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Abstract 

Insertions and deletions (indels) play a significant role in genome evolution across spe-
cies. Realistic modelling of indel evolution is challenging and is still an open research 
question. Several attempts have been made to explicitly model multi-character (long) 
indels, such as TKF92, by relaxing the site independence assumption and introduc-
ing fragments. However, these methods are computationally expensive. On the other 
hand, the Poisson Indel Process (PIP) assumes site independence but allows one 
to infer single-character indels on the phylogenetic tree, distinguishing insertions 
from deletions. PIP’s marginal likelihood computation has linear time complexity, 
enabling ancestral sequence reconstruction (ASR) with indels in linear time. Recently, 
we developed ARPIP, an ASR method using PIP, capable of inferring indel events 
with explicit evolutionary interpretations. Here, we investigate the effect of the single-
character indel assumption on reconstructed ancestral sequences on mammalian 
protein orthologs and on simulated data. We show that ARPIP’s ancestral estimates 
preserve the gap length distribution observed in the input alignment. In mammalian 
proteins the lengths of inserted segments appear to be substantially longer compared 
to deleted segments. Further, we confirm the well-established deletion bias observed 
in real data. To date, ARPIP is the only ancestral reconstruction method that explicitly 
models insertion and deletion events over time. Given a good quality input alignment, 
it can capture ancestral long indel events on the phylogeny.

Keywords: Ancestral sequence reconstruction, Insertion, Deletion, Indel pattern, Long 
indel, Gap length distribution, Mammalian genomics, Poisson indel process

Introduction
Insertion and deletion (indel) events produce significant amounts of natural variation in 
species genomes. Consequently, indels make a major contribution to complex evolution-
ary processes. Today indel variants in genomic sequences can be reliably documented 
and studied due to improvements in sequencing methods. In closely related species, 
differences attributed to indels (per base pair) are several-fold more frequent than sub-
stitution events [1, 2]. In the human genome, up to a quarter of all genomic variants 
are due to indels, most of which are very short [3]. While indels are distributed across 
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both coding and non-coding parts of genomes, they are far more frequent in non-coding 
sequences. Compared to substitutions, indel changes are expected to have a stronger 
deleterious effect on functional proteins [4], also explaining their lower prevalence in 
coding sequences. Despite this, many deleterious coding indel variants persist in the 
human population and can cause disease-related gene defects (e.g., [5]).

In comparative studies of sequence evolution, indels are represented as gaps in align-
ments of homologous sequences. With growing evolutionary distance, different indel 
events can merge and overlap, masking the mutational history. Nevertheless, alignment 
gaps carry much phylogenetic information [6], which can provide valuable insights for 
evolutionary studies when analyzed correctly. However, properly modelling the evolu-
tionary process of insertions and deletions is challenging from the computational and 
modelling perspective, and there is no gold standard in the field. In fact, many evolution-
ary studies either completely ignore indels or heavily trim indel-rich sequence regions 
due to the lack of software tools implementing appropriate models. Disentangling indi-
vidual insertion and deletion events based on the observed gap distributions in a mul-
tiple sequence alignment (MSA) requires modelling sequence evolution in a way that 
includes the insertion and deletion processes. One way to handle this is to employ fast 
parsimony-based approaches (e.g. Chindelevitch et  al. [7], Iglhaut et  al. [8]) to recon-
struct indel histories. While powerful, these methods lack an explicit evolutionary 
model and, therefore, cannot infer event rates, meaning that the conclusions that can be 
made from these methods are limited. In this paper, we focus on investigating the recon-
structing power of a probabilistic model of sequence evolution that includes the inser-
tion and deletion processes over time, which can allow us to compare insertion, deletion 
and substitution rates in more general evolutionary contexts. Substitutions are tradition-
ally described via Markov models assuming site independence, while indels violate this 
assumption since each indel event can involve multiple residues. Therefore, models that 
properly include these events tend to be computationally expensive.

The first evolutionary model with indels, TKF91, lifted the assumption of site inde-
pendence and described single-character indels via a birth-death process [9]. As TKF91 
models single-character events, it implies a linear gap cost in the MSA inference, but due 
to the non-independence of sites, the complexity of computing the marginal likelihood 
under this model is exponential in the number of taxa, making the basic tasks of phylo-
genetic inference (MSA and tree estimation) intractable. ASR under this model is also 
non-trivial, and while attempts have been made to develop a computationally tractable 
ancestral state estimator (e.g. Fan and Roch [10]) under this model, no methods imple-
menting it exist at this point. Bouchard-Côté and Jordan [11] proposed the PIP model, 
a close relative of TKF91, where insertions follow the Poisson process while deletions 
are added to the Markov substitution model as an absorbing state. The complexity of 
marginal likelihood computation under the PIP model is reduced to linear, which allows 
for this model to be adopted for phylogenetic inferences [12–14]. Moreover, the formu-
lation of the PIP likelihood makes reconstructing most likely indel histories possible in 
linear time as well [15]. However, like TKF91, PIP explicitly models only single-character 
indels.

Modelling longer indels as several independent single-character events lacks biologi-
cal realism and could lead to biases such as homology histories with too many events, 
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alignments with scattered gaps, and high indel rates. Some evolutionary indel models 
allow long indels [16–18]. For example, the TKF92 model, an extension of TKF91, is also 
a birth-death process but with indels happening as unbreakable multiple-site fragments 
with a geometric length distribution [16]. This modelling assumption, however, means 
that TKF92 cannot explain overlapping indels. The “long indel” model [17] relaxed the 
unbreakable fragment assumption but assumed infinite sequences. Both these models 
can be considered an approximation of the Generalised Geometric Indel (GGI) model 
[19]. However, while the lengths of individual indels have a geometrical distribution, the 
length distribution of observed gaps in the alignment is not geometric in general. Con-
sidering that models with long indels also tend to be computationally slow, these are cur-
rently of little practical value for large datasets.

Computationally, PIP holds promise for practical phylogenetic analyses despite the 
single-character indel assumption. For example, we showed that PIP-based alignment 
inference can pick up multiple-character indels (long indels) when the data strongly sug-
gests this [13, 14]. Zhai and Bouchard-Côté [12] demonstrated that modelling indel evo-
lution and indel rate variation improves the accuracy of phylogeny reconstruction when 
using the PIP model and its generalizations.

