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Abstract 

Background: Phenotypic data comparison is essential for disease association studies, 
patient stratification, and genotype–phenotype correlation analysis. To support these 
efforts, the Global Alliance for Genomics and Health (GA4GH) established Phenopack‑
ets v2 and Beacon v2 standards for storing, sharing, and discovering genomic and phe‑
notypic data. These standards provide a consistent framework for organizing biological 
data, simplifying their transformation into computer‑friendly formats. However, match‑
ing participants using GA4GH‑based formats remains challenging, as current methods 
are not fully compatible, limiting their effectiveness.

Results: Here, we introduce Pheno‑Ranker, an open‑source software toolkit for indi‑
vidual‑level comparison of phenotypic data. As input, it accepts JSON/YAML data 
exchange formats from Beacon v2 and Phenopackets v2 data models, as well as any 
data structure encoded in JSON, YAML, or CSV formats. Internally, the hierarchical 
data structure is flattened to one dimension and then transformed through one‑hot 
encoding. This allows for efficient pairwise (all‑to‑all) comparisons within cohorts 
or for matching of a patient’s profile in cohorts. Users have the flexibility to refine 
their comparisons by including or excluding terms, applying weights to variables, 
and obtaining statistical significance through Z‑scores and p‑values. The output con‑
sists of text files, which can be further analyzed using unsupervised learning tech‑
niques, such as clustering or multidimensional scaling (MDS), and with graph analytics. 
Pheno‑Ranker’s performance has been validated with simulated and synthetic data, 
showing its accuracy, robustness, and efficiency across various health data scenarios. 
A real data use case from the PRECISESADS study highlights its practical utility in clini‑
cal research.

Conclusions: Pheno‑Ranker is a user‑friendly, lightweight software for semantic 
similarity analysis of phenotypic data in Beacon v2 and Phenopackets v2 formats, 
extendable to other data types. It enables the comparison of a wide range of variables 
beyond HPO or OMIM terms while preserving full context. The software is designed 
as a command‑line tool with additional utilities for CSV import, data simulation, sum‑
mary statistics plotting, and QR code generation. For interactive analysis, it also includes 
a web‑based user interface built with R Shiny. Links to the online documentation, 
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including a Google Colab tutorial, and the tool’s source code are available on the pro‑
ject home page: https:// github. com/ CNAG‑ Biome dical‑ Infor matics/ pheno‑ ranker.

Keywords: GA4GH, Phenopacket v2, Beacon v2, Health data model, Semantic 
similarity, Genomics

Background
Comparing phenotypic and clinical (“pheno-clinical”) data is essential in both research 
and clinical settings, facilitating informed decisions across a wide range of diseases [1, 
2]. For instance, the use of similarity matching contributes to the accurate diagnosis of 
diseases by aligning patient profiles with comparable cases [3–5]. Similarity matching 
also has been used in the development of human disease networks, grouping diseases 
based on common traits to deepen our understanding of their origins [6]. These analyti-
cal methods are key in propelling medical research forward and improving patient care, 
offering essential insights into a variety of medical conditions.

Standardization of phenotypic data is crucial for enabling meaningful patient match-
ing in clinical research [7]. Historically, researchers faced challenges in working with 
phenotypic data due to the lack of a unified format and consistent nomenclature across 
different research centers. This variation in data representation hindered data shar-
ing, integration, and effective collaboration. To overcome these challenges, health data 
standards have been developed to promote the harmonization of variable names and 
values [8]. These standards provide a common framework for organizing and structur-
ing data, allowing researchers to use standardized vocabularies to define the values for 
variables [9]. By using standardized terms, researchers can ensure that phenotypic data 
are described consistently, enabling more accurate and reliable similarity matching and 
analysis across different datasets and research centers [10, 11]. This standardization 
enhances data interoperability, facilitates data discovery, and promotes collaborative 
research efforts in the field of phenotypic analysis.

The use of standardized vocabularies has paved the way for performing matching 
based on terms (or semantic) similarity [12, 13]. In this regard, many methods have 
emerged to compare pheno-clinical data encoded with SNOMED CT [14], OMIM [15], 
ICD-10 [16] or HPO (Human Phenotype Ontology) [17] terms [4, 10, 18–36]. The wide-
spread use of HPO in comparison methods is not coincidental, stemming from its foun-
dation as a standardized vocabulary that structures data into a directed acyclic graph 
(DAG). This design allows each term to have a unique identifier and a set of relationships 
with other terms, facilitating the detailed representation of phenotypic abnormalities in 
human diseases and the hierarchical nature of disease terms and their interconnections. 
While HPO matching provides valuable insights, it is limited to phenotypic features. 
As a result, researchers often include genes, proteins or variants to expand the scope of 
their search [5, 37–49].

The GA4GH [50] has recently approved the Phenopacket v2 Schema [51], a standard 
for sharing and interoperability of pheno-clinical and genomic data, and Beacon v2 [52], 
which not only includes models for biological data but also provides an API specifica-
tion for federated data discovery. Both standards are gaining popularity among research 
centers, for their structured and compact data schemas, which promote effective data 
sharing and integration initiatives [50]. A peculiarity of Beacon v2 and Phenopacket v2 
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schemas is that they do not strictly prescribe ontologies. Instead, they recommend cer-
tain ontologies for use within them [53]. For example, NCIt [54] or HPO terms can be 
used for describing phenotypic features, and diseases can be described using OMIM or 
ICD-10 terminologies. Currently, to the best of our knowledge, no tool is available that 
can directly perform comparisons of individuals in deeply nested data such as those pre-
sent in Phenopackets v2 and Beacon v2 data models.

