
Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you 
modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of 
it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise 
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted 
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy 
of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by-​nc-​nd/4.​0/.

RESEARCH

Yachimura et al. BMC Bioinformatics          (2024) 25:388  
https://doi.org/10.1186/s12859-024-05988-z

BMC Bioinformatics

scEGOT: single‑cell trajectory inference 
framework based on entropic Gaussian mixture 
optimal transport
Toshiaki Yachimura1*, Hanbo Wang2, Yusuke Imoto3, Momoko Yoshida4, Sohei Tasaki5, Yoji Kojima6, 
Yukihiro Yabuta2,3, Mitinori Saitou2,3,6 and Yasuaki Hiraoka3* 

Abstract 

Background:  Time-series scRNA-seq data have opened a door to elucidate cell dif-
ferentiation, and in this context, the optimal transport theory has been attracting much 
attention. However, there remain critical issues in interpretability and computational 
cost.

Results:  We present scEGOT, a comprehensive framework for single-cell trajectory 
inference, as a generative model with high interpretability and low computational cost. 
Applied to the human primordial germ cell-like cell (PGCLC) induction system, scEGOT 
identified the PGCLC progenitor population and bifurcation time of segregation. Our 
analysis shows TFAP2A is insufficient for identifying PGCLC progenitors, requiring NKX1-
2. Additionally, MESP1 and GATA6 are also crucial for PGCLC/somatic cell segregation.

Conclusions:  These findings shed light on the mechanism that segregates PGCLC 
from somatic lineages. Notably, not limited to scRNA-seq, scEGOT’s versatility can 
extend to general single-cell data like scATAC-seq, and hence has the potential to revo-
lutionize our understanding of such datasets and, thereby also, developmental biology.

Keywords:  Trajectory inference, Optimal transport, Gaussian mixture model, Single-
cell biology, Epigenetic landscape

Background
The “epigenetic landscape” proposed by the renowned biologist C. H. Waddington is a 
well-known metaphor for describing cell differentiation and is a key concept in develop-
mental biology [1]. In this conceptual model, cells begin as stem cells at the top of this 
landscape and differentiate into more specialized cell types as they move down the val-
leys during the development, with the ridges representing potential barriers that prevent 
transitions between cell types.

Although a useful concept, the actual shapes of the landscapes during differentiation 
processes have remained unclear in many biological systems. However, recent advances 
in genome-scale high-dimensional single-cell technologies, such as single-cell RNA 
sequencing (scRNA-seq) [2, 3], have opened an avenue for inferring the dynamics of cell 
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differentiation in a data-driven manner, as well as for reconstructing Waddington’s land-
scape. This has made trajectory inference for cell differentiation a central topic in cur-
rent single-cell and systems biology [4–6].

Many methods [7, 8] for trajectory inference have been developed using a single snap-
shot of the scRNA-seq data. In spite of the snapshot data, due to the heterogeneity of 
the cell population, these methods can identify changes in gene expression levels along 
the pseudo-time [9–13]. However, the dynamics of overall cell differentiation are very 
complex, causing the static trajectory inference described above to have obvious limita-
tions [14]. Recently, time-series scRNA-seq data have been used to overcome this dif-
ficulty and to gain more insight into the dynamics of cell differentiation. Nevertheless, 
the destruction of cells at each measurement severely impedes the identification of cell 
populations between adjacent time points. Trajectory inference methods based on the 
optimal transport theory have attracted attention in recent years to deal with this issue.

The optimal transport (OT) is a mathematical theory that provides distances and opti-
mal matchings between probability distributions [15–17]. It has recently been applied in 
biology [18], especially in single-cell analysis [19–21], as well as in several other research 
fields [22]. Among them, Waddington-OT [23] is a well-known method for inferring 
the cell lineages by applying a static unbalanced optimal transport to the time-series 
scRNA-seq data. While it can predict cell lineages from the optimal matching of cell 
populations, since it does not learn the continuous distributions of cell populations (i.e., 
a non-generative model), we cannot gain much insight into the intermediate states in the 
differentiation process. It is also known that such optimal transports between cells do 
not sufficiently reflect those between the cell distributions [24].

On the other hand, optimal transport methods with generative models based on neu-
ral networks have also been reported, such as TrajectoryNet [25], JKONET [26], and 
PRESCIENT [27]. They can generate data in the intermediate states of the differentia-
tion process. However, the neural networks used there introduce black boxes into these 
methods, making biological interpretation difficult.

In general, the computational cost of solving optimal transport problems, includ-
ing the above methods, is very high and can be a bottleneck for trajectory inference. 
GraphFP [28] is a method that addresses this problem by combining dynamic optimal 
transports on cell state graphs with the nonlinear Fokker–Planck equation. The key to 
reducing the computational cost is the formulation using inter-cluster optimal transport. 
Owing to its construction, this method achieves high biological interpretability and low 
computational cost. However, since it deals with only the cell lineages of the cell clusters, 
it cannot infer the continuous state of the differentiation process (e.g., transitions during 
the merging/separation of cell clusters).