Recently, we proposed a PIP-based ancestral sequence reconstruction (ASR) approach 
implemented in ARPIP [15]. Apart from Bayesian MCMC implementations (e.g., His-
torian [20]), ARPIP is the only ASR method that uses an explicit model of indel evolu-
tion and can infer the specific locations of insertions and deletions on the tree. Another 
popular ASR method is FastML-webserver [21], which uses the so-called “indel-coding” 
method to include indels. This approach does not include a proper statistical model of 
insertion and deletion and implies that a deleted character can be reinserted. GRASP 
[22], another recent method, accommodates indels in the ASR inference by representing 
sequences as partial order graphs. However, as with indel-coding, deleted characters can 
be reinserted, and there is no explicit model governing the indel process.

The goals of this study
Having an explicit model of indel evolution is desirable; however, an over-simplistic 
model could also have a detrimental effect on the resulting inferences, including over-
estimation of indel rates and scattered ancestral sequence alignments by including too 
many single-character gaps. Therefore, we aim to investigate whether using the single-
character indel assumption negatively impacts ASR. Since ASR methods typically take 
a fixed MSA and phylogeny as input, using good-quality input MSAs and phylogenetic 
trees is imperative for accurate ASR, irrespective of the method used. While MSA qual-
ity is still quite an elusive concept in general, here we assume that a good-quality MSA 
captures multiple-character (long) indels in a phylogenetically consistent way. Therefore, 
in our study, we use PRANK [23], the phylogeny-aware tool which infers phylogeneti-
cally meaningful gaps by distinguishing insertions from deletions in a progressive man-
ner on the tree.

Here, given accurate input data, we assess the systematic bias in PIP-based ASR by 
investigating the fragmenting of gaps in the inferred sequences at the ancestral nodes of 
the phylogeny. To test this, we present a large-scale analysis of protein orthologs from six 
mammalian species (human, three primates, and two rodents), taken from the popular 
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orthologous protein database OMA [24], as well as analysis of simulated data. We chose 
this specific phylogenetic dataset for two reasons. First, the mammalian species tree for 
these specific taxa is unambiguous and can be accepted as “true” (although the indel his-
tory is unknown, see [25]). Second, insertion and deletion biases in these species have 
long been a subject of interest, meaning that our findings can be interpreted in the con-
text of current literature. For these data, we evaluated per-site insertion and deletion fre-
quencies in different lineages and compared the gap distributions in the observed and 
inferred sequences.

To get a better understanding of ASR properties and potential biases under PIP, we 
proceed by analyzing simulated data. In our simulations, we mimic the OMA-based pro-
tein orthologous groups so that the results on real data can be compared to expected 
performance on very similar data where the truth is known. Our results suggest no 
significant difference in observed and inferred ancestral gap length distributions. This 
means that ARPIP tends to preserve the long indels from the input alignment in the 
inferred ancestral sequences. We also could confirm the well-documented deletion bias 
[26–31].

Results
Results on mammalian data

We extracted and analyzed 12′022 orthologous protein groups, each containing one 
sequence from six eutherian mammals. We filtered out the datasets for which the 
gene and species tree topologies agree to ensure that indel events can be meaningfully 
mapped to a common topology, which left us with 3′906 datasets. Sequences in each 
orthologous group were aligned, and ancestral sequences were reconstructed given the 
inferred multiple sequence alignment (MSA) and the species tree (see data and meth-
ods). For each site in an MSA, our ASR method ARPIP infers the most likely insertion 
and deletion history, allowing us to distinguish insertion and deletion events. Note 
that the reconstruction is done independently for each site, as in all other ASR meth-
ods. Therefore, we evaluated the number of inserted and deleted residues per site and 
per time interval rather than counting multiple residue events. This way of measuring 
indel rates is intuitively similar to substitution rates; therefore, it has a simple interpre-
tation without having to account for the length of the full indel. Another advantage of 
this approach is that it makes it easy to evaluate the impact of indel events on sequence 
length over time.

Note that we clearly distinguish between gaps and indels. Gaps are stretches of miss-
ing characters (gap characters “-”) that can either represent characters that existed in a 
lineage ancestral to the one in question and got deleted or characters inserted in a sister 
lineage, i.e. characters that never existed in the lineage in question. An insertion appears 
as a gap stretch in all lineages that do not belong to the clade where the insertion hap-
pened, meaning that the length of said stretch approximates the length of the inserted 
fragment. A deletion appears as a gap stretch in all lineages descendant from the one in 
which the deletion happened, meaning that the length of that stretch approximates the 
length of the deleted fragment. Both leaf and internal node sequences can contain both 
types of gap stretches; thus, all nodes in the tree can have indel events. However, the 
MSA defines the gap characters in the leaf nodes, while the ancestral gap characters are 
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inferred with ASR. On the other hand, ASR attributes the event type (insertion or dele-
tion) to gaps in both leaves and internal nodes.

Moreover, gaps in MSAs can appear due to several multiple-character insertions and 
deletions. Since ASR is performed independently at each site and PIP only accounts for 
single-character events, gaps spanning multiple sites are described as a series of sin-
gle-character indel events at several affected individual sites. To evaluate whether this 
assumption is reasonable during ASR, we study whether the ARPIP method preserves 
the distribution of gap lengths of the input MSA in the sequences reconstructed at 
ancestral nodes.

Comparing the number of inserted and deleted characters

238 of orthologous groups had no gap characters in the inferred MSAs, presumably 
due to strong conservation. These groups were therefore excluded from the indel sta-
tistics presented here. For the remaining 3′668 orthologous groups, the total numbers 
of inserted and deleted residues on the species tree are visualized in Fig. 1, and more 
detailed statistics are presented in Table 1. The human lineage had the lowest number 

Fig. 1 Total numbers of indel events per lineage across all datasets of the studied species overlayed on 
the species cladogram. Gorilla has the largest number of indel events per lineage while Homo-Pan and 
Homininae have the lowest number of indel events, respectively (see Table 1)
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of inserted and deleted characters, as well as overall gap characters in the sequences 
( 4.01% of total sequence length). This is strongly contrasted by the rat lineage, which 
experienced the highest indel numbers among all studied species with 5.92% of its total 
sequences in MSAs consisting of gap characters. The macaque and the gorilla lineages 
also had a higher number of gaps in their sequences, with 5.71% and 5.42% , respectively. 
These two primate lineages (i.e. macaque and gorilla) also had the longest average gap 
stretch lengths (on average 18.2 amino acids for macaque, 15.2 for gorilla), compared to 
human (11.5) and all other lineages. Homo-Pan ancestral lineage experienced the lowest 
number of inserted and deleted residues, although this can be expected since this lineage 
corresponds to the shortest branch length on the species tree.