Here, we present Pheno-Ranker, an open-source toolkit designed for semantic simi-
larity analysis of pheno-clinical data. It specifically supports GA4GH standards Phe-
nopackets v2 and Beacon v2, accepting their JSON/YAML data exchange formats as 
input. This allows Pheno-Ranker to compare individuals within cohorts or to find the 
best matches of a patient profile in cohorts. While it primarily processes health-related 
data, Pheno-Ranker accepts as input any data serialized in JSON, YAML, and CSV for-
mats. Researchers can include or exclude terms and define their own weightings for vari-
ables, empowering them to focus on relevant traits and prioritize specific comparisons. 
The output from Pheno-Ranker is text files that can be further analyzed (with scripts 
included in the tool’s GitHub repository [55] and the online documentation [56]) using 
unsupervised learning techniques such as clustering [57] and multidimensional scaling 
(MDS) [58], or through graph analytics [59–61]. This flexibility makes Pheno-Ranker a 
powerful tool not only in healthcare contexts but in any domain requiring data compari-
son. The software includes comprehensive online documentation (including a Google 
Colab notebook) and a web user interface built as an R Shiny app [62].

The remainder of this manuscript is structured as follows: the ‘Implementation’ sec-
tion explains the components, data formats, and the algorithm of Pheno-Ranker. The 
‘Results and Discussion’ section evaluates Pheno-Ranker’s performance on simulated 
and real-world datasets, and discusses its utility and limitations. The ‘Conclusion’ sum-
marizes the key findings and potential future applications.

Implementation
Components

The core of Pheno-Ranker is a Perl module designed to be executed via a command-line 
interface (CLI) script (see online documentation [56]). In addition to the CLI, we devel-
oped a Web App User Interface (UI) based on R Shiny [63] for interactive analyses, avail-
able at https:// pheno- ranker. cnag. eu (see full architecture in Additional file 1: Fig. SF1). 
During the development of the software, we encountered several critical issues, which 
are addressed in Additional file 2: Tab. ST1. Installation instructions for both the web 
application and CLI are provided in the ‘Download and Installation’ section of the arti-
cle, as well as in the online documentation.

Input files

Pheno-Ranker natively processes JSON and YAML text files. The two formats supported 
out-of-the-box are:

 i. The individuals entity of Beacon v2 Models, encompassing the (top) terms dis-
eases, ethnicity, exposures, geographicOrigin, id, interventionsOrProcedures, kary-

https://pheno-ranker.cnag.eu
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otipicSex, measures, pedigrees, phenotypicFeatures, sex and treatments, serialized 
into the data exchange file known as Beacon Friendly Format (BFF) [64, 65].

 ii. The phenopacket top-element of the Phenopacket v2 schema that encompasses the 
terms id, subject, phenotypicFeatures, measurements, biosamples, interpretations, 
diseases, medicalActions, files and metaData, serialized into Phenotype Exchange 
Format (PXF) files [66].

Both file formats have a similar data structure in which biomedical data are hierar-
chically structured (i.e., tree-like) under the terms. Besides these formats, the software 
accepts any other JSON/YAML data, regardless of being biomedically related or not 
(movies, books, etc.) if they are accompanied by a configuration file. The documentation 
[56] has examples of how to use Pheno-Ranker with various types of data.

Algorithm

The Pheno-Ranker computational algorithm works as follows (see also Additional file 1: 
Fig. SF2a):

1. Each object containing one individual (loaded from PXF or BFF files) for the refer-
ence cohort(s) is “flattened” into a one-dimensional hash data structure (i.e., associa-
tive array or lookup table) and the variables are initialized with weights of one. For 
terms that consist of arrays of objects (e.g., phenotypicFeatures), the element indices 
are replaced with the CURIE-style identifiers (“id”) from the required ontology class 
(see Additional file 1: Fig. SF2b). We used an ad-hoc filtering (that can be changed 
with a configuration file) to filter out variables that do not provide any value to the 
similarity.

2. We generate a global hash for the reference cohort(s) by utilizing the unique vari-
ables. The size of the hash depends on the number of variables present in the cohort. 
The algorithm is optimized to handle many variables, even exceeding 10,000 (e.g., 
when considering genomic variation data). To address any potential limitations, the 
algorithm allows selecting a subset of N random variables from the total available 
(with the flag –max-number-var).

3. We use the global hash to convert categorical data into numerical form through one-
hot encoding. For each individual in the reference cohort(s), we create a binary string 
(also referred in the text as “binary vector” or simply as “vector”) reflecting the vari-
ables in the global hash. The characters within this vector coincide with the global 
hash’s sorted keys, marking a ‘1’ for each variable present in an individual’s data and 
a ‘0’ for absent variables. The length of the vector corresponds to the number of keys 
in the global hash, ensuring a uniform representation of each individual’s data in line 
with the global hash’s size.

4. When working with a target patient’s data from a JSON file, it is flattened using the 
same method as described in step one. We then calculate the patient’s binary vec-
tor using the global hash derived from the cohort, omitting any variables unique to 
the patient. This approach of excluding patient-specific variables makes it easier to 
search within unrelated databases that contain pre-computed data.