In this paper, we present scEGOT, a novel trajectory inference framework based on 
entropic Gaussian mixture optimal transport (EGOT). It aims to provide a comprehen-
sive trajectory inference framework to infer the dynamics of cell differentiation from 
time-series single-cell data. The methodology is based on an inter-cluster optimal trans-
port, where clustering and learning of the distributions are performed on cell popula-
tions in the gene expression space using the Gaussian mixture model (GMM), and each 
Gaussian distribution corresponds to a cell type. The main feature of this method is that 
it has a clear and rigorous correspondence to a continuous optimal transport. Moreover, 
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its computational cost is significantly low owing to the inter-cluster optimal transport. 
Accordingly, we can continuously infer the intermediate states of the cell differentiation 
process at low computational cost. As a comprehensive framework, scEGOT can con-
struct (i) cell state graphs, (ii) velocity fields of cell differentiation (called cell velocity in 
this paper), (iii) time interpolations of single-cell data, (iv) space-time continuous videos 
of cell differentiation with gene expressions, (v) gene regulatory networks (GRNs), and 
(vi) Waddington’s landscape (Fig. 1).

As a biological application, we apply scEGOT to the time-series scRNA-seq data of the 
human primordial germ cell-like cell (human PGCLC) induction system. We demon-
strate that scEGOT provides insights into the molecular mechanism of PGCLC/somatic 
cell segregation. In particular, using the functions of scEGOT, we elucidate the dynamics 
of the PGCLC differentiation and identify the PGCLC progenitor cell population. Fur-
thermore, we find key genes such as NKX1-2, MESP1, and GATA6 that may play crucial 
roles during human PGCLC differentiation.

Results
Theory of EGOT

We present here the mathematical foundation of EGOT and its application to single-cell 
biology, called scEGOT. By generalizing [29], the EGOT is formulated by an entropic 
regularization of the discrete optimal transport, which is a coarse-grained model derived 
by taking each Gaussian distribution as a single point.

We first summarize the properties of the solution of the EGOT and then discuss the 
entropic transport plan constructed from the solution of EGOT. Furthermore, we show 
a correspondence between EGOT and the continuous optimal transport presented by 
[30]. This theoretical compatibility enables us to present a novel trajectory inference 
framework in scEGOT. Specifically, this framework allows us to construct a cell state 
graph and infer the intermediate states and velocity of the cell differentiation process 

Fig. 1  Sketch of the framework of scEGOT. scEGOT is a trajectory inference method based on entropic 
Gaussian mixture optimal transport (EGOT) that extracts various local and global structures of cell 
differentiation from scRNA-seq data. scEGOT takes time-series scRNA-seq data as input and outputs the 
following six cell-differentiation structures: (i) cell state graphs: transitions between cell populations over 
time; (ii) cell velocity: velocity of cell differentiation in gene expression space; (iii) interpolation: generation 
of pseudo-scRNA-seq data at intermediate time points; (iv) animation: visualization of gene expression 
dynamics; (v) gene regulatory network (GRN): regulatory relationships between genes during transitions; and 
(vi) Waddington’s landscape: cell potency and a global view of the cell differentiation pathway
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(cell velocity), from which we can further infer the GRNs between adjacent time points 
and reconstruct Waddington’s landscape in the gene expression space, with high biologi-
cal interpretability and low computational cost (we refer to “Methods” section for more 
details).

All proofs of the mathematical statements made here are provided in the supporting 
information.

Gaussian mixture model

Let {Xti}1≤i≤I denote the time-series data of the point clouds in Rn(n ≥ 1) with I time 
stages (possibly with different sample sizes). For each point cloud Xti , we apply a Gauss-
ian mixture model (GMM) [31]. Then, we obtain

where Ki denotes the number of clusters in the distribution at ti , µk
i = N (mk
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The solution w of the EGOT represents how close the Gaussian distributions of the adja-
cent time points are to each other. Thus, it indicates the similarity between the cell pop-
ulations when applied to the scRNA-seq data. Since the discrete entropy H is a strongly 
concave function, the objective function of (2) is a strongly convex function. Therefore, 
the optimization problem (2) has a unique optimal solution. In addition, by considering 
the Lagrangian associated with the problem (2) and the first-order optimality condition, 
the following proposition holds:

Proposition 1  The optimization problem (2) has a unique solution wε given by

where (u, v) ∈ R
Ki
+ × R

Ki+1
+  are derived from the dual variables of the Lagrangian associ-

ated with the problem (2).

We emphasize that by coarse-graining point clouds with Gaussian mixture distribu-
tions, the EGOT is significantly less computationally expensive than directly analyzing 
the optimal transports with full point clouds (e.g., Waddington-OT [23]). Furthermore, 
as we will see subsequently, EGOT can recover the solution and distance of a continuous 
optimal transport between Gaussian mixtures, which will provide deeper insights into 
the stochastic dynamics of cells in the gene expression space.

Convergence of EGOT and its connection to continuous OT

In this section, we clarify the connection between EGOT and the following continuous 
optimal transport proposed by [30]:
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Let us first consider the convergence of the EGOT (2) and the solution (3) as ε → 0 . 
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and � · �1 denotes the ℓ1 norm of vectors (viewing w as a vector). Moreover, dεG → dG as 
ε → 0 with the following estimate:

As a result of (5), the solution remains largely unaffected even when the regulariza-
tion parameter ε is changed, and there is almost no impact on the solution.