Next, we calculated the insertion–deletion bias as the ratio between the numbers of 
insertion and deletion events (see Fig. 15 in Appendix). Overall, the number of deletions 
was larger than the number of insertions for all six extant lineages except for the human 
and rat. The bias towards deletions was particularly strong in macaque (0.19) and chimp 
(0.24), but also well pronounced in rat and gorilla (0.38 and 0.42 respectively).

In contrast, most ancestral lineages displayed a bias towards insertions, which was 
particularly pronounced in the Homininae (3.39) and Catarrhini ancestors (2.07). This 
effect could be explained in several ways. PIP, like the most commonly used substitu-
tion models, assumes that the evolutionary process is at equilibrium. In particular, PIP 
assumes that the average expected sequence lengths at the root and the tips are the same. 
If this assumption is violated and the sequence length at the root is shorter, it may have 
to be balanced out by an increased insertion rate near the tree’s root, making this a data-
set artifact. This effect could also be an artifact of the model. The included simulation 

Table 1 Summary statistics of gaps and indels on mammalian data

The bold numbers reflect the parameter’s lower and upper bounds

Lineage/
Clade

Gap 
characters

Average 
gap 
length

Total # of 
gaps

% gap 
characters

Average 
branch 
length

Ins Del Ins-Del bias

Human 103
′
189 11.5 11

′
252 4.01 0.004 4

′
900 4

′
708 1.04

Chimp 130
′
673 11.5 11

′
546 5.14 0.006 8

′
647 35

′
939 0.24

Homo-Pan

(Human, 
Chimp)

103
′
381 11.5 11

′
237 4.02 0.002 1

′
411 2

′
645 0.53

Gorilla 137
′
499 15.2 10

′
937 5.42 0.014 25’353 60’705 0.42

Homininae

(Human, 
Chimp, 
Gorilla)

102
′
147 11.5 11

′
285 3.97 0.015 5

′
976 1

′
761 3.39

Macaque 144
′
537 18.2 11

′
613 6.8 0.021 8

′
855 47

′
030 0.19

Catarrhini

(Human, 
Chimp, 
Gorilla, 
Macaque)

106
′
362 11.5 11

′
545 4.14 0.109 33

′
191 16

′
062 2.07

Mouse 121
′
087 7.1 14

′
417 4.74 0.041 10

′
664 10

′
025 1.06

Rat 149’525 7.4 14’802 5.92 0.045 17
′
191 44

′
990 0.38

Murinae

(Mouse, Rat) 121
′
726 7.4 14

′
703 4.77 0.092 7

′
303 5

′
538 1.32
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study shows that a slight insertion bias is detected on simulated data. However, the effect 
is small and would not be able to explain the full extent of the bias we observe here. 
Lastly, this could be part of the true dynamics of insertions and deletions through time.

Tracing sequence lengths along the tree

Further, we investigated whether the observed deletion bias in extant lineages affects the 
sequence length dynamics across the species phylogeny. For each orthologous group, we 
computed Spearman correlation coefficients between sequence lengths (observed at the 
leaves or inferred at the ancestral nodes, gap characters removed) and the evolutionary 
distance (i.e., branch lengths). The majority of analyzed orthologous groups showed no 
significant correlations at a 5% significance threshold. Nevertheless, we observed signifi-
cant correlations in 3.46% of orthologous groups with positive correlations for 59 genes 
and negative correlations for 68 genes (Fig. 2). This suggests that 1.85% of analyzed gene 
sequences had the tendency to shrink, while 1.61% had shown a tendency to grow. How-
ever, if we apply conservative correction for multiple testing by setting the individual 
p-values to 0.05/3′688 , we see no significant correlations.

Gap length distribution preserved over time

We asked whether the gap distributions in the six observed sequences differed from 
those in the inferred ancestral sequences. The gap distribution in the inferred MSA of 
the six observed sequences results from the PRANK alignment and would, therefore, 
exhibit any inherent systematic biases of the PRANK method, if any. By analyzing 
whether a change in gap length distribution occurs at the inferred ancestral sequences, 
we aim to evaluate whether ARPIP tends to bias the distribution in a given alignment 
towards shorter gaps.

Fig. 2 The distribution of Spearman correlation coefficients between sequence length (at the tips and root) 
and branch lengths per OMA groups on six mammalian species
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Such an effect is expected to be maximal at the “centre” of the tree, corresponding 
to the midpoint root, where the tree height and, consequently, the uncertainty is the 
largest. In more than 96% of our datasets, the midpoint and the evolutionary roots are 
the same. Therefore, we compared the empirical distribution of gap lengths at the root 
with the distribution at the leaves over all analysed OMA groups. The Kolmogorov-
Smirnov two-sample test fails to reject the hypothesis that both were sampled from 
the same underlying distribution at the 0.05 significance level (p-value ≈ 0.11 > 0.05 ). 
The two distributions are depicted in Fig. 3.

Furthermore, for each OMA group, we computed the mean gap lengths at the root 
and the mean gap lengths at the tips. The differences between the means are distrib-
uted around zero with a heavier tail in the positive range, which leads to an average 
difference of 3 characters, meaning that gaps at the tips tend to be around 3 charac-
ters longer (Fig. 4).

Fig. 3 The empirical gap length distribution of tips vs. root on mammalian sequences. The plot is a 
histogram with 100 bins cut off at a gap length of 30 residues to eliminate the uninformative tail

Fig. 4 Paired difference of mean gap lengths per OMA groups on mammalian data (with 100 bins)
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Inserted segments are longer than deleted segments

Finally, we compared the empirical distributions of multiple-character insertion and 
deletion events over time on the phylogeny. Figure 5 depicts that the empirical distribu-
tions of insertions and deletions are consistent with the empirical gap length distribu-
tion as single-character events are the most frequent, and their frequency decreases as 
the length of the event increases. However, the Kolmogorov-Smirnov two-sample test 
rejects the hypothesis that the insertion and deletion lengths follow the same underlying 
length distribution at the 0.05 significance level (p-value ≈ 1.6e−05 < 0.05 ). This indi-
cates that modelling insertion and deletion lengths separately is more meaningful than 
assuming the fragment lengths have the same distribution. We also observed that inser-
tions tend to be significantly longer than deletions; the mean insertion length was 14.64, 
while it was 7.75 for deletion events.