5. Compute metrics using the binary strings.
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The software allows the user to include or exclude specific terms to make the compari-
son more precise. For instance, users can include terms like sex, ethnicity, and measures 
or exclude terms such as id from the comparison. The full set of terms can be found in 
the online documentation. Finally, if the files contain HPO terms, it is possible to include 
ascendant terms in the comparisons.

Metrics and output

Pheno-Ranker operates in two modes: cohort mode and patient mode, with the metrics 
depending on the mode selected.

In cohort mode, Pheno-Ranker computes pairwise comparisons between individuals 
within the cohort(s). The default metric is the Hamming distance [67] which assesses 
dissimilarity by counting the differing positions between two binary strings (a distance 
of 0 indicates identical variables between two individuals). Additionally, the software 
can calculate Jaccard indexes [68] to measure similarity. The Jaccard index, more effec-
tive with incomplete data, measures the ratio of intersection over the union (a value of 
1 indicates identical variables between two individuals). The resulting output is a sym-
metrical square matrix from all N x N comparisons (N = number of individuals). During 
development, we tested several other metrics and found minimal impact on the over-
all results (see Additional file 1: Fig. SF3). Additionally, since the binary vectors can be 
exported as text files, users have the flexibility to conduct further analysis using alterna-
tive metrics or tools if desired.

In patient mode, the goal is to compare patient data with all individuals in the refer-
ence cohort(s) through pairwise comparisons. By default, the output is a table listing the 
most similar individuals, sorted by Hamming distance, but the sorting method can be 
configured to use the Jaccard index instead. In this mode, assessing the statistical signifi-
cance of match results is crucial as it enables users to make well-informed decisions. To 
facilitate this, we provide standardized values for both metrics in the form of Z-scores, 
along with their corresponding p-values (see extended information at Additional file 3).

All intermediate files generated by Pheno-Ranker (including associative arrays, and 
data on variable coverage in the cohort(s) can be exported using the –export option. In 
patient mode, the option –align exports “alignment” files. The software enables users 
to assign specific weights to any variable in the vector, with the weights adding repeti-
tions to the characters in the binary digit string for efficient comparison without affect-
ing computational speed (e.g., weight of 5 will create a string of ‘11111’ for that variable 
if present and ‘00000’ if absent) [69]. With regards to execution time, Additional file 1: 
Fig. SF9 provides detailed information for datasets of varying sizes.

Included utilities

Pheno-Ranker comes with four additional utilities: (i) bff-pxf-plot, a script to create 
images with summary statistics from BFF/PXF files (see Additional file 1: Fig. SF7), (ii) 
bff-pxf-simulator, a script that generates simulated BFF/PXF files using randomized 
terms, (iii) csv2pheno-ranker, a script for converting any CSV file into a format compat-
ible with Pheno-Ranker, facilitating the use of publicly available datasets (such as those 
found at Kaggle [70]), and (vi) scripts for encoding and decoding Pheno-Ranker data into 
QR (Quick Response) codes [71]. Here, the content for the code is the binary vector (see 
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Implementation/Algorithm section and Additional file 1: Fig. SF8). As an estimate, the 
capacity for version 40-L QR code is 2,953 bytes, which theoretically enables the storage 
of up to 7,089 variables (uncompressed) per individual [72]. More information on these 
utilities can be found in Additional file 2: Table ST2 and the online documentation [56].

Datasets and experimental setup

To assess the precision and efficiency of Pheno-Ranker, we used three datasets from dif-
ferent sources:

 I. Simulated datasets: To generate the simulated data, we used the included utility 
bff-pxf-simulator. We tested Pheno-Ranker with both Beacon v2 Models and Phe-
nopackets v2 with their respective data exchange formats (BFF and PXF). For clar-
ity, we will show results using BFF, though the findings are applicable to PXF as 
well.

 II. Synthetic dataset: The data are part of the ‘CINECA_synthetic_cohort_EUROPE_
UK1’, which comprises 2,504 samples with genetic data derived from the 1000 
Genomes Project’s phase 3 and the Geuvadis study [73]. Accompanying these 
genetic data are 76 synthetic phenotypic attributes (many of them incomplete) 
available through the UK Biobank [74]. The phenotypic data were “augmented” 
with ontology terms and structured as the individuals entity of the Beacon v2 
Models. Finally, the data were serialized into BFF as described elsewhere [65]. The 
location of the file is provided in the ‘Availability of Data and Materials’ section.

 III. Use Case—PRECISESADS dataset: As part of the 3TR (Taxonomy, Treatment, Tar-
gets, and Remission) project, funded by the European Commission through the 
Innovative Medicines Initiative, we obtained access to clinical data generated by 
the PRECISESADS Clinical Consortium (Additional file 4: Part A). The PRECIS-
ESADS cohort comprises 617 healthy controls and patients with seven systemic 
autoimmune diseases (SADs), including 99 cases of mixed connective tissue dis-
ease (MCTD), 106 cases of primary antiphospholipid syndrome (PAPS), 385 cases 
of primary Sjögren’s syndrome (pSjS), 376 cases of rheumatoid arthritis (RA), 469 
cases of systemic lupus erythematosus (SLE), 402 cases of systemic sclerosis (SSc), 
and 166 cases of undifferentiated connective tissue disease (UCTD). The raw clini-
cal data for these projects were stored in CSV format and comprised 92 variables, 
encompassing comorbidities, treatments, phenotypic characteristics of the differ-
ent diseases, and recruitment information. The CSV file was converted to a format 
suitable to Pheno-Ranker with the included utility csv2pheno-ranker.

