 score of 0.867. The target domain’s training set 
reported an accuracy of 87.4%, a precision of 86.4%, a recall of 89.6%, and an F1 score of 
0.880. These metrics highlight the model’s strong performance across both domains.

In summary, the results from the source and target domains establish a solid foun-
dation for our model, demonstrating its effectiveness in accurately predicting RNA-
binding proteins. The high accuracy and balanced performance metrics in both domain 
validate the model’s reliability. The subsequent sections will present the results from the 
three case studies, further illustrating the model’s application and performance in real-
world scenarios.

Comparing DeepMiRBP (Source Domain) with other state‑of‑the‑art methods

To evaluate the performance of the initial component of DeepMiRBP, we conducted 
experiments using a dataset comprising 248,000 binding sites and 992,000 non-binding 
sites from 31 RNA-binding proteins (RBPs), as previously utilized by iDeepS. According 
to the original study, the dataset for each protein was divided into 24,000 instances for 
training, 6,000 instances for model optimization and validation, and 10,000 instances for 
independent testing. This setup ensured a fair and consistent comparison with several 
advanced models, including iDeepS, DeepBind, DeeperBind, Oli [30], GraphProt [32], 
and iDeepV.

Given the significant class imbalance in the dataset, where non-binding sites vastly 
outnumber binding sites, we employed specific techniques to address this issue without 
altering the dataset. We applied a combination of Focal Loss and Class Weights Adjust-
ment to ensure robust model training while maintaining the original data distribution. 
Focal Loss was used to focus the model’s learning on the minority class (binding sites) by 
dynamically down-weighting the loss contribution of well-classified examples, thereby 
enhancing learning from hard-to-classified instances. Simultaneously, Class Weights 
Adjustment was implemented to assign higher weights to the minority class in the loss 
function, ensuring that predictions for binding sites were treated with greater impor-
tance during training.

By applying these techniques, DeepMiRBP consistently achieved better or compara-
ble Area Under the Curve (AUC) values than the state-of-the-art models, confirming 
its effectiveness as a powerful tool for advancing our understanding of RNA-binding 
mechanisms. As detailed in Table 3, DeepMiRBP achieved an average AUC of 0.865, sur-
passing iDeepS (0.861), DeepBind (0.854), DeeperBind (0.857), Oli (0.767), GraphProt 
(0.819), and iDeepV (0.840). Notably, DeepMiRBP demonstrated superior performance 
for 17 out of the 31 proteins, including TAF15 and MutFUS, where it attained AUC val-
ues of 0.981 and 0.979, respectively-outperforming the other models.
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Furthermore, DeepMiRBP outperformed sequence-only models such as iDeepV, 
DeepBind, and Oli, which have shown competitive performance against methods incor-
porating both sequence and structural information, like iDeepS and GraphProt. For 
example, while iDeepV achieved an average AUC slightly lower than that of DeepMiRBP, 
our results suggest that the advanced deep learning architecture of DeepMiRBP more 
effectively captures essential features, even without integrating structural information. 
However, for some proteins, such as SRSF1, DeepMiRBP’s performance was marginally 
lower than that of sequence-structure models, reflecting the complex nature of miRNA-
mediated RNA-protein interactions.

The receiver operating characteristic (ROC) analysis across the 31 experiments (see 
Fig.  4) indicated variability in performance, with AUC values ranging from 0.678 for 
hnRNPL-2 to 0.981 for TAF15. These findings suggest that DeepMiRBP provides a 
robust alternative to existing models, particularly for challenging proteins where tra-
ditional sequence- or structure-based models may underperform. The strategic use of 
Focal Loss combined with Class Weights Adjustment effectively addressed the data 
imbalance issue without altering the dataset, reinforcing DeepMiRBP’s potential as a 
valuable tool for biological research.

Extended ablation study and comparison with baseline models

We conducted an extended ablation study to thoroughly evaluate the contribution of 
each component in the DeepMiRBP model and compare its performance with other 
baseline models. Specifically, we evaluate how the attention mechanism, LSTM units, 
dropout layers, embedding dimensions, and the choice between bidirectional and 

Fig. 4  ROC Performance. The ROC curve for predicting RNA-protein binding sites on 31 experiment datasets
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single-directional LSTM impact the model’s overall performance, including its accu-
racy and AUC.

