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Abstract 

Background: The precise prediction of transcription factor binding sites (TFBSs) 
is pivotal for unraveling the gene regulatory networks underlying biological processes. 
While numerous tools have emerged for in silico TFBS prediction in recent years, 
the evolving landscape of computational biology necessitates thorough assessments 
of tool performance to ensure accuracy and reliability. Only a limited number of studies 
have been conducted to evaluate the performance of TFBS prediction tools com-
prehensively. Thus, the present study focused on assessing twelve widely used TFBS 
prediction tools and four de novo motif discovery tools using a benchmark dataset 
comprising real, generic, Markov, and negative sequences. TFBSs of Arabidopsis thaliana 
and Homo sapiens genomes downloaded from the JASPAR database were implanted 
in these sequences and the performance of tools was evaluated using several statistical 
parameters at different overlap percentages between the lengths of known and pre-
dicted binding sites.

Results: Overall, the Multiple Cluster Alignment and Search Tool (MCAST) emerged 
as the best TFBS prediction tool, followed by Find Individual Motif Occurrences (FIMO) 
and MOtif Occurrence Detection Suite (MOODS). In addition, MotEvo and Dinucleo-
tide Weight Tensor Toolbox (DWT-toolbox) demonstrated the highest sensitivity 
in identifying TFBSs at 90% and 80% overlap. Further, MCAST and DWT-toolbox man-
aged to demonstrate the highest sensitivity across all three data types real, generic, 
and Markov. Among the de novo motif discovery tools, the Multiple Em for Motif 
Elicitation (MEME) emerged as the best performer. An analysis of the promoter regions 
of genes involved in the anthocyanin biosynthesis pathway in plants and the pentose 
phosphate pathway in humans, using the three best-performing tools, revealed con-
siderable variation among the top 20 motifs identified by these tools.

Conclusion: The findings of this study lay a robust groundwork for selecting optimal 
TFBS prediction tools for future research. Given the variability observed in tool perfor-
mance, employing multiple tools for identifying TFBSs in a set of sequences is highly 
recommended. In addition, further studies are recommended to develop an integrated 
toolbox that incorporates TFBS prediction or motif discovery tools, aiming to stream-
line result precision and accuracy.
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Background
The regulation of gene expression is governed by various factors, including transcription 
factors (TFs). Each cell type or tissue, at a specific developmental stage or in response 
to extracellular signals, exhibits a distinctive pattern of activated TFs. This repertoire of 
TFs is a key determinant for defining cellular identity and function. Studies have iden-
tified 274,633 TF-encoding genes from 183 animal genomes [1], including > 1600 TFs 
from the human genome [1] and 320,370 TFs from the genomes of 165 plant species [2]; 
more than 1500 TFs have been reported from the Arabidopsis genome [3].

TFs modulate gene expression by binding to specific regulatory regions of the genes 
(upstream and basal promoter elements, enhancers, and silencers) [4, 5]. An impor-
tant step in unraveling regulatory mechanisms of gene expression is the identification 
of these binding sites in DNA for TFs termed TF binding sites (TFBSs) [6, 7]. These are 
typically short and often degenerate stretches, ranging from 5 to 20 base pairs (bp) in 
length [8]. TFs possess specific DNA binding domains that recognize and bind to par-
ticular sequences within TFBSs. These DNA binding domains allow TFs to directly 
interact with the DNA molecule, facilitating the regulation of gene expression. Alterna-
tively, TFs can bind to DNA indirectly by interacting with another TF [9].

There are many in vitro and in vivo experimental approaches to determine the inter-
action of TFs and their potential binding sites on genomic sequences. These methods 
include the Electro-Mobility Shift Assay [10], DNase I footprinting/protection assay [11], 
Systematic Evolution of Ligands by EXponential enrichment (SELEX) [12], and Chroma-
tin ImmunoPrecipitation (ChIP) Assay [13]. Advances in these experimental technolo-
gies, particularly ChIP followed by sequencing (ChIP-seq), have led to the generation of 
large-scale datasets of TFBSs across the genome. These comprehensive datasets provide 
a valuable resource for scientists to develop and refine computational approaches for 
predicting TFBSs. Experimental validation of TFBSs is a complex and resource-intensive 
process. Consequently, in recent years, in silico prediction of TFBSs has emerged as an 
efficient alternative to these time-consuming experimental methods [5, 14–17].