On these datasets we employed the metrics explained on the section ‘Metrics and 
output’ to measure the (dis)similarity among individuals. In cohort mode, the resulting 
symmetrical square matrix is represented through heatmaps with clusters (see examples 
at Fig. 3) using R software [57]. To the distance matrices, we applied multidimensional 
scaling (MDS), a type of non-linear dimensionality reduction technique, to visualize 
the similarity levels among individual cases within the dataset [58, 75] (R scripts are 
available at [76]). In the MDS plots, the X and Y axes denote the two most significant 
dimensions that encapsulate most of the variation in the distances among individuals, 
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thereby offering a spatial depiction of the pairwise dissimilarities (see examples at Fig. 5 
and Additional file  1: Fig. SF5d). Regarding timing, creating the 2D distance matrices 
was notably efficient, with all tasks completing in under one second on a single core 
of an Intel i9 Workstation. Note that tables and figures for the simulated and synthetic 
datasets can be reproduced using the commands available in the share directory of the 
GitHub repository [76].

Results and discussion
User flowchart

Figure 1 outlines a typical user workflow, divided into: (i) preparation, (ii) ranking, (iii) 
plotting, and (iv) other features. Steps (i) to (iii) are common to both the CLI and Web 
App UI, while (iv) utilizes the CLI utilities. Additional details, including versions, pro-
gramming languages, documentation links, and brief descriptions, are provided in Addi-
tional file 2: Tab. ST2.

User interface

We provide a web application (playground accessible at [62]) that offers a user-friendly 
interface, integrating Pheno-Ranker’s various command-line functionalities. A shared 
demo account is available for testing. For users working with sensitive data, secure 
access is provided through ORCID iD login. Returning users can quickly access the two 
ranking modes—cohort and patient—while new users can follow the interactive decision 
tree for guidance (see Fig. 2a).

Users can: (i) upload their own data in BFF, PXF, or CSV format leveraging the csv-
2pheno-ranker tool, which converts it into a Pheno-Ranker-compatible format, (ii) select 
simulated data obtained from the built-in bff-pxf-simulator (see Fig. 2b), (iii) use exam-
ple data from a Phenopackets corpus [77] (see Fig.  2c), and, (iv) employ data directly 
queried from Beacon v2 APIs (record granularity) [52]. The UI output will vary depend-
ing on whether it is in cohort mode or in patient mode. In both modes, the software gen-
erates a variety of results such as heatmaps (with clusters) [78], dimensionality reduction 
plots [58, 75, 79] and graph-based plots [60, 80, 81] (see Fig. 2c). To the patient mode 
exclusive is the output of HTML tables (Fig. 2d) such as an alignment resembling that in 
BLAST [82]. A settings bar allows users to select datasets, define patient ID prefixes, and 
configure advanced options such as weighting variables and excluding specific terms via 
a drag-and-drop interface. Each utility and ranking mode includes a history sidebar for 
users to revisit, rename, or delete past runs, which are stored for at least 30 days.

Simulated datasets

Our initial experiment aimed to validate Pheno-Ranker’s capability to handle the 
variability of information present in BFF files (JSON data structures). We created 10 
and 100 completely random individuals by selecting 10 diseases, exposures, pheno-
typicFeatures, procedures and treatments (shuffled from pools of 100). Apart from 
the previous 50 properties, each individual was randomly assigned a biological sex 
(male or female) and a ethnicity. As shown in Additional File 1: Fig. SF5a and SF5c, 
which depict heatmaps of pairwise Hamming distances between all individuals 
in the cohort, the diagonal elements represent perfect matches (self-matches). The 
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non-diagonal elements show distances ranging from 82 to 104, with a mean of 93.9 
and a standard deviation of 4.3 for 10 individuals (see Additional File 1: Fig. SF4b), 
and from 74 to 106, with a mean of 94.2 and a standard deviation of 4.3 for 100 indi-
viduals (see Additional File 1: Fig. SF4d). These values are representative of a lower 

Fig. 1 Flowchart of the available options in the Pheno‑Ranker toolkit. ‘Preparation,’ ‘Ranking,’ and ‘Plotting’ can 
be performed using both the CLI and UI, while ‘Other Features’ are exclusive to the CLI. For more information, 
refer to the online documentation and Supporting Table 2
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bound similarity (or similarity for a random model) using these number of variables. 
We used 10 and 100 individuals to show that the behavior is consistent, regardless of 
the number of individuals.

The second experiment was designed to show the power of Pheno-Ranker for 
recognizing patterns in a cohort. For this purpose, we created 100 individuals, but 
this time, each individual had exactly 1 phenotypicFeatures, 1 diseases, and 1 treat-
ments that were randomly selected from pools of 2 (note that the features, diseases 
and treatments chosen are irrelevant, they just serve for demonstration purposes), 
along with sex and ethnicity. When we only included phenotypicFeatures, the heat-
map depicted two clusters, consisting of the two features from the pool (see Fig. 3a). 
When we repeat the analysis but this time including sex, the 2 clusters became 4 as 
the two phenotypicFeatures were spread equally among the females and males (see 
Fig. 3b). Continuing with this, we then included diseases on the analysis, and we got 8 
clusters (see Fig. 3c). Finally, we included the treatments and we obtained 16 clusters 
(see Fig. 3d).