Overall, the ablation study demonstrates that each component of the DeepMiRBP 
model significantly contributes to its high performance while the detailed explana-
tions are provided in the Supplementary Materials. In particular, the attention mech-
anism is crucial for identifying and focusing on key sequence features. The optimal 
number of LSTM units is essential for capturing long-term dependencies, while 
an appropriate dropout rate prevents overfitting, enhancing the model’s robust-
ness. Additionally, the choice of embedding dimensions is critical for maintaining a 
detailed representation of input sequences, and the use of a bidirectional LSTM fur-
ther improves context learning. These findings collectively affirm the robustness and 

Table 3  The performance of iDeeps, iDeepV, DeepBind, DeeperBind, Oli, and GraphProt are taken 
from original papers [40] on the same datasets with DeepMiRBP

The boldface indicates this performance is the best among the compared methods

Protein DeepMiRBP iDeepS DeepBind DeeperBind Oli iDeepV GraphProt

Ago/EIF 0.695 0.773 0.713 0.740 0.610 0.732 0.691

Ago2-MNase 0.898 0.591 0.595 0.606 0.512 0.571 0.595

Ago2-1 0.799 0.865 0.849 0.857 0.803 0.844 0.817

Ago2-2 0.796 0.868 0.830 0.868 0.800 0.832 0.823

Ago2 0.680 0.634 0.628 0.630 0.534 0.615 0.633

eIF4AIII-1 0.779 0.950 0.938 0.950 0.919 0.943 0.918

eIF4AIII-2 0.843 0.953 0.950 0.954 0.929 0.942 0.931

ELAVL1-1 0.935 0.932 0.924 0.930 0.889 0.912 0.915

ELAVL1-MNase 0.811 0.600 0.613 0.614 0.491 0.590 0.591

ELAVL1A 0.897 0.893 0.886 0.893 0.843 0.891 0.867

ELAVL1-2 0.952 0.919 0.914 0.919 0.875 0.922 0.895

ESWR1 0.932 0.917 0.912 0.915 0.808 0.900 0.840

FUS 0.894 0.934 0.942 0.939 0.846 0.931 0.860

Mut FUS 0.979 0.958 0.953 0.957 0.822 0.950 0.853

IGFBP1-3 0.967 0.717 0.702 0.713 0.569 0.661 0.697

hnRNPC-1 0.953 0.960 0.957 0.959 0.885 0.955 0.930

hnRNPC-2 0.971 0.975 0.973 0.976 0.941 0.970 0.953

hnRNPL-1 0.756 0.756 0.771 0.746 0.392 0.761 0.698

hnRNPL-2 0.678 0.747 0.769 0.746 0.474 0.750 0.708

hnRNPL-like 0.738 0.708 0.711 0.679 0.562 0.700 0.650

MOV10 0.789 0.813 0.804 0.812 0.783 0.771 0.803

Nsun2 0.899 0.835 0.803 0.801 0.754 0.850 0.779

PUM2 0.934 0.962 0.950 0.955 0.939 0.954 0.914

QKI 0.969 0.966 0.962 0.961 0.924 0.966 0.932

SRSF1 0.742 0.887 0.874 0.875 0.839 0.864 0.838

TAF15 0.981 0.964 0.956 0.963 0.804 0.951 0.850

TDP-43 0.856 0.930 0.926 0.930 0.883 0.911 0.907

TIA1 0.931 0.930 0.924 0.926 0.842 0.922 0.896

TIAL1 0.898 0.893 0.888 0.895 0.831 0.614 0.858

U2AF2 0.930 0.953 0.941 0.945 0.861 0.946 0.873

U2AF2(KD) 0.935 0.931 0.923 0.930 0.840 0.926 0.883

Averages 0.865 0.861 0.854 0.857 0.767 0.840 0.819
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effectiveness of the proposed DeepMiRBP architecture, as evidenced by its superior 
performance compared to all ablated variants.

Furthermore, we evaluated several different model architectures to understand their 
effectiveness on the input data used in this study. The architectures tested included 
various convolutional neural networks (CNNs), recurrent neural networks (RNNs), and 
hybrid models combining CNN and LSTM layers. Some specific architectures are out-
lined in the Supplementary Materials.