Results on simulated data

To study ARPIP under fully controlled conditions, we have simulated sequences with 
INDELible. To set realistic parameters, we sampled 1′000 random OMA groups. For 
each sampled OMA group, we used the corresponding PhyML tree to evolve a replicate 
on it, with the root sequence length of 1′000 amino acids, indel rate of 0.1, and indel 
lengths distributed according to the Zipfian distribution with exponent 1.7. INDEL-
ible’s maximum indel length parameter was set to the length of the longest gap in the 
PRANK MSA of the OMA group in question. We supplied the true simulated MSA of 
the observed sequences to ARPIP for all the analyses.

Reconstruction accuracy

On simulated data, ARPIP inferred a positive insertion–deletion bias in all nodes of the 
trees; i.e., more individual characters were inserted than deleted (Appendix Fig. 16). It 
correctly reconstructed more than 98% of ancestral residues, resulting in 90% correctly 

Fig. 5 The empirical distribution of inserted vs. deleted segment lengths. The plot is a histogram with 100 
bins cut off at a gap length of 30 residues to eliminate the uninformative tail
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inferred ancestral columns (Appendix Table 2). The average precision1 in gap character 
inference was 94% , with a recall2 of 97% . We classified the simulation results according 
to the F-score (a measure of predictive performance defined as the harmonic mean of 
precision and recall) in gap retrieval into “optimal” (132 samples with F-score ≥ 99% ) 
and “sub-optimal” (851 samples with ≤ 70% F-score < 99% ). Figure 6 shows the branch 
length distributions for the two classes. The optimal samples tended to have shorter 
branches. For these samples, we observed a higher accuracy in gap reconstruction. 
Indeed, shorter branches provide more information, and we expect lower variances and 
higher accuracy. In contrast, longer branches and higher evolutionary distances show 
lower accuracy, potentially due to the evolutionary signal becoming saturated. Further-
more, the insertion probability in PIP is proportional to branch lengths. Thus, the choice 
of insertion points also depends on the relative branch lengths of the phylogeny. Figure 7 
shows the ROC curve points for each sample (and not just one point, i.e. the average).

Fig. 6 Distribution of ancestral node branch lengths in the simulated data, grouped by inference 
performance

Fig. 7 ROC curve: true positive (recall or sensitivity) vs. false positive (1-specificity) rates at the ARPIP gap 
estimation

1 The percentage of correctly inferred gap characters among all inferred gap characters.
2 The percentage of correctly inferred gap characters among all true gap characters.
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Tracing sequence lengths along the tree

Analogous to the real data analysis above, we correlated the sequence length with-
out gaps in each node with the node’s branch length for each replicate. Again, the 
majority of the Spearman coefficients were not significant at the threshold of 0.05. 
Among the 7.91% significant ones, we observed 11 positive and 3 negative correla-
tions (Fig.  8). Contrary to the real data, here, the majority of the significant repli-
cates tended to grow, while 0.3% were shrinking. This is consistent with the positive 
indel bias.

Fig. 8 The distribution of Spearman correlation coefficients between sequence length (at the tips and root) 
and evolutionary distance per OMA group on simulated data

Fig. 9 Overlapped distributions of gap lengths from ARPIP inference and INDELible true values. The plot is a 
histogram with 100 bins cut off at a gap length of 30 residues to eliminate the uninformative tail
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Gap length distribution is preserved over time

Next, we asked if the gap length distribution in the inferred ancestral sequences dif-
fered from the true distribution, i.e. the one generated by the simulation. The Kol-
mogorov-Smirnov test of the two distributions has the p-value of 0.99 > 0.05 , failing 
to reject that the distributions are the same (Fig. 9). According to the PIP model, we 
expect sequence lengths to be preserved, meaning neither shrinking nor growing. 
Furthermore, there seems to be no decline of gap lengths towards the root of the tree, 
as the gap length distribution inferred at the root of the tree matches the distribu-
tion in the observed sequences at the leaves (Fig. 10), Kolmogorov-Smirnov test with 
p-value of 0.702 > 0.05 . Note that in contrast to the real data case above, where the 
gaps at the leaves were inferred by PRANK, here we were able to compare to the true 
(simulated) MSA.

To further quantify the difference between simulated and inferred distributions, we 
computed the mean gap lengths at the root and the mean gap lengths at the tips for 
each of the 1000 replicates. The differences between the means were symmetrically 

Fig. 10 Empirical gap length distribution at the tips vs. the root in simulated sequences as a histogram with 
100 bins cut off at a gap length of 30 residues to eliminate the uninformative tail

Fig. 11 Paired difference of mean gap lengths per OMA groups on mammalian data (with 100 bins)
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distributed around zero (Fig.  11). The differences were not statistically different from 
zero (Mann–Whitney test, p = 0.67 ; two-sample t-test, p = 0.997).

In summary, our simulation findings corroborate the results from real data. ARPIP 
preserves the gap lengths from the input alignment.

PRANK alignments preserve the gap length distribution on simulated data

To reduce uncertainty in our analyses, we ran a simple test to determine whether 
PRANK alignments of simulated data preserve the length distribution of gaps at the 
leaves of the tree. Given the unaligned sequences from INDELible, we have aligned 
them with PRANK using the correct guide tree and compared the gap length distri-
bution of the true alignment produced by INDELible vs. the alignment produced by 
PRANK. Unfortunately, due to the change in the MSA, we do not have the exact simu-
lated ancestral sequences and are thus unable to evaluate the precision of ancestral state 
reconstruction.

Using the Kolmogorov-Smirnov two-sample test, we get a p-value of 0.99 > 0.05 , 
meaning that the two distributions are not significantly different (Fig. 12). This is a good 
sign that, at the very least, on simulated data, PRANK realigns the sequences well and 
does not introduce any bias. This is insufficient proof that there is no other bias that 
could show up in real data, but it is a good indicator nonetheless.