Next, we define an entropic transport plan

where gmk
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with

By applying the convergence result (5) and the estimate (7), we obtain the main theorem 
in this paper, which provides a correspondence between EGOT and the continuous opti-
mal transport (4) (Fig. 2).
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Fig. 2  Illustration of the connection between EGOT (2) and continuous optimal transport (4)
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Moreover, dεG → MW 2
2  as ε → 0 with the following estimate:

Theorem 3 enables us to go back and forth between the discrete and continuous opti-
mal transports through the entropic transport plan (8). Thus, it provides a versatile tra-
jectory inference framework (from continuous OT) with low computational complexity 
(from discrete OT) (Figs. S1, S2). Moreover, from the entropic transport plan (8), it is 
possible to make a map that transports the least cost from position x (entropic barycen-
tric projection map) and the interpolated distribution between µti and µti+1 (entropic 
displacement interpolation). These mathematical results can be used to construct the 
functions of scEGOT, such as velocity fields of cell differentiation (cell velocity) and 
space-time continuous videos with gene expressions. Using cell velocity, it is also pos-
sible to infer the GRNs between adjacent time points and to reconstruct Waddington’s 
landscape in gene expression space (for more information on the theory of scEGOT’s 
functions, see “Methods” section).

Biological application of scEGOT to human PGCLC induction system dataset
This section presents a biological application of scEGOT to time-series single-cell gene 
expression data and its validation. In particular, we consider the human primordial germ 
cell-like cell (PGCLC) induction system in vitro. In this in vitro culture system, previ-
ous studies have shown that genes such as EOMES, GATA3, SOX17, TFAP2C are criti-
cal genes for PGCLC differentiation [37–41]. However, the induction rate of PGCLC is 
only approximately 10 to 40 %, and the precise molecular mechanisms underlying the 
PGCLC differentiation and PGCLC/somatic cell segregation remain poorly understood. 
Using the functions of scEGOT, we characterize the progenitor cell population and elu-
cidate the molecular mechanism of PGCLC/somatic cell segregation.

Clustering

scEGOT allows for the manual division of clusters. From a biological perspective, we set 
the number of clusters Ki as 1, 2, 4, 5, and 5 for day 0, day 0.5, day 1, day 1.5, and day 2, 
respectively (Figs. 3A and S6A). It is also possible to determine the number of clusters 
using information criterion methods such as AIC or BIC. Each cluster is characterized 
by the high expression of key lineage-specific markers, enabling us to identify distinct 
lineages accurately. Specifically, we identified PGCLC ( NANOG+ , SOX17+ , TFAP2C+ , 
PRDM1+ ), amnion-like cell (AMLC) ( TFAP2A+ , TFAP2C+ , GATA3+ ), endoderm-like 
cell (EDLC) ( GATA6+ , SOX17+ , FOXA2+ ), and extra-embryonic mesenchyme-like cell 
(EXMCLC) ( HAND1+ , FOXF1+ ) (Figs. 3B,  S6B, C). Identifying five clusters on days 1.5 
and 2 reflects the differentiation states of the ExMCLC, which are divided into two clus-
ters due to differences in their maturation stages. These cluster annotations are consist-
ent with previous studies [42–44].

∫
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Verification of scEGOT interpolation

We verify the accuracy of the entropic displacement interpolation of scEGOT. We 
set the data at day 1 as the reference distribution and generated the interpolation dis-
tribution using the data at day 0.5 (two clusters) and 1.5 (five clusters). The analysis 
shows that the interpolation distribution (1000 cells) properly reproduces the refer-
ence distribution (Fig. 3C). This was quantitatively verified using the silhouette score 
(Fig. 3D), showing that the interpolation by scEGOT is well overlapped with the ref-
erence data rather than the source and target data. Here, the silhouette score indi-
cates that the clusters are separated (overlapped, resp.) if the value is close to one 
(zero, resp.). We also performed the same verification for all other days and calculated 
the silhouette score (Figs. S3, S4).

Fig. 3  Application of scEGOT to the human PGCLC induction system dataset and identification of 
differentiation pathways. A, B PCA plots of the PGCLC induction dataset. The cells are colored according 
to A experimental day and B cell type. The gray points in B are cells at the middle stages (days 0.5−1.5). C 
Verification of scEGOT interpolation. Comparison between the reference distribution (day 1) and scEGOT 
interpolation distribution generated by datasets at days 0.5 and 1.5 on PCA coordinates. D Box plot of the 
silhouette scores over 100 trials of the scEGOT interpolation versus the source (day 0.5)/reference (day 1)/
target (day 1.5). E, F Cell state graphs on PCA coordinates and by a hierarchical layout. The colors of the 
edges denote the transport rates ( wk ,l/π

k
i
 ). G, H Volcano plots for day 0.5 (day 0.5–1 and day 0.5–2) and day 

1 (day 1–1 and day 1–2) clusters. The horizontal and vertical lines show the log2 fold change, where the fold 
change indicates the rate of variation of gene expression and the negative common logarithm of p-values 
calculated from the independent samples t test, respectively. The annotated points show cluster-specific 
genes with G | log2( Fold change)| > 0.6 and − log10(P value) > 150 and H | log2( Fold change)| > 0.8 and 
− log10( Pvalue) > 25
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Trajectory inference with cell state graph

In this section, we analyze the trajectory of cell differentiation in the human PGCLC 
induction system using the cell state graph (Fig.  3E) generated by scEGOT and gain 
molecular insights into the mechanism that segregates PGCLC from somatic lineages. 
We also applied a standard trajectory inference method, PAGA [13], to the same dataset 
(Fig. S5). The PAGA graph represents cell clusters and their similarities using nodes and 
edges. However, in datasets with rapidly changing cell states, such as transitions from 
iMeLC to day 1, the PAGA graph edges, determined by distances between clusters, may 
fail to capture developmental connectivity accurately. In contrast, the cell state graph 
generated by scEGOT successfully captures cell differentiation developments across 
substantial shifts in cell states. It enables us to identify key transition points and under-
stand the temporal sequence of differentiation events. This feature makes the cell state 
graph more informative in terms of capturing the dynamic process of differentiation, 
providing clearer insights into how cell states evolve over time.