The performance of these models, including metrics like accuracy, AUC, and other rel-
evant measures, was evaluated on the test data. The results demonstrate that the pro-
posed DeepMiRBP model outperforms these baseline models, indicating its superiority 
in predicting miRNA-binding proteins. Table 4 provides detailed performance metrics 
and comparison results. These experiments provide valuable insights into which types 
of models are most effective for handling the input data used in this study. By selecting 
several basic models as baselines and comparing them with our proposed method, we 
illustrate the advantages of the DeepMiRBP architecture over simpler alternatives.

Validation on miR‑451, miR‑19b, miR‑23a, and miR‑21 (Case Study 1)

After the first component was completely trained, we validated the model using miRNA 
interactions with RBPs in the training domain. We tested [3] the model with several 
miRNAs and experimental data to ensure its robustness and accuracy.

•	 miR-451: According to Dueck et al. [12], miR-451 is directly processed by AGO2, 
which is unusual because AGO2 is not typically involved in miRNA processing; it 
usually just helps with the sorting and function of miRNAs that have already been 
processed by Dicer. After processing, miR-451 remains associated with AGO2, 
which acts as a form of sorting since miR-451 is specifically bound to AGO2. We 
first obtained samples from each RBP within our domain to validate this and saved 
the embedding code for each RBP sequence. Next, we provided miR-451 as input 
to the target domain, calculated the embedding code, and utilized cosine similar-
ity to determine which RBP sequences were most similar to miR-451. The results, 
shown in Table 5, list the top 10 RBPs with the highest similarity scores: As illus-
trated, AGO2 has the top score in the table, confirming its exclusive association 
with miR-451. Interestingly, AGO1, with a score of −0.394, appears much lower in 

Table 4  Performance comparison of different architectures and baseline models

The table compares the proposed DeepMiRBP model against several tested architectures and baseline models, 
demonstrating the superiority of DeepMiRBP in terms of accuracy, AUC, and other relevant metrics

Model Accuracy Precision Recall F1 Score

DeepMiRBP (Proposed) 0.824 0.811 0.851 0.831

Advanced CNN-BiLSTM with regulariza-
tion

0.814 0.801 0.832 0.812

Modified CNN-BiLSTM model 0.804 0.791 0.831 0.811

CNN-LSTM Hybrid model 0.784 0.771 0.811 0.791

Baseline LSTM model 0.754 0.741 0.771 0.756

Baseline RNN model 0.714 0.701 0.741 0.720

Baseline CNN model 0.704 0.691 0.721 0.706
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the table in the 29th row. This result validates that DeepmiRBP functions correctly 
in identifying known interactions for miR-451.

•	 miR-19b, miR-23a, and miR-21: According to Dueck et al. [12], miR-19b, miR-23a, 
and miR-21 are known to associate with Argonaute protein families in vivo, indi-
cating they are processed by Dicer and are not limited to a specific Ago protein. 
We repeated the sampling and embedding process for these miRNAs to validate 
our model further. As predicted by our model, the high similarity scores with vari-
ous Argonaute proteins confirm the expected associations and demonstrate the 
model’s accuracy in predicting miRNA-RBP interactions across multiple miRNAs. 
The results are shown in Table 6, listing the top RBPs with the highest similarity 
scores for miR-19b, miR-23a, and miR-21: AGO1 and AGO2 stand at the top, con-
firming the model’s effectiveness. However, it is essential to note that the model 
provides a list of candidate RBPs ranked by similarity score, ensuring comprehen-
sive identification of potential interactions.

These validation results demonstrate the robustness and reliability of the Deep-
miRBP model in accurately predicting miRNA-RBP interactions. The successful 

Table 5  Top 10 RBPs with highest scores for miR-451

RBP Similarity score

AGO2 0.67

KHDRBS1 0.04

SFPQ −0.16

PRPF8 −0.82

SF3B4 −0.87

QKI −0.92

KHSRP −0.12

SF3A3 −0.17

HNRNPK −0.21

SF3B1 −0.24

Table 6  Top common RBPs with highest scores for miR-19b, miR-23a, and miR-21

RBP Similarity score

AGO1 0.55

AGO2 0.45

HNRNPK 0.26

SERBP1 0.25

NIP7 0.24

PCBP2 0.19

FKBP4 0.17

PCBP1 0.16

PHF6 0.14

IGF2BP3 0.13
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identification of known interactions for miR-451, miR-19b, miR-23a, and miR-21 
reinforces the model’s effectiveness and lays a solid foundation for further studies.