Discussion and conclusions
Until recently, state-of-the-art ASR methods focused on inferring ancestral characters. 
Indels were often mishandled – either by removing gappy MSA columns, treating gaps 
as ambiguous characters [32], or reconstructing ancestral gaps with ad-hoc indel meth-
ods like “indel coding” [21]. Further, such methods typically do not easily distinguish 
between insertions and deletions. Unlike previous approaches, ARPIP reconstructs 
insertions and deletions independently and uses the evolutionary indel model PIP. How-
ever, PIP only describes single-character indels.

Fig. 12 Empirical gap length distribution at the tips of the tree in the true simulated MSAs and the MSAs 
inferred by PRANK as a histogram with 100 bins cut off at a gap length of 30 residues to eliminate the 
uninformative tail



Page 14 of 23Jowkar et al. BMC Bioinformatics          (2024) 25:370 

In contrast to ASR, methods for MSA inference are more advanced with respect to 
allowing for long indels. One of the most advanced aligners is PRANK; it uses the phy-
logeny to distinguish insertions from deletions and, thus, infers phylogenetically mean-
ingful long indels. All current ASR methods take an MSA as input. Here, we have shown 
on real data (with PRANK alignments) and by simulation (with the true simulated MSAs 
from INDELible) that the ancestral estimates by ARPIP preserve the long indel struc-
ture present in the MSA. This surprising result can partly be explained by the fact that 
under PIP the insertion and deletion points of a site only depend on the gap patterns 
(i.e. the presence and absence of gaps), and are independent of the character states [15]. 
Neighboring sites with identical gap patterns form long indels and lead to identical indel 
histories (see, for example, Appendix B). Further studies will be needed to quantify how 
differences in neighboring gap patterns affect long indel preservation. Based on ARPIP’s 
strong performance, we hypothesize that minor pattern differences will still preserve 
most long indels.

Furthermore, in line with the biology [33] and previous bioinformatics studies [26, 
31, 34], we found that deletions are more frequent than insertions in extant lineages. 
Such deletion bias has been detected across the whole tree of life and has multiple pos-
sible evolutionary explanations. For example, He et al. [30] suggest that even strictly bal-
anced insertion and deletion rates result in a linearly increasing genome size through 
time rather than a completely fixed genome size. The authors attribute this effect to 
the fundamental asymmetry of indels, which can be attributed to the inherent differ-
ence in how the two mechanisms change the size of the genome. An insertion creates 
an additional character, which in turn creates more opportunities both for other inser-
tions and deletions by adding another site where events can happen. In contrast, a dele-
tion removes opportunities for events to happen as the number of characters is reduced. 
The authors suggest that while the huge variety in genome sizes among species seems 
to require exponential size growth, the effective insertion bias cannot act for prolonged 
periods of evolutionary time. Consequently, the mechanisms producing larger genome 
sizes only act sporadically and are likely to be removed in the long term, making them 
very difficult to detect by looking into existing genomes. On the other hand, the com-
monly detected deletion bias could be an artifact of inference. A similar effect, “pull-of-
the-present,” is well known in phylodynamics, where younger lineages show seemingly 
higher birth/lower death rates, even though the real rates remain the same [35]. This 
effect stems from the fact that we are observing a snapshot of evolutionary history that 
is cut off from the future, meaning that while some of the present-day lineages might go 
extinct, they have had less time to do so than older lineages and thus are more likely to 
have been sampled. In the case of a universally observed deletion bias, it could mean that 
deletions might appear more frequently in the present sequences because the deleteri-
ous deletions have not yet been removed by selection.

Finally, until now, virtually all studies on indel length distributions have lumped the 
insertions and deletions together, often just inferring gap length distributions. There 
are a few notable exceptions, for example, Tanay and Siggia [36]. These studies, while 
insightful, are not general-purpose and are limited to a restricted set of organisms 
as they require extensively annotated and closely related genomes. In contrast, our 
approach allows us to quantify insertion and deletion processes and length distributions 
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on any MSA of interest. As a step forward, we suggest inferring separate distributions 
for insertion and deletion lengths. Our findings from mammalian data strongly point to 
longer insertion lengths than deletion lengths. Further, given the higher prevalence of 
deletions and the remarkable uniformity of protein length distribution across the tree of 
life [37], it is conceivable that the two distributions differ, with deletions lengths having a 
smaller mode than insertions. Recent work from Tal Pupko’s lab is a notable step in the 
direction of inferring indel length distributions based on event reconstruction [38].

Data and methods
Sequence acquisition and alignment

First, we used the OMA database [24] to obtain orthologous protein sequences so that 
each orthologous group (OMA group) contained one sequence from each of six mam-
malian species, namely human, chimp, gorilla, macaque, mouse, and rat. The OMA data-
base is known for its higher precision but lower recall compared with the majority of 
other methods [24, 39]. A corresponding species tree was extracted from the Ensembl 
Compara v. 105 [40] by pruning a larger mammalian tree to the six species considered 
in this study (see Fig. 13). This species tree was then provided as a guide tree for recon-
structing multiple sequence alignments (MSAs) using PRANK+F, a phylogeny-aware 
progressive aligner distinguishing insertions from deletions [23]. For each reconstructed 
MSA, we estimated gene trees with branch lengths by maximum likelihood with PhyML 
v3.3.20211231 [41]. We then filtered out the datasets for which the gene trees matched 
the species tree. Finally, a refined PRANK MSA was inferred for each orthologous group 
using a species tree with re-optimized branch lengths as a guide tree (see Fig. 14 for the 
flowchart showing the pipeline). The WAG amino acid substitution model [42] was used 
in all analysis steps, including the ancestral sequence reconstruction described below.

Fig. 13 Illustration of the guide tree extracted from 43 eutherian mammals. The branch lengths were 
estimated using pairwise MSA in Ensembl Compara v.105
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Ancestral sequence reconstruction

The refined MSA was used to infer ancestral sequences at all species tree nodes with 
optimized branch lengths with our recent method implemented in ARPIP [15]. Evolu-
tionary changes on a phylogeny are described via the PIP model [11], where insertions 
follow a Poisson process, while substitutions and deletions follow a continuous-time 
Markov model with an absorbing state. The ARPIP method includes two main steps. 
First, the method infers the most probable indel scenario on a given phylogeny, inde-
pendently for each MSA column. Next, similar to FastML [43], ancestral characters are 
reconstructed on a subtree of the given phylogeny obtained by pruning it to the inferred 
indel scenario. For ASR analyses, the root was placed on the internal branch connecting 
the Catarrhini and Murinae clades. Then, midpoint rooting was used to define the loca-
tion of the root on this branch.