The third experiment aimed to demonstrate the effectiveness of assigning weights to 
variables. We simulated a cohort of 100 individuals, each with 2 phenotypicMeasures, 
2 diseases, and 2 treatments, chosen from pools of 5, along with sex and ethnicity. In 

Fig. 2 Screenshots of Pheno‑Ranker User Interface. a Landing page, where returning users can access 
ranking modes, while new users can follow the interactive decision tree. b Utility for simulating synthetic 
patient data, customizable with user‑defined ontologies. c Cohort mode settings and output: Individuals can 
be uploaded or retrieved from Pheno‑Ranker‑UI’s utilities. Top‑level terms (e.g., phenotypicFeatures, diseases, 
interpretations,…) can be selected via drag‑and‑drop. Results are displayed as a heatmap or multidimensional 
scaling matrix scatter plot. These elements are also available in patient mode. d Tabular output of patient 
mode, showing differences between two individuals. The top table serves as a selector for the bottom table, 
which provides a one‑to‑one comparison of the target and reference patient (highlighted in blue). Rows are 
colored by top‑level terms for clarity
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Additional file 1: Fig. SF5a we display the results when only including phenotypicFea-
tures, diseases and treatments. In Additional file 1: Fig. SF5b we include a weights file 
to the calculation, giving the variable ‘Caucasian’ a weight of 10. In Additional file 1: 
Fig. SF5c we also added the variable ‘RxNorm:1,000,000’ (Tribenzor) with a weight of 
5. Finally, in Additional file 1: Fig. SF5d we display multidimensional data scaling on 
data from Additional file 1: Fig. SF5c.

The fourth experiment aimed to assess the ability to stratify patients in  situations 
where data are incomplete or missing, a common issue in real-world datasets. We cre-
ated two small cohorts of 10 individuals each to ensure labels remained visible in the 
plots. The first cohort consisted of individuals with a single disease (disease A), while the 
second cohort included individuals with two diseases, selected from a pool of five (A, B, 
C, D, and E). This approach generated C(5,2) = 10 unique combinations of two diseases, 
with disease A pairing with B, C, D, or E to form combinations like AB, AC, AD, and 

Fig. 3 Heatmaps and clusters generated using Pheno‑Ranker from simulated Beacon v2 data (individuals 
entity), based on pairwise Hamming distances between individuals. The dataset comprises 100 individuals, 
each with 1 phenotypicFeatures, 1 disease, and 1 treatment, randomly selected from a pool of two, along with 
their sex and ethnicity. a The heatmap shows two clusters when only phenotypic features are considered, 
representing the two distinct features in the pool. b By including sex, the clusters increase to four, distributing 
the two phenotypic features across both sexes. c Adding diseases to the analysis results in eight clusters. d 
Finally, incorporating treatments leads to a total of 16 clusters. Figure results can be reproduced by using the 
commands at [76]
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AE. Repetitions of features were not allowed. For a sufficiently large cohort, 40% of indi-
viduals in the second cohort were expected to carry disease A. In our sample, only ‘Bea-
con_7’ (female) and ‘Beacon_10’ (male) from the second cohort had disease A. These 
two individuals clustered with the first cohort, as shown in Additional File 1: Fig. SF6a, 
where only diseases term was considered. As expected, when the term sex was included, 
the number of clusters doubled (Additional File 1: Fig. SF6b). Recalculating using the 
Jaccard similarity index yielded the same results (Additional File 1: Fig. SF6c and SF6d).

The previous results demonstrate Pheno-Ranker’s effectiveness in cohort mode for 
classification. Additionally, its patient mode allows for comparing a single patient’s data 
against one or more cohorts, providing various metrics to evaluate the significance of 
these matches. To evaluate the robustness, and continuing with simulated data, we cre-
ated a patient consisting of exactly 2 phenotypicFeatures sampled from a pool of 25. The 
reference cohort, comprising 1000 individuals, was created similarly. This setup yields a 
match probability of ~ 3 individuals, calculated as 1000 / C(25,2). In Table 1 we display 
the results for the first 10 matches. In this experiment, when including only phenotyp-
icFeatures in the calculation, our patient got an exact match (distance = 0) with 3 individ-
uals from the simulated reference cohort (Beacon_154, Beacon_444 and Beacon_697). 
As expected, the distances ranged from 0 (perfect match) to 4 (differences on each posi-
tion of the 4-character vector) with a mean of 3.85 and a standard deviation of 0.36. To 
build on this experiment, we generated a new patient and a reference cohort of 1000 
individuals, each with 3 phenotypicFeatures, 3 diseases, and 3 treatments chosen from 
pools of 5. The results, shown in Table 2, revealed an exact match for the new patient 
with two individuals in the cohort (Beacon_121 and Beacon_49), sharing all variables (9 
out of 15 possible), resulting in a Z-score of − 3.38. This run highlights the Z-score met-
ric’s stringency, as matches with a distance equal to 2 (which still have 8 matches) were 
not deemed significant. It is important to note that the Z-score’s significance is expected 
to be more pronounced with real data, which typically does not have perfect matches. 