Validation on miR‑223 (Case Study 2)

We used miR-223 [9] as input to our source domain to test the model’s ability to pre-
dict interactions for miRNAs excluded from the training dataset. miR-223 is known to 
bind to the YBX1 protein [29], which was not included in our training data. Initially, 
we provided miR-223 as input to the target domain to identify which RNA sequences 
that bind to RBPs are more similar to miR-223 sequences. The first component of the 
model generated a list of candidate RBPs with sequences similar to miR-223. In the 
subsequent step, we utilized PSSM and contact maps for each candidate from the first 
component. We then provided each candidate’s PSSM and contact map as input to 
the second component, generating a list of final candidate proteins to which miR-223 
could potentially bind.

For miR-223, we identified 25 RBPs from the 188 total RBPs used for training the 
first component, with similarity scores greater than zero. Table  7 shows the top 10 
similarity scores: With this list of candidate RBPs similar to YBX1, we provided each 
candidate’s PSSM and contact map as input to the second component. The second 
component computed the similarity between each protein, resulting in an n× n 
matrix. Table 8 presents the similarity scores for the top 15 proteins, including YBX1. 
The matrix shows that the top three highest scores are associated with SERBP1, 
CSDE1, and TIAL1, along with YBX1. This indicates that these proteins would be 
selected as candidates to which miR-223 could potentially bind. These high similarity 
scores suggest a strong likelihood of interaction between miR-223 and these candi-
date RBPs, thereby validating the model’s efficacy in predicting miRNA-protein inter-
actions for proteins excluded from the training dataset.

These case studies illustrate the efficacy of our model in predicting miRNA-RBP 
interactions, even for miRNAs not included in the training domain. The comprehen-
sive approach of combining sequence similarity and structural information through 
PSSM and contact maps ensures accurate and reliable predictions.

Table 7  Top 10 RBPs with highest scores for miR-223

RBP Similarity score

TIAL1 0.12

CPEB4 0.12

CSDE1 0.12

SLBP 0.11

SERBP1 0.11

NIPBL 0.11

METAP2 0.11

SDAD1 0.11

APOBEC3C 0.11

ZNF800 0.10
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Discovery on miR‑let‑7d (Case Study 3)

To illustrate how DeepMiRBP identifies novel candidates for miRNA sorting in 
exosomes, we focused on let-7d, an exosomal miRNA found in colon cancer cells [34] 
and pancreatic cancer cells [49]. Our goal was to determine which RBPs miRNA hsa-let-
7d would bind.

Using let-7d as input to the target domain, we obtained the similarity scores indicating 
the affinity of various RBPs to this miRNA, as shown in Table 9.

Although the model evaluated 22 RBP candidates, the table presents the top 10 candi-
dates. Notably, IGF2BP2 and FXR2 emerged as top candidates, with similarity scores of 
0.65 and 0.61, respectively. Both proteins have been identified as exosomal proteins in 
colorectal cancer cells [6], aligning with their potential roles in exosome-mediated RNA 
transport.

This result corroborates the experimental data from VEPsort, where FXR2 is known 
to bind to let-7d precursors. The identification of FXR2 among the top candidates for 
let-7d, coupled with their presence in exosomes, underscores FXR2’s role in RNA bind-
ing and exosomal RNA sorting. It highlights DeepMiRMP’s utility in providing reliable 
insights into miRNA-RBP interactions, which is crucial for understanding gene regula-
tion mechanisms and developing targeted therapeutic strategies.

Discussion
Introducing the DeepmiRBP model into RNA research has provided a profound leap for-
ward in our understanding of miRNA-protein interactions. The results presented in this 
study underscore the effectiveness and reliability of the DeepMiRBP model in predicting 
(mi)RNA-RBP interactions, even for miRNAs not included in the training domain. The 
model’s ability to generalize to novel miRNA-RBP interactions is particularly significant, 
as it demonstrates the potential for discovering new miRNA-binding proteins and eluci-
dating the mechanisms underlying miRNA sorting.

The promising performance of the DeepmiRBP model in predicting binding sites for 
AGO, YBX1, and FXR2 proteins is noteworthy. These proteins play a pivotal role in the 
post-transcriptional regulation of gene expression [8]. Identifying let-7d interactions 
with FXR2 and other RBPs emphasizes the model’s utility in identifying miRNA-protein 
interactions relevant to cancer biology and indicates its potential in pinpointing critical 

Table 9  Top 10 RBPs with highest scores for let-7d

RBP Similarity score

NIP7 0.66

IGF2BP2 0.65

FXR2 0.61

IGF2BP3 0.49

XRN2 0.47

SLTM 0.36

SERBP1 0.34

BCCIP 0.27

SRSF9 0.17

FAM120A 0.15
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regulatory nodes within complex disease networks. The high accuracy achieved in these 
predictions suggests that the model could serve as a valuable tool for identifying novel 
RNA-centric therapeutic targets.