Simulating data

We simulated 1’000 data sets with INDELible [44]. To set realistic parameters, we sam-
pled uniformly at random 1’000 OMA groups and extracted the corresponding PRANK 
MSAs and species trees with PhyML-optimized branch lengths (as described above). 
For each sample, we simulated a replicate on the PhyML tree using a sequence of 1’000 
amino acids at the root. We use a Zipfian indel length distribution with α = 1.7 , a maxi-
mum indel length equal to the maximum gap length of the OMA group in question, and 
an indel rate of 0.1. Sequence lengths in the simulated samples ranged between 336 and 
1’730 amino acids, while the gap lengths ranged from 1 to 1’451 characters. Around 1% 
of simulations produced biologically unrealistic sequences with extremely long gaps, for 
example, the sample with a 1’451 character long gap. Such samples would be considered 
noisy in real datasets (possibly due to sequencing errors) and were thus also removed 
from the simulation analysis before evaluating reconstruction performance. Only four 
simulated samples contained no gaps at all and were also removed from analysis. The 
final simulated dataset contained 786 to 1’371 amino acid long sequences and the gap 
lengths ranged from 1 to 235 characters.

We provided the true MSA from the simulation and the PhyML tree (i.e. true tree) to 
ARPIP for ancestral reconstruction.

Appendix A Tables and figures
Tables related to the accuracy of reconstruction on the simulated data

We report the average accuracy over all the samples (See Tables 2, 3).

Fig. 14 Data acquisition pipeline
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Indel bias plots for the mammalian and simulated data

See Figs. 15, 16.

Table 2 ARPIP performance in simulation. All metrics include the root sequences and have been 
computed for each sample individually. We report the averages over the samples

Metric Consistency (%)

Proportion of correctly inferred ancestral characters 97.88± 2.01

Proportion of correctly inferred ancestral columns 90.35± 2.01

Proportion of correctly inferred ancestral amino acids (i.e., excluding gaps) 97.75± 2.55

Gap precision 94.27± 5.37

Gap recall (sensitivity) 96.99± 3.97

Gap F-score 95.46± 3.37

Gap specificity 99.29± 1.17

Table 3 ARPIP performance in gap character inference by simulation. Performance is shown 
individually for each internal node

Lineage/Clade Gap consistency/accuracy (%)

Precision Recall F-score

Murinae 98.74± 5.24 99.93± 1.10 99.31± 1.60

Homo-Pan 99.99± 0.11 99.9995± 0.02 99.9970± 0.06

Homininae 99.98± 0.20 99.94± 1.51 99.95± 0.97

Catarrhini 98.48± 1.75 99.96± 0.60 99.71± 0.99

Euarchontoglires 77.71± 17.22 85.49± 17.46 79.44± 15.07

Fig. 15 Indel bias (ratio of insertion to deletion events) in mammalian data. A ratio of less than one indicates 
a bias toward deletions
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Appendix B Study of example reconstructions on simulated data
To get a better intuition for the performance of indel reconstruction under PIP, we 
have selected two samples from the pool of simulated data for closer examination. 
The sample s1 is among the data with the lowest gap retrieval performance, while the 
second sample s2 is a sample with a relatively good gap retrieval score.

Sample 1: Sub-optimal performance

We have selected two samples from the pool of simulated data to study the perfor-
mance of gap reconstruction of ARPIP. Sample s1 is among the samples with the 
lowest F-score. For s1 , the F-score is 72.86% , while precision and recall are 100% and 
57.31% , respectively. This means that all the inferred gaps were correct, but only 
around half of the gap characters were inferred. The inference accuracy at the root 
was the lowest not only in this sample but also in all the samples from the simulated 
dataset (see Table 3). Figure 17  visualizes a segment of s1 to investigate ASR perfor-
mance and gap patterns.

Figure  17   highlights the inferred and true ancestral sequences for four regions 
of interest. Region R1 depicts five independent insertion and deletion events. Each 
insertion happened at the root, followed by deletion at the macaque taxon. Region R1 
does not affect the ancestral gap length distribution, but this typical case happens for 
a single stretch of gaps at the taxa node. Similarly, region R2 occurs when a single res-
idue in an MSA column exists. A single insertion at the taxa node usually represents a 
single residue insertion event. This inserted site will show up as a gap in all ancestral 
nodes, affecting the gap length distribution at the ancestral node, while in reality this 
site never existed in the ancestor.

Fig. 16 Indel bias (ratio of insertion to deletion events) in simulated data. A ratio of less than one indicates a 
bias toward deletions
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Region R3 contains multiple long gaps within both ancestral and taxa species. In 
this case, as the neighboring site across both ancestral and descendent nodes has the 
same gap pattern, ARPIP infers the same indel scenario given fixed model parameters. 
A single insertion at the tree’s root is followed by deletion at the Murinae branch.

In s1 , the gap reconstruction accuracy in the root node is very low due to low recall, 
meaning that ARPIP reconstructs a small fraction of the gaps in the root node. The cause 
for low gap character retrieval rates remains to be explained. Figure 18 shows different 
indel scenarios for a constant MSA column with respect to the branch length of the tree.

Region R4 is a masking indel event of region R3, as we have an insertion event at the 
branch leading to the node Murinae. This is a single-site indel event affecting the ances-
tral and descendant gap distribution. Notice that we have a single insertion at node 
Murinae without any deletion events.

Sample 2: Optimal performance

In addition, we have selected sample s2 with an overall F-score of 91.36% , resulting 
from 84.10% precision and 100% recall. This implies that all the gaps were inferred 
correctly, while a fraction of non-gap characters were falsely inferred as a gap. Fig-
ure 19 illustrates that ARPIP performs well in inferring ancestral sequences despite 

Fig. 17 Multiple ancestral sequence alignment of ARPIP inference and INDELible true ancestral states for 
sites 550− 800 of sample s1 . The indel inference for each site is shown at the bottom of the figure
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the complex gap pattern, with 93.42% overall reconstruction accuracy. Moreover, 
sample s2 performs relatively well at the root node compared to sample s1 . Figure 19 
shows the gap pattern in two selected neighboring regions (R1-3) and (R4-6).