Synthetic dataset

Next, we used the synthetic data from the ‘CINECA_synthetic_cohort_EUROPE_UK1’ 
dataset (see Implementation section, Dataset II), which consists of 2504 individuals. The 

Table 1 Descriptors from the comparison between a given simulated patient and a cohort of 1000 
individuals with 2 phenotypicFeatures sampled from a pool of 25 features. The patient was created 
with the same conditions. Table results can be reproduced by using the commands at [76]

Reference(ID) Length Hamming-
distance

Distance-Z-
score

Distance-P-
value

Distance-Z-
score(rand)

Jaccard-
index

Jaccard-Z-
score

Jaccard-P-
value

Beacon_154 2 0 − 5.093 0.0000002 − 1.4142 1.000 7.447 0.0000000

Beacon_444 2 0 − 5.093 0.0000002 − 1.4142 1.000 7.447 0.0000000

Beacon_697 2 0 − 5.093 0.0000002 − 1.4142 1.000 7.447 0.0000000

Beacon_385 3 2 − 2.343 0.0095640 0.5774 0.333 2.219 0.1113630

Beacon_253 3 2 − 2.343 0.0095640 0.5774 0.333 2.219 0.1113630

Beacon_192 3 2 − 2.343 0.0095640 0.5774 0.333 2.219 0.1113630

Beacon_977 3 2 − 2.343 0.0095640 0.5774 0.333 2.219 0.1113630

Beacon_975 3 2 − 2.343 0.0095640 0.5774 0.333 2.219 0.1113630

Beacon_898 3 2 − 2.343 0.0095640 0.5774 0.333 2.219 0.1113630

Beacon_886 3 2 − 2.343 0.0095640 0.5774 0.333 2.219 0.1113630
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purpose of this test was to check whether Pheno-Ranker was able to handle a dataset 
that is regularly used to debug Beacon v2 API deployments [65]. We performed calcula-
tions in cohort mode, including the terms sex and ethnicity and we gave a weight of 3 
to the term sex that included variables ‘sex.id.NCIT:C20197’ and ‘sex.id.NCIT:C16576’: 
In Fig.  4a we display the heatmap according to Hamming distance (dissimilarity) and 
Fig. 4b according to Jaccard index (similarity). Note that both metrics yield similar yet 
complementary results.

Use case—PRECISESADS dataset

In the previous sections, Pheno-Ranker has undergone extensive testing with simulated 
and synthetic datasets. However, it is important to acknowledge that such datasets may 
not fully encompass the variability present in real-world data, as they often contain a 

Table 2 Descriptors from the comparison between a given simulated patient and a cohort of 1000 
individuals with 3 phenotypicFeatures, 3 diseases and 3 treatments from pools of 5. The patient was 
created with the same conditions. Table results can be reproduced by using the commands at [76]

Reference(ID) Length Hamming-
distance

Distance-Z-
score

Distance-
P-value

Distance-Z-
score(RAND)

Jaccard-
index

Jaccard-Z-
score

Jaccard-P-
value

Beacon_121 9 0 − 3.381 0.0003608 − 3.0000 1.000 4.442 0.0002886

Beacon_49 9 0 − 3.381 0.0003608 − 3.0000 1.000 4.442 0.0002886

Beacon_821 10 2 − 2.433 0.0074969 − 1.8974 0.800 2.847 0.0323852

Beacon_56 10 2 − 2.433 0.0074969 − 1.8974 0.800 2.847 0.0323852

Beacon_666 10 2 − 2.433 0.0074969 − 1.8974 0.800 2.847 0.0323852

Beacon_74 10 2 − 2.433 0.0074969 − 1.8974 0.800 2.847 0.0323852

Beacon_829 10 2 − 2.433 0.0074969 − 1.8974 0.800 2.847 0.0323852

Beacon_343 10 2 − 2.433 0.0074969 − 1.8974 0.800 2.847 0.0323852

Beacon_337 10 2 − 2.433 0.0074969 − 1.8974 0.800 2.847 0.0323852

Beacon_365 10 2 − 2.433 0.0074969 − 1.8974 0.800 2.847 0.0323852

Fig. 4 Heatmaps and clusters generated using Pheno‑Ranker from synthetic Beacon v2 data (individuals 
entity), based on pairwise Hamming distances between individuals. The synthetic dataset ‘CINECA_synthetic_
cohort_EUROPE_UK1’ includes 2504 individuals, with terms sex and ethnicity incorporated, and weights 
of 3 assigned to sex. a Displays the heatmap based on Hamming distance, reflecting dissimilarity among 
individuals. b Shows the heatmap according to the Jaccard index, highlighting similarities. Figure results can 
be reproduced by using the commands at [76]
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consistent number of variables, unlike the more complex and variable data typically 
encountered in clinical trials. Therefore, we conducted an analysis on the PRECISESADS 
clinical records to demonstrate the utility of the tool with a real-world dataset. The anal-
yses were performed by incorporating all available information from the PRECISESADS 
cohort, with non-informative values (e.g., unknown, missing) replaced by ‘NA’ (i.e., Not 
Available).

With the cohort mode, we aimed to identify hidden potential confounders and/or clin-
ical features that might differentiate between patients. As anticipated, most clinical fea-
tures and comorbidities were absent in healthy controls, consistent with the definition 
of healthy control recruitment, resulting in a distinct cluster separate from the patients 
(Fig. 5a). SADs are known to share phenotypic commonalities, reflected in a single clus-
ter, but with a more dispersed distribution than that of healthy controls. Notably, two 
diseases, SSc and SLE, stood out from the other five, distributed in the upper and lower 
parts of the SADs clusters (Fig. 5a).

To further investigate the characteristics distinguishing SADs patients, cohort mode 
was rerun excluding the healthy controls, and ANOVA analyses were conducted between 
MDS dimensions and each included variable (see Additional file 5 and R script file [76]). 
The primary variable associated with both MDS dimensions was the recruitment center. 