The cell state graph shows four primary differentiation pathways leading to PGCLC, 
AMLC, EDLC, and EXMCLC as follows:

PGCLC: day 0–1 → day 0.5–1 → day 1–1 → day 1.5–1 → day 2–1;
AMLC: day 0–1 → day 0.5–1 → day 1–1 → day 1.5–2 → day 2–2;
EDLC: day 0–1 → day 0.5–1 → day 1–1 → day 1.5–3 → day 2–3;
EXMCLC: day 0–1 → day 0.5–2 → day 1–3 → day 1.5–5 → day 2–5.
The top path in the cell state graph (Fig.  3F) represents the PGCLC differentiation 

pathway. This path features key PGCLC markers such as NANOG, SOX17, TFAP2C and 
PRDM1 [37, 38, 40, 41] (Fig. S6C). The expression levels of these markers increase from 
day 0.5 to day 1.5. It is of note that major EXMCLC progenitors are segregated as early 
as day 0.5 (see “Space-time continuous gene expression analysis” section for further 
analysis). Additionally, EXMCLC can be generated through alternative pathways, most 
typically, day 0–1 → day 0.5–1 → day 1–2 → day 1.5–4 → day 2–4, suggesting that day 
0.5–1 cells retain a competence to differentiate into EXMCLC. Indeed, while there are 
pathways from the PGCLC progenitors until day 1 to the somatic cell populations, there 
is no pathway in the opposite direction. This result is reminiscent of Weismann’s barrier 
[45].

To gain a deeper understanding of PGCLC/EXMCLC segregation, we examine the dif-
ference in the gene expression value between the clusters. The volcano plots (Figs. 3G, 
H) show the comparison between two branched clusters at day 0.5 (day 0.5–1 and day 
0.5–2) and day 1 (day 1–1 and day 1–2) of the PGCLC and EXMCLC lineages. Nota-
bly, we found that TFAP2A is expressed in the PGCLC progenitor cell population (day 
0.5–1). Previous studies have shown that this gene plays an important role in PGCLC 
differentiation [42, 46, 47], suggesting that the cell state graph generated from scEGOT 
has the ability to capture the progenitor cell population of PGCLC differentiation.

We also discovered that NKX1-2 is highly expressed in the PGCLC progenitor com-
pared to the somatic cells. This gene is known to be expressed during mesoderm devel-
opment [48]. However, its role in PGCLC differentiation has been unknown. This finding 
will be further investigated in later sections using other functions of scEGOT.

Conversely, genes that are highly expressed in the EXMCLC pathway may also play 
a critical role in PGCLC/EXMCLC segregation. The early mesoderm markers (MESP1, 
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MESP2) and the later mesoderm markers (GATA6, FOXF1) are significantly upregulated 
on day 0.5–2. This shows that these somatic genes might act as repressors of PGCLC 
during the segregation.

Furthermore, when comparing the clusters day 1–1 and day 1–2, the former, which 
is on the way to the PGCLC pathway, shows enrichment of key PGCLC specification 
genes, namely NANOG, TFAP2C, SOX17, KLF4, SOX15 and PRDM1 (Fig.  3H). This 
indicates that the PGCLC path is more specified on day 1.

In mouse PGC, genes such as stella and fragilis are actively expressed, while HOX 
genes such as Hoxa1, Hoxb1 are repressed [49–52]. On the other hand, we did not 
observe any HOX gene expression in human PGCLC. Interestingly, in our induction sys-
tem, HOXA1, HOXB2, HOXB3, HOXB5 and HOXB6 are highly expressed in the EXM-
CLC lineage.

From the above observation, the cell state graph captures the trajectories of human 
PGCLC induction well and can potentially find key genes by analyzing differentially 
expressed genes among the clusters. In particular, the cell state graph succeeded in trac-
ing PGCLC/somatic cell segregation and identified key genes that may enhance or sup-
press PGCLC differentiation, such as NKX1-2, MESP1, MESP2, and GATA6.

Velocity analysis

We investigated the dynamics of the developmental process in human PGCLC induc-
tion using the cell velocity generated by scEGOT and compared our method with the 
RNA velocity [54, 55]. RNA velocity is a standard method to estimate the velocity field 
in the gene expression space from scRNA-seq data, and it is also widely used to infer cell 
trajectories [56].

The comparison of the normalized speeds between cell velocity and RNA velocity 
showed that, despite some differences in the iMeLC and early mesoderm populations, 
the overall behavior of cell and RNA velocities is consistent between the two methods 
(Fig. S7). This consistency suggests that both velocity fields accurately reflect the dynam-
ics of lineage determination, aligning with biological observations (Fig. 4A, B).

Furthermore, scEGOT can provide the velocities for all the genes, whereas the RNA 
velocity cannot calculate the velocities for genes without a sufficient amount of detec-
tion of unspliced RNA [54, 55] (Fig. 4C). We also emphasize that since the cell velocity 
is a data-driven method, it can be applied not only to scRNA-seq data but also to any 
other time-series single-cell data, such as scATAC-seq data. We apply it to time-series 
scATAC-seq data for innate immune cells from mouse-draining lymph nodes (Fig. 4D). 
The flow of NK cells and monocytes from inactive to active states can be observed. 
Overall, the cell velocity allows us to perform a comprehensive velocity analysis.