Numerous algorithms have been developed to predict TFBSs. Many of the methods 
originally used for predicting TFBSs from sequences were based on position weight 
matrices (PWMs), also known as position-specific scoring matrices (PSSMs) [18]. These 
are the most widely used and well-established mathematical models for predicting 
TFBSs in DNA sequences [14, 19–22]. PWMs are computed from the multiple sequence 
alignment of an experimentally validated set of TFBSs, quantitatively scoring binding 
motifs based on the frequency and positions of the nucleotides within the binding sites 
for the corresponding TF [19, 23]. Several databases, such as JASPAR [24] and TRANS-
FAC [25], maintain comprehensive collections of TF-binding profiles as PWMs or posi-
tion frequency matrices (PFMs).

JASPAR is an open-access resource that provides access to a manually curated, 
non-redundant set of TF-binding profiles in the form of PFMs. These PFMs are 
derived from experimentally defined TFBSs and can be converted into PWMs, which 
can then be used to scan DNA sequences to predict TFBSs. TRANSFAC, on the other 
hand, is a commercial database that includes PWMs derived from published collec-
tions of experimentally validated binding sites. In addition to these databases, sev-
eral other resources provide access to collections of PWMs, such as HOmo sapiens 
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COmprehensive MOdel Collection (HOCOMOCO) [26], UniBind [27], UniPROBE 
[28], and Factorbook [29]. Several tools are available for predicting TFBSs by scan-
ning for PWMs against DNA sequences. These include Find Individual Motif Occur-
rences (FIMO) [30], MATCH [31], MOtif Occurrence Detection Suite (MOODS) 
[32], Ciiider [33], Hypergeometric optimization of motif enrichment (HOMER) [34], 
INSECT [35], Matrix-scan [36], Morpheus [37], PWMscan [38], TFBStools [39], 
Contra V3 [40], TFBS-Discovery Tool Hub (TDThub [41]), TFBIND [42], PROMO 
[43], Cluster-Buster [44], rVISTA [45], LASAGNA-search [46], and PscanChIP [47]. 
Furthermore, several freely available de novo motif discovery tools have been devel-
oped to handle the large volumes of data generated from high-throughput technolo-
gies. These de novo discovery tools, such as AlignAce [48], Weeder [49], Improbizer 
[50], MotifSampler [51], rGADEM [52], Sensitive, Thorough, Rapid, Enriched Motif 
Elicitation (STREME) [53], and Multiple Em for Motif Elicitation (MEME) [54], are 
capable of identifying novel TFBS motifs without prior knowledge of the binding 
sites.

In addition to PWM-based models, more complex models have recently been pro-
posed for modeling TFBSs with increased accuracy [15], in particular, hidden Markov 
models (HMMs) [23, 55–58], hierarchical mixture models [59], Bayesian network-
based methods [60] and deep learning based neural networks [61–64]. Tools such as 
Motif cluster alignment and search tool (MCAST) [65], TFBSpred [17], and FABIAN-
variant [66] utilize HMM-based methods while VOMABT [67], and MotEvo [68], 
tools use methods based on Bayesian network models. Tools based on deep learn-
ing methods include DeepBind [69], DeeperBind [70], DeepGRN [61], DeepSNR [71], 
DeepSTF [62], Desso [72], MaResNet [73], TAMC [74] and TFImpute [75]. While a 
variety of computational tools are available for predicting TFBSs, as shown in Fig. 1, 
PWM-based methods remain widely used for their simplicity in construction from a 
set of sequences, and the availability of several curated databases of PWMs applicable 
to several species.