Fig. 5 Pheno‑Ranker’s analysis of the PRECISESADS dataset involves 7 disease‑specific cohorts and 1 control 
cohort. Figures a–c showcase plots generated through multidimensional data scaling (MDS) applied to 
the distance matrix from an inter‑cohort (cohort mode) analysis. Specifically, a demonstrates the MDS of 
the 8 cohorts, including the control, with each cohort colored differently; b presents the MDS plot of the 7 
diseases, differentiated by research center and symbolized for each disease; and c shows the MDS plot of the 
7 diseases, highlighted by the presence of skin fibrosis and nephritis. Figure d illustrates the Pheno‑Ranker’s 
performance on patient mode, revealing the percentage of the most similar patients (from all diseases) to 50 
randomly selected patients for each disease
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This was reflected in the position of center ‘A’ in the SADs cluster during dimensional 
reduction analysis (Fig. 5b). A detailed examination of the variables revealed that center 
‘A’ exhibited the highest proportion of missing values (data not shown), potentially 
explaining the observed difference. Subsequently, the next two variables most strongly 
associated with the MDS dimensions were the presence of skin fibrosis, a hallmark of 
SSc [83], and the presence of nephritis, a major and quite specific clinical complication 
in SLE patients [84]. These findings elucidated the separation of these two diseases from 
the rest of the SADs (Fig. 5c).

Finally, we applied Pheno-Ranker in patient mode to evaluate its patient-matching 
capabilities. Figure 5d displays the percentage of patients most similar to 50 randomly 
chosen individuals from each disease group. Notably, Pheno-Ranker reliably identified 
similarities across various diseases. Yet, it faced difficulties with Mixed Connective Tis-
sue Disease (MCTD) and Undifferentiated Connective Tissue Disease (UCTD) due to 
the shared phenotypic features with other conditions.

Features, capabilities, and limitations

Coding schemes like HPO or OMIM terms have greatly enhanced genomic and phe-
notypic data analysis. Their use boosts semantic similarity analysis, making it easier to 
identify related terms and concepts, thus enriching our data understanding. To compare 
phenotypic data encoded in these schemes, various methods have emerged, including 
text-based comparisons and analyses of term relationships from ontology structures [4, 
10, 18–36].

Here, we present Pheno-Ranker, an innovative approach that extends beyond the con-
straints of tools dependent on pre-selected ontologies. We want to clarify that Pheno-
Ranker is not intended to outperform these types of tools. If a researcher wants to 
compare individuals based on HPO terms (or others such as OMIM, SNOMED CT, 
etc.), Pheno-Ranker’s only strength lies in its ability to directly process BFF or PXF data 
exchange formats, eliminating the need for data conversions. Rather, its uniqueness lies 
in the versatility and detail it offers; it is compatible with any standardized terminology 
leading to more nuanced and flexible outcomes. Pheno-Ranker handles data in JSON/
YAML formats, first flattening the data to 1D lookup tables and then converting them 
into binary digit strings. This conversion conserves data context and streamlines efficient 
similarity matching, also ensuring compatibility with machine learning algorithms. To 
our knowledge, Pheno-Ranker is the first tool to directly perform similarity calculations 
on two GA4GH standards, making it particularly suitable for patient matching (match-
making) and stratification in GA4GH-compliant data repositories. The software can be 
configured to work with other health data standards, like OpenEHR [85], as shown in 
the example at the online documentation [56]. Additionally, in conjunction with our 
Convert-Pheno tool [86], it supports data from other clinical data models such as the 
Observational Medical Outcomes Partnership Common Data Model (OMOP CDM), 
ensuring compatibility with various health data ecosystems.

Pheno-Ranker includes a suite of utilities, significantly broadening its use beyond 
YAML or JSON hierarchical data formats. Firstly, bff-pxf-plot is a tool developed to cre-
ate summary statistics plots as PNG images for BFF and PXF formats (see Additional 
file 1: Fig. SF7 and online documentation [56]). Secondly, bff-pxf-simulator is designed 
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to generate simulated data in BFF/PXF exchange formats, addressing the scarcity of syn-
thetic or simulated datasets for Beacon v2 and Phenopackets v2 in the literature [87, 88]. 
Our simulated data are versatile, serving purposes ranging from technical, like testing 
Beacon v2 implementations [65], to scientific, such as creating “control” cases for out-
lier detection. Thirdly, the csv2pheno-ranker utility enables converting CSV files into a 
format compatible with Pheno-Ranker. This expands the scope of analysis, for example, 
enabling comparison of samples in a multi-sample VCF based on their “genomic fin-
gerprint”, as shown in our documentation [56]. Fourthly, we offer a set of utilities for 
encoding/decoding the binary vector into QR codes (PNG images) plus generating 
PDF reports (see Additional file  1: Fig. SF8 and examples at the documentation [56]). 
This concept aligns with the health passports [89] that store patient information in bar-
codes (i.e., those used to encode in COVID-19 vaccination state). Pheno-Ranker effi-
ciently condenses data by directly encoding binary vectors into QR codes, enhancing the 
capacity for storage of variables within the code. Although currently a proof of concept, 
our solution could be applied to health data transfer, especially with the implementa-
tion of proper security measures, such as data encryption [8]. Other futuristic applica-
tions could be patient enrolment in clinical trials or “wireless” similarity matching via a 
Pheno-Ranker mobile app.