Space‑time continuous gene expression analysis

To study the cell differentiation dynamics, such as the bifurcation time of PGCLC/
somatic cell segregation, we constructed the time interpolations of cell populations 
and the time-continuous gene expression dynamics (animation) using the entropic dis-
placement interpolation (Fig. 5 and Movies S1–S4). The result clearly shows the tempo-
ral evolution of cell differentiation and gene expression patterns for the marker genes 
of PGCLC. In particular, as early as 0.25 and more clearly at 0.75 days, the clusters 
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NKX1-2+ and NKX1-2− are separated, and the former cluster exactly moves to the 
PGCLC population ( TFAP2C+ , PRDM1+ ) (Movies S1, S3).

On the other hand, although the cluster TFAP2A+ , which has been reported as the 
progenitor cell population of the PGCLC in previous studies [42, 46, 47], shows a sim-
ilar tendency to the cluster NKX1-2+ until day 1, TFAP2A is also highly expressed in 
the AMLC population after this day, implying that TFAP2A alone cannot identify the 
PGCLC progenitor cell population. This analysis suggests that NKX1-2 is one of the ear-
liest marker genes of the PGCLC progenitor cell population, and its expression guides 
the cell population to the PGCLC pathway. It also shows that the bifurcation of PGCLC/
somatic cell segregation occurs much earlier, as early as 0.25 days.

GRN analysis

We inferred the GRNs for PGCLC induction. We computed the GRN matrix using the 
cells in the clusters on the PGCLC pathway, which is determined by the cell state graph 
analysis. We then extracted a subnetwork of the GRN specified by the key genes of the 
human PGCLC specification PRDM1, SOX17, TFAP2C and two candidates TFAP2A and 
NKX1-2 of PGCLC progenitor marker genes (Fig. 6A).

On days 0-−0.5, we found that both TFAP2A and NKX1-2 activate SOX17 which is 
essential for PGCLC differentiation [37, 38]. However, on days 0.5–1, NKX1-2 con-
tinues to activate the other PGCLC regulators, whereas TFAP2A does not interact 

Fig. 4  Comparison of velocities between scEGOT (cell velocity) and scVelo (RNA velocity). A Stream plot of 
cell velocity generated by scEGOT. B Stream plot of RNA velocity generated by scVelo (stochastic mode). C 
Left: Percentage of genes for which velocities can be computed by scEGOT and scVelo. Right: Histogram of 
the coverage of scVelo for mean expression levels. The red dashed line is the total coverage of scVelo (92.3%). 
D Cell velocity for scATAC-seq data of mouse innate immune cells at three-time points (days 0, 1, and 28) [53]
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with them. This result suggests that NKX1-2 may play a more essential role than 
TFAP2A during human PGCLC differentiation.

Reconstruction of Waddington’s landscape

Finally, we reconstructed Waddington’s landscape to validate the differentiation abil-
ity of cells in the PGCLC induction system by scEGOT. Figure 6B–E show the recon-
structed Waddington’s landscape together with the expression values of the genes 
NKX1-2, MESP1, and GATA6.

The landscape (Fig. 6B) shows that the iMeLCs, which are characterized by high 
levels of pluripotent genes (SOX2, NANOG, POU5F1) and relatively low levels of 
early mesoderm genes (TBXT, MIXL1, EOMES) (Fig. S6B), are located at the top of 
the potential. This suggests that these cells have high plasticity, which is consistent 
with biological knowledge.

In addition, viewing the gene expression values on the landscape allows us to 
understand the contribution of the genes to cell differentiation. For instance, it can 
be seen that NKX1-2 contributes to the early stage of PGCLC (Fig. 6C). In contrast, 
MESP1 and GATA6 contribute to the early stage of EXMCLC and EDLC differen-
tiation, respectively (Fig.  6D–E). Importantly, we emphasize that their expression 
levels are complementary at days 0.5–1, suggesting that these genes may play the 
role of landscape pegs, forming a barrier between the PGCLC and the somatic cell 
pathways.

Fig. 5  Input scRNA-seq data (gray columns) and interpolated data (white columns) on the top two 
principal components. The first row shows the contour plots of the Gaussian mixture distributions. The 
second row denotes the cell populations of the real scRNA-seq data (gray columns) and those generated 
by the interpolated Gaussian mixture distributions (white columns). The third to sixth rows show the gene 
expression values of NKX1-2, TFAP2A, TFAP2C, and PRDM1 in the cell populations
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Discussion and conclusions
We have formulated an entropic Gaussian mixture optimal transport (EGOT) and 
proved the mathematical properties of EGOT. Based on EGOT, we have also pro-
posed a novel single-cell trajectory inference framework (scEGOT) that infers cell 
differentiation pathways and gene expression dynamics from time-series scRNA-seq 
data. Furthermore, we applied scEGOT to the human PGCLC induction system and 
validated it biologically.

scEGOT provided us with the following outputs in biological applications. The cell 
state graph, which represents the cell clusters and their transport rates as a graph 
model, showed the trajectories between the cell populations. The cell velocity gener-
ated by the entropic barycentric projection map has expressed the cell differentiation 
flow, which describes more detailed and consistent structures in the case of human 
PGCLC than the conventional method. The entropic displacement interpolation, 
which can generate a pseudo-cell population at any intermediate time, has simulated 
the temporal evolution of gene expression dynamics in single-cell resolution and has 
certainly identified the bifurcation time. The GRN analysis has contributed to the 
discovery of candidates of upstream genes that induce a cell differentiation system. 
The reconstruction of Waddington’s landscape, constructed based on the potential of 