Accurate prediction of TFBSs in silico is important for understanding gene regu-
lation. However, only a limited number of independent assessments have been con-
ducted to evaluate the performance of TFBS prediction and motif discovery tools [14, 
76–81], with the latest comprehensive analysis dating back to 2016. As the field of 
computational biology continues to evolve and new tools are developed, assessment 
of tool performance is essential to ensure accurate and reliable predictions. The find-
ings of such studies will guide the researchers to choose the most appropriate tool(s) 
for their analyses. Therefore, the present study aimed to evaluate the performance 
of several widely used TFBS prediction and de novo motif discovery tools, includ-
ing both previously evaluated and untested tools. The specific objectives of this study 
were to (1) create a benchmark dataset to evaluate the performance of tools, (2) assess 
the performance quality of tools using numerous statistics to identify the best tool(s), 
and (3) conduct case studies involving known genes from key biological pathways in 
Arabidopsis and humans, using the identified best tool(s) to predict TFBSs.
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Methods
Development of a benchmark dataset

A benchmark dataset was generated following the recommendations of Tompa et  al. 
2005 [77], to assess the performance of TFBS prediction tools. This dataset comprised 
four types of sequences: real, generic, Markov, and negative. Real sequences, contain-
ing experimentally validated binding sites, were collected from the JASPAR database [24, 
82] for the TFs listed in Table 1 for both Arabidopsis thaliana and Homo sapiens. Five 
sequences of 115 bp length were randomly selected per TF, resulting in a total of 20 real 
sequences. The choice of 115 bp was based on the typical length of known binding sites 
from the JASPAR database, which are derived from ChIP-seq experiments and gener-
ally fall within this range. Generic sequences were generated by randomly selecting pro-
moter sequences from the genomes of A. thaliana and H. sapiens. Initially, gff3 files of 
H. sapiens and A. thaliana reference genome sequences were obtained from GENCODE 
[83] and NCBI [84], respectively. Ten genes were randomly extracted per organism, and 

Fig. 1 Tools available for modeling transcription factor binding sites

Table 1 Transcription factors used in the present study

Organism Transcription factor name JASPAR ID

Arabidopsis thaliana APETALA3 (AP3) MA0556.1

G-box binding factor 3 (GBF3) MA1351.1

Homo sapiens Transcription factor AP-2 alpha (TFAP2A) MA0003.2

Paired box 5 (PAX5) MA0014.2
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115 bp long promoter sequences (upstream from the transcription start site (TSS)) were 
obtained for each gene using the Ensembl genome browser [85], resulting in 20 generic 
sequences. Markov (or artificial) sequences (20 sequences) were generated using a third-
order Markov model. Experimentally validated binding sites obtained from the JASPAR 
database were then implanted into the generic sequences and Markov sequences. Nega-
tive sequences, lacking binding sites for the selected four TFs, were also acquired from 
the JASPAR database; sequences containing similar sites were removed from the dataset, 
resulting in 20 negative sequences. The real, generic, Markov, and negative sequences, 
totaling 80 sequences compiled into a single file in FASTA format to create the bench-
mark dataset (Additional file 1).

Selection of tools for performance evaluation

As shown in Fig. 1, several tools have been released since 2019. However, the currently 
available deep learning approaches for predicting TFBSs have primarily been trained 
on human datasets [61, 62, 72–74]. Consequently, their direct applicability and perfor-
mance on plant-specific data remain uncertain without significant retraining and valida-
tion [86–88]. Therefore, in the current study, we opted to exclude deep learning models 
from our evaluation.

Given that this study involves TFs from both human and Arabidopsis genomes, we 
focused our evaluation on tools mainly based on PWMs and HMMs. However, we did 
not include the recently released FABIAN-variant tool [66] in our analysis. Although it 
uses transcription factor flexible models (an extension of HMMs) and PWMs, FABIAN-
variant is specifically designed to predict the effects of DNA variants on human TFs [66]. 
Additionally, we excluded two PWM-based tools developed after 2019, TDThub and 
TFBSPred. TDThub is a web server that relies on a set of pre-computed TFBS in plant 
species [41], and TFBSPred is designed for human and mouse TFs [17], limiting their 
relevance to our study, which includes both human and Arabidopsis TFs.