DeepmiRBP has demonstrated effectiveness in elucidating the complex interplay 
between miRNAs and proteins and underscores the power of deep learning, which has 
been increasingly recognized for its ability to decipher complex biological systems. How-
ever, the challenges inherent in applying cosine similarity and transfer learning to such a 
complex biological problem should not be underestimated. The specificity required for 
accurate RNA-protein interaction prediction necessitates a tailored approach to model 
training and validation. It is important to note that the DeepmiRBP model does not pre-
dict which miRNA binds to an RBP; rather, it generates a candidate list based on cosine 
similarity scores, where higher scores indicate a greater likelihood of binding. The model 
creates candidate lists using cosine similarity with LSTM, CNN, and transfer learning. 
Another challenge faced was the volume of data and the preparation required, which 
was demanding and complex. [33].

The potential of transfer learning, as demonstrated by the DeepmiRBP model, is 
immense. It offers a promising avenue for enhancing the predictive performance of 
computational models in scenarios characterized by limited data availability or high bio-
logical complexity. Nonetheless, the application of this technique must be carefully cali-
brated to capture the nuances of each protein-miRNA interaction and avoid overfitting 
to particular datasets or scenarios [36].

Integrating multi-omic data, including genomics, transcriptomics, and proteomics, is 
expected to refine the predictive accuracy of models like DeepmiRBP further. By incor-
porating a broader spectrum of biological data, researchers can hope to capture the full 
complexity of RNA-mediated cell signaling and communication and their regulatory 
roles in human diseases. This holistic approach will likely pave the way for the next gen-
eration of precision medicine, where targeted therapies are developed based on a com-
prehensive understanding of the molecular underpinnings.

Overall, the DeepMiRBP model provides a robust and scalable framework for pre-
dicting miRNA-RBP interactions, offering valuable insights into the molecular mecha-
nisms of miRNA sorting. The model’s adaptability to new datasets and its potential for 
identifying novel miRNA-binding proteins make it a powerful tool for advancing small 
RNA research. Future work will focus on expanding the model’s capabilities, incorporat-
ing additional datasets, and validating predictions experimentally to refine further our 
understanding of miRNA-protein interactions and their implications in disease contexts.

Conclusion
This investigation into miRNA-protein interactions has illuminated the intricate nature 
of RNA sorting and showcased the efficacy of the DeepmiRBP model in elucidat-
ing understudied biological processes. By integrating LSTM, CNN, transfer learning, 
cosine similarity, and encoding techniques, DeepmiRBP has demonstrated exceptional 
precision in identifying miRNA-protein binding sites, underscoring the transformative 
potential of computational approaches in RNA research.

The model’s adeptness, particularly in pinpointing binding sites for proteins such as 
AGO, YBX1, and FXR2, holds profound implications for understanding regulatory 
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mechanisms in cancer and other diseases where miRNA functionality is pivotal. Inte-
grating PSSM and contact map data via CNN has enriched the model’s interpretive 
depth, advancing our grasp of miRNA-mediated cell signaling. The model’s ability to 
capture the nuanced expression of miRNAs across biological conditions presents chal-
lenges and opportunities.

While DeepmiRBP focuses on the predictive analysis of miRNA binding proteins, the 
methodologies, and insights gleaned offer a scalable template for future studies across 
various RNA applications and human diseases like cancers. The adaptable nature of this 
model, informed by its success in the current study, primes it for exploratory applica-
tions in RNA-centric targeted therapies.

In conclusion, the DeepmiRBP model significantly advances our ability to predict 
miRNA-protein binding sites and understand the regulatory mechanisms in cancer. The 
insights gained from this research contribute to a richer understanding of the complex 
interplay between miRNAs and proteins and highlight the potential for deep learning to 
revolutionize bioinformatics. Future research should continue to build upon these find-
ings, leveraging the power of computational models to unravel the complexities of can-
cer biology and guide the development of new therapeutic strategies.
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