Fig. 6  Reconstruction of Waddington’s landscape and inferring the GRNs for the human PGCLC induction 
system. A Gene regulatory networks of the human PGCLC induction system generated from scRNA-seq 
data at days 0 to −0.5, days 0.5–1, days 1 −1.5, and days 1.5–2. B–E Reconstruction of Waddington’s 
landscape of human PGCLC induction data. The x-, y-, and z-axes denote the PC1, PC2 coordinates, and the 
Waddington potential, respectively. The visualization was prepared using CellMapViewer: https://​github.​com/​
yusuke-​imoto-​lab/​CellM​apVie​wer. The colors indicate B the magnitude of the potential, C NKX1-2, D MESP1, 
and E GATA6 expression values

https://github.com/yusuke-imoto-lab/CellMapViewer.
https://github.com/yusuke-imoto-lab/CellMapViewer.
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the gradient flow associated with the cell velocity, has summarized the pathway of 
cell differentiation and represented the cell potency of each cell type. We note that 
all the outputs represented by the PCA coordinates can be replaced by those with 
other coordinates generated by other dimensionality reduction methods, such as uni-
form manifold approximation and projection (UMAP) [57], which provides biological 
interpretations from different aspects (Fig. S8).

Through the abovementioned scEGOT analysis, we have identified genes such as 
NKX1-2, MESP1, and GATA6 as potential regulators for human PGCLC differentiation 
or its divergence towards somatic lineages. The biological functions of these genes in 
human PGCLC are still unknown and are expected to be revealed through biological 
experiments.

Looking back on this paper, we have revisited an epigenetic world that was once envi-
sioned by Waddington. He viewed the process of cell development as a canal and stated 
that a cell within a region denoting a particular state would be carried through the canals 
to a single specified cell, which is the corresponding steady state. He modeled such a 
time transition as a phase-space diagram of development (Fig. 3 in [1]), which is a simi-
lar concept to the cell state graph. He then modeled the epigenetic landscape, which is 
a well-known potential model, by simply describing the phase-space diagram in a three-
dimensional picture (Fig. 4 in [1]). He further explained that the chemical states of the 
genes and their regulatory system underlie the landscape model (Fig. 5 in [1]).

Overall, scEGOT has realized the images envisioned by Waddington through a com-
prehensive mathematical framework called EGOT and has succeeded in capturing com-
plex cell differentiation systems and their dynamics by analyzing the cell state graph, cell 
velocity, interpolation analysis, gene regulatory network, and reconstruction of the epi-
genetic landscape.

We believe that scEGOT is useful for a broader range of biological data because it is 
a data-driven method. In other words, all scEGOT settings are never limited to scRNA-
seq data. For example, scATAC-seq data containing open chromatin information could 
be applied in scEGOT to provide a deeper explanation of cell differentiation and line-
age fate determination at epigenome resolution (Fig. 4D). Indeed, the epigenetic regula-
tions during cell differentiation, such as the regulations of cis-regulatory elements and 
transposon elements, are fundamental questions, and our approach will be instructive in 
addressing such questions.

Methods
In what follows, we describe the theory of the functions of scEGOT.

Cell state graph by EGOT

In the case of point clouds obtained from the time-series scRNA-seq data, each Gauss-
ian distribution and its weight can be regarded as a certain cell type and its existence 
probability, respectively. Then, the solution of EGOT, which represents how much 
weight is transported between the Gaussian distributions at adjacent time points, can be 
interpreted as the degree of relationship between these cell types.
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Based on this interpretation, we define a cell state graph of cell differentiation as fol-
lows. For each adjacent times ti, ti+1 , a complete weighted bipartite graph (Vi,Wi) in Rn 
is constructed as

where the set Vi of nodes consists of the mean vectors at times ti and ti+1 represent-
ing the locations of the cell types, and the set Wi of the weighted edges are given by the 
normalized solution of the EGOT (called transport rate) corresponding to the degree of 
relationship of the cell types. Then, the cell state graph (V, W) is constructed by combin-
ing (Vi,Wi) for all the time stages. From this cell state graph, we can study the state tran-
sitions of the cell population in the temporal evolution.

Entropic barycentric projection map and cell velocity

The entropic transport plan γ ε(x, y) can be regarded as the weights to be transported 
from the point x to y. By averaging over y, we can define an entropic barycentric projec-
tion map of the EGOT, which transports the least cost from position x, as follows:

where γ ε
x (y) is the disintegration of the entropic transport plan γ ε with respect to the 

first marginal µti , i.e., dγ ε(x, y) = dγ ε
x (y)dµti(x) . Then, by (8), we can compute the 

entropic barycentric projection map T ε explicitly.