The PIP model tends to place the insertion events at the root because the Poisson 
process initiates at the tree’s root. Regions R1 and R3 have a repeated insertion at 
the root followed by a single deletion event at the rat taxon. A neighboring region 
denoted by R2 has an additional gap between the regions mentioned. ARPIP can 
adapt the indel event for this specific site while preserving the gap distribution for the 
other two regions. The gap pattern in these three regions did not affect the gap distri-
bution of ancestral nodes.

Fig. 18 A, B) Two different indel scenarios for a single MSA with various branch lengths. C) Histogram of 
branch lengths of two selected simulated samples
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The transition from gap pattern R1 to R2 (sites 606− 607 ) and R2 to R3 (sites 
607− 608 ) suggests that introducing a new gap in another node would have minimal 
impact on gap inference. The transition from R4 to R5 (sites 656− 657 ) or R5 to R6 
(sites 668− 669 ) shows the ARPIP can preserve gap distribution for the long ances-
tral gaps. The results suggest that ARPIP performs exceptionally on neighboring sites 
with long gaps but suboptimally at the root.

Neighboring segments R4–R6 show two different indel event patterns. We infer 
that the R4 and R6 segments have an insertion at the Catarrhini node, and the R5 seg-
ment has an insertion at Homininae, without any deletion events at these sites. These 
three neighboring regions would affect both the ancestral and descendant gap pat-
terns. Like in sample s1 , region R5 separates R4 and R6 without negatively affecting 
the gap inference. This example shows that ARPIP is relatively good at preserving gap 
patterns in the neighboring sites.

Acknowledgements
Not applicable.

Fig. 19 Multiple ancestral sequence alignment of ARPIP inference and INDELible true ancestral states for 
sites 550− 800 of sample s2 . The indel inference for each site is shown at the bottom of the figure



Page 22 of 23Jowkar et al. BMC Bioinformatics          (2024) 25:370 

Author contributions
All the authors contributed equally to designing the analysis, and writing the manuscript. All authors contributed to the 
article and approved the submitted version.

Funding
Open access funding provided by ZHAW Zurich University of Applied Sciences. This work was funded by the Swiss 
National Science Foundation (SNSF) grant no.$$31003A\_176316$$and no.$$315230\_215379$$to M.A. The funding 
body did not play any role in the design of the study and collection, analysis, and interpretation of data, nor did it play a 
role in writing the manuscript.

Available data and materials
This manuscript is accompanied by the scripts used to produce the results. The experimental data used in this manu-
script is freely available from https:// doi. org/ 10. 5281/ zenodo. 10798 097. The Python scripts used for data processing and 
analysis are also available at https:// github. com/ acg- team/ single- char- indel- ASR- prese rves- long- indels.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not Applicable.

Competing interests
The authors declare that they have no Conflict of interest.

Received: 25 March 2024   Accepted: 12 November 2024

References
 1. Britten RJ, Rowen L, Williams J, Cameron RA. Majority of divergence between closely related DNA samples is due to 

indels. Proc Natl Acad Sci. 2003;100(8):4661–5.
 2. Wetterbom A, Sevov M, Cavelier L, Bergström TF. Comparative genomic analysis of human and chimpanzee indi-

cates a key role for indels in primate evolution. J Mol Evol. 2006;63:682–90.
 3. Mills RE, Luttig CT, Larkins CE, Beauchamp A, Tsui C, Pittard WS, et al. An initial map of insertion and deletion (INDEL) 

variation in the human genome. Genome Res. 2006;16(9):1182–90.
 4. Tóth-Petróczy A, Tawfik DS. Protein insertions and deletions enabled by neutral roaming in sequence space. Mol Biol 

Evol. 2013;30(4):761–71.
 5. Chuzhanova NA, Anassis EJ, Ball EV, Krawczak M, Cooper DN. Meta-analysis of indels causing human genetic disease: 

mechanisms of mutagenesis and the role of local DNA sequence complexity. Hum Mutat. 2003;21(1):28–44.
 6. Dessimoz C, Gil M. Phylogenetic assessment of alignments reveals neglected tree signal in gaps. Genome Biol. 

2010;11:1–9.
 7. Chindelevitch L, Li Z, Blais E, Blanchette M. On the inference of parsimonious indel evolutionary scenarios. J Bioin-

form Comput Biol. 2006;04(03):721–44.
 8. Iglhaut C, Pečerska J, Gil M, Anisimova M. Please mind the gap: indel-aware parsimony for fast and accurate ances-

tral sequence reconstruction and multiple sequence alignment including long indels. Mol Biol Evol. 2024;msae109.
 9. Thorne JL, Kishino H, Felsenstein J. An evolutionary model for maximum likelihood alignment of DNA sequences. J 

Mol Evol. 1991;33(2):114–24.
 10. Fan WTL, Roch S. Statistically consistent and computationally efficient inference of ancestral DNA sequences in the 

TKF91 model under dense taxon sampling. Bull Math Biol. 2020;82.
 11. Bouchard-Côté A, Jordan MI. Evolutionary inference via the Poisson indel process. Proc Natl Acad Sci. 

2013;110(4):1160–6.
 12. Zhai Y, Bouchard-Côté A. A Poissonian model of indel rate variation for phylogenetic tree inference. Syst Biol. 

2017;66(5):698–714.
 13. Maiolo M, Zhang X, Gil M, Anisimova M. Progressive multiple sequence alignment with indel evolution. BMC Bioin-

form. 2018;19(1):1–8.
 14. Maiolo M, Gatti L, Frei D, Leidi T, Gil M, Anisimova M. ProPIP: a tool for progressive multiple sequence alignment with 

Poisson Indel Process. BMC Bioinform. 2021;22:1–12.
 15. Jowkar G, Pečerska J, Maiolo M, Gil M, Anisimova M. ARPIP: Ancestral sequence Reconstruction with insertions and 

deletions under the Poisson Indel Process. Syst Biol. 2023;72(2):307–18.
 16. Thorne JL, Kishino H, Felsenstein J. Inching toward reality: an improved likelihood model of sequence evolution. J 

Mol Evol. 1992;34(1):3–16.
 17. Miklós I, Lunter GA, Holmes I. A “long indel’’ model for evolutionary sequence alignment. Mol Biol Evol. 