In our study, we evaluated the performance of 12 TFBS prediction tools and four de 
novo motif discovery tools commonly used in research. This focused evaluation ensures 
that our findings are robust and relevant to both human and plant TFs. Table  2 pro-
vides an overview of the tools employed in this study. PWMs for the selected TFs were 
obtained from the JASPAR database in JASPAR, MEME, and TRANSFAC matrix for-
mats; the list of PWMs used in this study, along with related information is provided 
in Additional file 2. Default parameters were applied to all tools to enable comparisons 
among them.

Performance metrics

Several statistical parameters were used to assess the performance quality of the tools. 
For each tool, the number of true positives (nTPs), false positives (nFPs), and false nega-
tives (nFNs) were calculated for the benchmark dataset, considering different overlap 
percentages between the lengths of predicted and known binding sites or motifs (i.e., 
80, 90, and 100%). True positives (TPs) denote the number of nucleotide positions in 
both known and predicted binding sites, false positives (FPs) represent the number of 
nucleotide positions not in known binding sites but in predicted binding sites, and false 
negatives (FNs) indicate the number of nucleotide positions in known binding sites 
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but not in predicted binding sites [14, 77]. Employing these values, statistical param-
eters were calculated for each tool, including sensitivity (Sn) (Eq. (1)), positive predictive 
value (PPV) (Eq.  (2)), performance coefficient (PC) (Eq.  (3)), average site performance 
(ASP) (Eq.  (4)), and geometric accuracy (ACCg) (Eq.  (5)). The tools were individually 
ranked using Excel’s RANK function, considering each of the above-mentioned statisti-
cal parameters. Subsequently, the average rank for each tool across all statistical param-
eters was computed using Excel’s AVERAGE function.

(1)Sensitivity (Sn) = (nTPs)/(nTPs + nFNs)

(2)Positive predictive value (PPV) = (nTPs)/(nTPs + nFPs)

(3)Performance coefficient (PC) = (nTPs)/(nTPs + nFNs + nFP)

Table 2 Brief description of 16 analyzed tools

Tool Description URL References

TFBS prediction tools

Ciiider A software which uses a combination of PWMs and MATCH algorithm to 
predict TFBSs

[89] [33]

DWT-toolbox A regulatory motif model that incorporates arbitrary pairwise dependencies 
between positions in binding sites using a Bayesian framework along with 
PSWMs

[90] [106]

FIMO Part of MEME-Suite package which search for individual occurrences of a 
motif in a DNA or protein sequence

[91] [30]

HOMER A software that can be implemented in UNIX operating systems, which 
offers a set of tools for motif discovery and analysis

[92] [34]

INSECT 2.0 An online tool which allows the prediction of cis-regulatory modules (CRMs) 
at the genome level and long lists of genes. CRM search is done using PWMs 
available in databases

[93] [35]

Matrix-scan A part of regulatory sequence analysis tools (RSAT) which predicts TFBS 
using PWMs

[94] [36]

MCAST A part of the MEME-suite program which uses HMM with a p-value based 
scoring scheme to identify candidate CRMs which contain TFBSs

[95] [65]

MOODS A software implemented in C++ which uses advanced matrix matching 
algorithms to scan matrices against sequences

[96] [32]

Morpheus A web-based tool which allows using PWM models considering the depend-
encies between di or tri nucleotide positions

[97] [37]

MotEvo A software tool which uses a Bayesian probabilistic approach to predict 
TFBSs in multiple alignments of phylogenetically related DNA sequences

[98] [68]

PWMScan A web server which allows rapid scanning of genomes to match user-sup-
plied or server-resident PWMs

[99] [38]

TFBStools A package based on R for the analysis and manipulation of TFBSs [100] [39]

De novo motif discovery tools

MEME A part of MEME-suite which discovers novel-ungapped, recurring motifs of 
fixed length

[101] [54]

MotifSampler A tool based on the Gibbs sampling algorithm, which allows the identifica-
tion of novel motifs

[102] [51]

rGADEM An R package based on GADEM software, which identifies novel motifs in 
large-scale genomic sequence data