Proposition 4  The entropic barycentric projection map with respect to γ ε is expressed 
as

where Pε
k ,l denotes

From the definition, the entropic barycentric projection map T ε represents where a 
cell x ∈ Xti at time ti moves at time ti+1 in the gene expression space. Accordingly, we 
define the rate of change of the gene expression for a cell x from the time ti to ti+1 , called 
the cell velocity, as

The cell velocity v(x) expresses which direction and how much the gene expression of 
the cell x changes. A high speed |v| implies a significant change of the cell in cell differ-
entiation, whereas a low speed |v| indicates that the gene expression hardly changes and 
is close to the steady state.
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Entropic displacement interpolation and gene expression animation

One of the great advantages of the optimal transport theory is that we can obtain the dis-
placement interpolations between the probability distributions, allowing us to study the 
dynamics of cell differentiation. We define the following entropic displacement interpola-
tion between µti and µti+1

at ti+s = (1− s)ti + sti+1 , s ∈ [0, 1] . Here wε
k ,l is the solution (3), and 

µ
k ,l
ti+s

= N (mk ,l
i+s,�

k ,l
i+s) with mk ,l

i+s = (1− s)mk
i + sml

i+1 and

where In is the n× n identity matrix and

Theorem 5  The probability distribution

is the geodesic with the maximum entropy between µti and µti+1 in the space G2n(∞) 
equipped with the distance MW2 , where w∗ is the solution (6). Moreover, for any s ∈ [0, 1] , 
the entropic displacement interpolation µε

ti+s
 converges to µ∗

ti+s
 narrowly.

From Theorem 5, we see that the entropic displacement interpolation (12) is an approxi-
mation of the geodesic (13) in the space G2n(∞) equipped with the distance MW2 . Through 
this entropic displacement interpolation (12), we can generate an interpolation distribution 
between µti and µti+1 , which means that the interpolation of the adjacent scRNA-seq data 
Xti and Xti+1 can be generated. Therefore, by successively constructing the interpolations for 
all the time stages, we can create an animation of the gene expressions to track the time-
varying dynamics of cell differentiation.

Estimation of GRNs

Once the cell velocity (11) representing the changes in the gene expressions is obtained, it 
can be used to estimate the gene regulatory network (GRN) that drives the cell differen-
tiation dynamics. Let X̂ = {xj}1≤j≤D ∈ R

n×D be a cell population consisting of D cells for 
which the GRN is to be obtained. We assume that the gene expressions in the cell popula-
tion X̂ are driven by linear dynamics
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where A ∈ R
n×n is the matrix characterizing the GRN and represents the effect of the 

expression level of each gene on the expression dynamics of the other genes. By the cell 
velocity (11), we may assume that v(X̂) = dX̂

dt  . Thus, we obtain

Based on (14), the GRN matrix A∗ is estimated by solving the following regression 
problem:

where � > 0 is a regularization parameter. In terms of each cell xj , this can be expressed 
as

where vi(xj) is the i-th component of v(xj) . By solving the problem (15) or (16) at each 
adjacent time point, we can estimate the GRNs driving cell differentiation.

We compared our approach to other methods for GRN inference using the BEELINE 
benchmark framework and its test data [58]. SCODE [59] is an algorithm similar to our 
method included in BEELINE. While both scEGOT and SCODE are designed to infer 
GRNs from scRNA-seq data, they differ in their underlying methodologies. SCODE 
utilizes ordinary differential equations (ODEs) to model gene expression dynamics and 
focuses on reconstructing the regulatory networks using linear ODEs and linear regres-
sion. SCODE applies this approach to pseudotime data, treating it as a time-like variable 
to infer GRNs from scRNA-seq data. In contrast, scEGOT can construct GRNs that cap-
ture dynamic regulatory interactions over time by using cell velocity. This enables scE-
GOT to directly incorporate the continuous temporal dynamics of cell differentiation, 
providing a more precise representation of gene regulation over time.

When applying scEGOT to the BEELINE benchmark test data, we first clustered the 
data based on pseudotime and then treated these clusters as virtual time-series scRNA-
seq data. This approach allowed us to apply scEGOT’s GRN inference algorithm to 
single-time scRNA-seq data. We found comparable performance in terms of GRN infer-
ence (Fig. S9). We also note that the strength of scEGOT’s GRN inference lies in its abil-
ity to construct time-dependent (dynamic) GRNs using the cell state graph, which goes 
beyond static GRN inference typically used for single time point data. This dynamic 
approach provides a more comprehensive view of the regulatory interactions through-
out the differentiation process, allowing scEGOT to offer unique insights into gene regu-
lation over time.

Construction of Waddington’s landscape

From the cell velocity (11), we can construct Waddington’s landscape in the gene expres-
sion space. The Helmholtz–Hodge decomposition implies that the cell velocity can be 
written as
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where ϕ is the gradient potential and q is the divergence-free part. Since Waddington’s 
landscape is a gradient system, the potential ϕ can be regarded as the realization of Wad-
dington’s landscape in the gene expression space. To construct ϕ , we take the divergence 
operator in the equation (17) and obtain the following differential equation

The partial differential equation (18) is not uniquely solvable in general since the bound-
ary conditions are undefined. In the following, instead of solving (18) directly, we 
consider it as an equation on the k-nearest neighbor graph of cells and look for its least-
squares and least-norm solution. In other words, we consider the potential ϕ as the solu-
tion to the following minimization problem:

where S is the set of solutions to the least-squares minimization problem

Here, �̂ denotes the graph Laplacian on the k-nearest neighbor graph of the cells. The 
solution of the minimization problem (19) can be written as

where (−�̂)p-inv denotes the Moore–Penrose pseudoinverse of (−�̂) . Note that the 
divergence of the cell velocity v on the right-hand side in (20) can also be computed con-
cretely, as the cell velocity (11) is obtained explicitly. Thus, the following theorem holds.

Theorem 6  The potential ϕ∗ is represented by

with

where (·, ·) denotes the standard Euclidean inner product of vectors and Ck denotes

Through this procedure, we can construct the gradient potential (20) of the cells as in 
Waddington’s landscape.