2004;21(3):529–40.
 18. De Maio N. The cumulative indel model: fast and accurate statistical evolutionary alignment. Syst Biol. 

2021;70(2):236–57.
 19. Holmes I. A model of indel evolution by finite-state, continuous-time machines. Genetics. 2020;216(4):1187–204.
 20. Holmes IH. Historian: accurate reconstruction of ancestral sequences and evolutionary rates. Bioinformatics. 

2017;33(8):1227–9.

https://doi.org/10.5281/zenodo.10798097
https://github.com/acg-team/single-char-indel-ASR-preserves-long-indels


Page 23 of 23Jowkar et al. BMC Bioinformatics          (2024) 25:370  

 21. Ashkenazy H, Penn O, Doron-Faigenboim A, Cohen O, Cannarozzi G, Zomer O, et al. FastML: a web server for proba-
bilistic reconstruction of ancestral sequences. Nucleic Acids Res. 2012;40(W1):W580–4.

 22. Ross CM, Foley G, Boden M, Gillam EM. Using the evolutionary history of proteins to engineer insertion-deletion 
mutants from robust, ancestral templates using graphical representation of ancestral sequence predictions (GRASP). 
Enzyme engineering: methods and protocols. 2022;p. 85–110.

 23. Löytynoja A, Goldman N. An algorithm for progressive multiple alignment of sequences with insertions. Proc Natl 
Acad Sci. 2005;102(30):10557–62.

 24. Altenhoff AM, Train CM, Gilbert KJ, Mediratta I, Mendes de Farias T, Moi D, et al. OMA orthology in 2021: website 
overhaul, conserved isoforms, ancestral gene order and more. Nucleic Acids Res. 2021;49(D1):D373–9.

 25. Nichols R. Gene trees and species trees are not the same. Trends Ecol Evol. 2001;16(7):358–64.
 26. Zhang Z, Gerstein M. Patterns of nucleotide substitution, insertion and deletion in the human genome inferred 

from pseudogenes. Nucleic Acids Res. 2003;31(18):5338–48.
 27. Ogurtsov AY, Sunyaev S, Kondrashov AS. Indel-based evolutionary distance and mouse-human divergence. 

Genome Res. 2004;14(8):1610–6.
 28. Tao S, Fan Y, Wang W, Ma G, Liang L, Shi Q. Patterns of insertion and deletion in mammalian genomes. Curr Genom. 

2007;8(6):370–8.
 29. Lin M, Whitmire S, Chen J, Farrel A, Shi X, Guo JT. Effects of short indels on protein structure and function in human 

genomes. Sci Rep. 2017;7(1):9313.
 30. He Y, Tian S, Tian P. Fundamental asymmetry of insertions and deletions in genomes size evolution. J Theor Biol. 

2019;482:109983.
 31. Loewenthal G, Rapoport D, Avram O, Moshe A, Wygoda E, Itzkovitch A, et al. A probabilistic model for indel evolu-

tion: differentiating insertions from deletions. Mol Biol Evol. 2021;38(12):5769–81.
 32. Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24(8):1586–91.
 33. de Jong WW, Rydén L. Causes of more frequent deletions than insertions in mutations and protein evolution. 

Nature. 1981;290(5802):157–9.
 34. Kuo CH, Ochman H. Deletional bias across the three domains of life. Genome Biol Evol. 2009;1:145–52.
 35. Nee S, Holmes EC, May RM, Harvey PH. Extinction rates can be estimated from molecular phylogenies. Philos Trans R 

Soc Lond Ser B Biol Sci. 1994;344(1307):77–82.
 36. Tanay A, Siggia ED. Sequence context affects the rate of short insertions and deletions in flies and primates. 

Genome Biol. 2008;9:1–14.
 37. Nevers Y, Glover NM, Dessimoz C, Lecompte O. Protein length distribution is remarkably uniform across the tree of 

life. Genome Biol. 2023;24(1):135.
 38. Wygoda E, Loewenthal G, Moshe A, Alburquerque M, Mayrose I, Pupko T. Statistical framework to determine indel-

length distribution. Bioinformatics. 2024;40(2):btae043.
 39. Altenhoff AM, Levy J, Zarowiecki M, Tomiczek B, Vesztrocy AW, Dalquen DA, et al. OMA standalone: orthology infer-

ence among public and custom genomes and transcriptomes. Genome Res. 2019;29(7):1152–63.
 40. Yates AD, Achuthan P, Akanni W, Allen J, Allen J, Alvarez-Jarreta J, et al. Ensembl 2020. Nucleic Acids Res. 

2020;48(D1):D682-8.
 41. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate 

maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59(3):307–21.
 42. Whelan S, Goldman N. A general empirical model of protein evolution derived from multiple protein families using 

a maximum-likelihood approach. Mol Biol Evol. 2001;18(5):691–9.
 43. Pupko T, Pe I, Shamir R, Graur D. A fast algorithm for joint reconstruction of ancestral amino acid sequences. Mol Biol 

Evol. 2000;17(6):890–6.
 44. Fletcher W, Yang Z. INDELible: a flexible simulator of biological sequence evolution. Mol Biol Evol. 

2009;26(8):1879–88.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Single-character insertion–deletion model preserves long indels in ancestral sequence reconstruction
	Abstract 
	Introduction
	The goals of this study
	Results
	Results on mammalian data
	Comparing the number of inserted and deleted characters
	Tracing sequence lengths along the tree
	Gap length distribution preserved over time
	Inserted segments are longer than deleted segments

	Results on simulated data
	Reconstruction accuracy
	Tracing sequence lengths along the tree
	Gap length distribution is preserved over time
	PRANK alignments preserve the gap length distribution on simulated data


	Discussion and conclusions
	Data and methods
	Sequence acquisition and alignment
	Ancestral sequence reconstruction
	Simulating data

	Appendix A Tables and figures
	Tables related to the accuracy of reconstruction on the simulated data
	Indel bias plots for the mammalian and simulated data

	Appendix B Study of example reconstructions on simulated data
	Sample 1: Sub-optimal performance
	Sample 2: Optimal performance

	Acknowledgements
	References