The simplicity of our algorithm makes it suitable for personalized implementations, 
allowing users to store the one-hot encoded data in a database for efficient compari-
sons using for instance SQL functions or vector databases. The Pheno-Ranker algorithm 
could easily be implemented in a federated network, such as Beacon v2 networks (see 
explanation at Additional file 6). This approach holds promise for collaborative research, 
such as hospital networks, aiming to find similar patients across different institutions.

One limitation of Pheno-Ranker is its handling of continuous data, such as age or 
numerical measurements. For age data, both the Beacon v2 and Phenopackets v2 sche-
mas allow the use of ranges instead of specific ages, which enhances privacy. For other 
continuous variables, we recommend using ranges or pre-processing them into bins/cat-
egories whenever possible. Cautious handling of continuous data is essential, depending 
on the research goals and the nature of the data.

Another limitation of our method is its lack of terminology-matching capability, mean-
ing that variables describing identical concepts across different standardized vocabular-
ies are not recognized as matches. This limitation arises not from a flaw in our approach, 
but rather from the lack of prescribed ontologies within the Beacon v2 and Phenopacket 
v2 schemas. Additionally, our method currently supports only exact matches, excluding 
the possibility of fuzzy searches. Despite these challenges, the rapidly advancing field of 
ontology mapping, coupled with the ongoing progress in natural language processing 
(NLP), holds promise for overcoming these limitations soon.

Pheno-Ranker has been rigorously tested using a variety of simulated and synthetic 
datasets. However, these datasets may not encompass the full variability found in real-
world data, like that from clinical trials. To address this, we also analyzed data from the 
PRECISESADS project, which enabled us to stratify diseases by their unique characteris-
tics, identify outliers, and match patients with the same disease across the entire dataset.

It is important to note, though, that in case–control comparisons, the number 
of variables between groups can skew similarity measures. The Hamming distance 
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may be artificially higher for cases with more variables, requiring normalization or 
a focus on shared variables. The Jaccard index, while less impacted, can underesti-
mate similarity in cases with many additional variables. Addressing this bias involves 
selecting key variables, considering data imputation for missing values, and per-
forming sensitivity analyses. Expert input is vital for including/excluding relevant 
variables and validating results. Pheno-Ranker’s ability to tailor analysis to key traits 
demonstrates its capacity for delivering valuable insights from complex datasets.

Data security and privacy are crucial when deploying Pheno-Ranker. Each center 
is responsible for maintaining the confidentiality, integrity, and availability of their 
data, and must implement appropriate safeguards to protect sensitive information.

At CNAG, we are preparing to assess Pheno-Ranker’s effectiveness with PXF data 
from the Genome-Phenome Analysis Platform [90], and exploring its capabilities 
in federated analysis contexts (refer to the Additional file  6). In the broader scope 
of Pheno-Ranker’s capabilities, its applicability is not just confined to genomic and 
phenotypic data. It can be effectively adapted for use with diverse JSON or CSV 
datasets, provided an appropriate configuration file is used. This feature signifi-
cantly widens the range of potential applications, enabling researchers to investigate 
semantic similarities in various fields.

In conclusion, Pheno-Ranker is a versatile and powerful tool for individual-level 
comparison of pheno-clinical data. By uncovering hidden patterns and relationships, 
Pheno-Ranker has the potential to advance personalized medicine, disease classifi-
cation, and scientific discovery. We look forward to further developments and real-
world applications of Pheno-Ranker, leveraging its capabilities to drive progress in 
genomics and beyond.

Conclusions
We introduce Pheno-Ranker, an open-source software for phenotypic data analysis 
applicable in research and clinical settings. Compatible with Beacon v2 and Phe-
nopackets v2 data models, it processes data in JSON, YAML, or CSV formats across 
any domain. Pheno-Ranker offers two operational modes: cohort comparison and 
individual matching to the closest profiles within cohorts. The output consists of 
structured text files, which can be further analyzed using included R scripts for 
unsupervised learning techniques such as clustering, multidimensional scaling and 
graph analytics, broadening their applicability across various analytical tasks.

Pheno-Ranker includes a user-friendly R Shiny web application and a command-
line interface, catering to different user preferences. Multiple installation options, 
including a containerized version, ensure seamless integration into existing work-
flows, while online documentation and an interactive Google Colab notebook offer 
guidance. The software also comes equipped with a suite of utilities that enable gen-
eration of simulated data, data visualization through plotting, and creation of QR 
codes, enhancing its practical utility. Pheno-Ranker enhances research and clinical 
workflows by enabling comparison of phenotypic data, helping researchers identify 
significant patterns, match patients, construct cohorts, and explore genotype–phe-
notype relationships.
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Availability and requirements

• Project name: Pheno-Ranker
• Project home page: https:// github. com/ CNAG- Biome dical- Infor matics/ pheno- 

ranker
• Operating system (s): Linux, MacOS
• Programming languages: Perl, Python, R, JavaScript
• Other requirements: Docker
• License: Artistic License 2 (CLI) and GNU GPL v3 (UI)
• Any restrictions to use by non-academics: None

Download and installation

Pheno-Ranker can be installed locally on Linux or macOS. For the CLI, we offer five 
installation options, including from GitHub source, containerized options (Docker), and 
CPAN, depending on whether all utilities are needed (see Additional file 2: Table ST2 
and https:// cnag- biome dical- infor matics. github. io/ pheno- ranker/ downl oad- and- insta 
llati on). The R Shiny web application can be easily deployed using Docker for a stream-
lined setup.
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