We compared the Waddington potential reconstructed by scEGOT with the poten-
tial inferred by CytoTrace2 [60], which represents the potency score. In CytoTrace2, the 
potency score ranges from 0 to 1, but the values appear to be reversed in the PGCLC 
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dataset. For example, iMeLC has a potency score closer to 0, while other cell types show 
scores closer to 1. This is opposite to the expected biological knowledge, where iMeLC 
should have a higher score. However, when we consider (1- the potency score), we found 
that it closely matches the Waddington potential from scEGOT. This suggests that both 
methods capture a similar Waddington landscape (Fig. S10).

Culture of human iPSC

We are utilizing the 585B1 BTAG hiPSC (46, XY) male cell line, which is maintained in 
StemFit AK02 medium (Ajinomoto, Tokyo, Japan) on iMatrix-511 (Nippi, Tokyo, Japan) 
coated cell culture plates. For cell passage, cells are dissociated using 0.5x TrypLE Select, 
a mixture of TrypLE Select (Gibco, 12563-011) and PBS(-) (Phosphate Buffered Saline, 
Nacalai Tesque, 11480-35) containing 0.5 mM EDTA (Nacalai Tesque, 06894-14), at 
37 °C for 10 minutes. The cells are resuspended in AK02 medium supplemented with 10 
µ M Y27632 (Tocris, 1254) and replaced with fresh medium without Y27632 after 24 h. 
The medium is changed every other day.

hPGCLC induction

The methods for hPGCLC induction were carried out as previously described (Sasaki 
et  al., 2015). hiPSC were induced to iMeLC in fibronectin-coated (Millipore, FC010) 
12-well plates using induction medium [GMEM (Gibco, 11710-035) containing 15% 
KnockOut Serum Replacement (KSR) (Gibco, 10828-028), 1% MEM Non-Essential 
Amino Acids Solution (NEAA) (Gibco, 11140-050), 1% penicillin-streptomycin, 2 mM 
L-glutamine (Gibco, 25030-081), 2 mM sodium pyruvate (Gibco, 11360-070), and 0.1 
mM 2-mercaptoethanol], supplemented with 3 µ M CHIR99021 (Tocris, 4423), 50 ng/ml 
activin A (PeproTech, AF-120-14), and 10 µ M Y27632. After 42-48 hours, iMeLC were 
dissociated into single cells using 0.5x TrypLE Select for 10 minutes at 37 °C and trans-
ferred to a low-cell-binding V-bottom 96-well plate (Greiner, 651970) containing hPG-
CLC induction medium [GMEM with 15% KSR, 1% NEAA, 1% penicillin-streptomycin, 
2 mM L-glutamine, 2 mM sodium pyruvate, and 0.1 mM 2-mercaptoethanol], supple-
mented with 200 ng/ml BMP4 (R&D Systems, 314-BP), 100 ng/ml SCF (R&D Systems, 
255-SC), 10 ng/ml LIF (Merck Millipore, LIF1010), 50 ng/ml EGF (PeproTech, AF-100-
15), and 10 µ M Y27632. The hPGCLC induction medium was not changed until analysis.

10X experiment and dataset

The samples for scRNA-seq analysis were collected at iMeLC for 46 hours. At PGCLC 
aggregate days 0.5, 1, 1.5, and 2, iMeLCs were dissociated as previously described. 
PGCLC aggregates were washed with PBS(-), then dissociated using 0.25% Trypsin-
EDTA for 10-15  min at 37 °C, followed by gentle pipetting 10 times. The trypsin was 
neutralized with 10% FBS in DMEM, and the cells were washed once with 0.1% BSA. 
ScRNA-seq sample preparation and library construction for 10X data were performed 
using the 10X Genomics Chromium Controller (10X Genomics) and Chromium Sin-
gle Cell 3’ Reagent Kits v3.1, following the manufacturer’s instructions. The dataset for 
scRNA-seq consists of five-time points ( I = 5 ); we refer to iMeLC as day 0, whereas 
3D-cultured aggregates are denoted as day 0.5, day 1, day 1.5, and day 2, respectively 
(Fig. 3A).
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Preprocessing and parameter settings

As a preprocessing step for scEGOT, we applied a noise reduction method RECODE 
[61] and selected the top 2,000 genes with the highest normalized variances (vari-
ances divided by means) of non-mitochondrial genes, followed by log scaling. Log 
scaling is more important than other preprocessing steps for transforming the dis-
tributions of cell populations to Gaussian distributions, as mRNA expression levels 
are known to follow a log-normal distribution [62]. Thus, this transformation is cru-
cial for approximating a multivariate Gaussian distribution suitable for scEGOT. We 
then performed PCA and applied scEGOT to the top 150 principal components (their 
cumulative contribution rate was 93.67% ). It should be noted that increasing these 
values allows the data to be represented in more detail, but it also increases the com-
putational cost. We set the regularization parameter of EGOT to ε = 0.01 . We remark 
that the convergence result (5) indicates that the solution of EGOT remains largely 
unaffected even when the parameter ε is changed. In the “GRN analysis” section, we 
cut the small regulatory edges with a weight less than 0.02. The regularization param-
eter � > 0 was automatically determined by cross-validation. In “Reconstruction of 
Waddington’s landscape” section, we constructed the k-nearest neighbor graph of 
cells ( k = 15 ) on the top two principal components to compute the graph Laplacian.
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