[103] [52]

STREME A part of MEME-suite which identifies novel-ungapped, recurring motifs of 
fixed lengths that are relatively enriched

[104] [53]
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Evaluation of the best‑performing tools

To assess the best-performing tools, we randomly selected 50 genes from both the A. 
thaliana and H. sapiens genomes (See Additional file  3 for the gene list). Promoter 
regions of these genes, defined as the 1000 bp upstream from the TSS, were retrieved 
from the Eukaryotic Promoter Database (EPD) [107]. These sequences were scanned 
for 879 vertebrate PWMs and 1,407 plant PWMs obtained from the JASPAR database 
(Additional file 2) using the three best-performing tools: MCAST, FIMO, and MOODS. 
All the predicted motifs were ranked by frequency, and the top 20 motifs from each tool 
were compared to evaluate the consistency of their prediction.

Case study 1: transcription factor binding sites in genes associated with the anthocyanin 

biosynthesis pathway in plants

A total of 149 genes involved in regulating anthocyanin biosynthesis in A. thaliana were 
obtained from Grau et  al. 2022 [41] (Additional file  3). Additionally, we downloaded 
genes associated with anthocyanin biosynthesis in Zea mays, Oryza sativa, and Gly-
cine max using TDThub [41] (Additional file  3). The promoter regions of these genes 
(1000  bp upstream from the TSS) were extracted from the EPD and NCBI databases 
[105, 107]. These sequences were then scanned against PWMs of all plant TFBSs avail-
able in the JASPAR database, using the three best-performing TFBS prediction tools 
identified in this study.

Case study 2: transcription factor binding sites in genes associated with the pentose phosphate 

pathway in humans

Thirty-one genes involved in the pentose phosphate pathway were retrieved from the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) database (Additional file 3). Pro-
moter regions (1000  bp upstream from the TSS) were extracted from the EPD and 
scanned against 879 vertebrate PWMs obtained from the JASPAR database using the 
three best-performing tools.

Results
Performance evaluation of different TFBS prediction tools

The benchmark dataset comprised a total of 60 TPs, indicating that the maximum 
nTPs that any tool could predict in this study was limited to 60. Among the 12 TFBS 
prediction tools examined, none of them achieved 100% accuracy in predicting all 60 
binding sites. However, both MotEvo and DWT-toolbox successfully identified all 
TPs at both 80% and 90% overlap (Table  3). Interestingly, while the nTPs remained 
consistent at 80% and 90% overlap with a few exceptions, there was a notable decrease 
in the nTPs identified at 100% overlap across all TFBS prediction tools, resulting 
in higher nFNs (Table  3). Particularly, TFBStools predicted fewer TPs at 80% over-
lap compared to other tools and failed to predict any binding sites at 90% and 100% 

(4)Average site performance (ASP) = (Sn + PPV)/2

(5)Geometric accuracy (ACCg) =
√
(Sn ∗ PPV)
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overlap. Additionally, the nFPs identified by the HOMER tool was relatively high 
compared to the other TFBS prediction tools examined (Table 3).

At both 80% and 90% overlap, Sn was generally higher compared to 100% for all the 
tools except for TFBStools (Fig. 2). Although Morpheus showed the highest sensitiv-
ity at 100% overlap with a sensitivity value of 0.767, DWT-toolbox, FIMO, HOMER, 
MotEvo, and PWMScan surpassed Morpheus at both 80% and 90% overlap. Moreo-
ver, TFBStools, which was unable to predict any binding sites at both 90% and 100% 
overlap, was able to predict binding sites at 80% overlap. However, the Sn was very 
low (0.150). Overall, it was evident that DWT-toolbox, MotEvo, Morpheus, PWM-
Scan, and FIMO consistently delivered Sn ≥ 0.750 across all three overlap percentages.

Table 3 Number of true positives (nTPs), false negatives (nFNs), and false positives (nFPs) detected 
by different TFBS prediction tools

*  Overlap percentage: the percentage overlap between the length of predicted and known binding sites

Tool Overlap percentage*

80% 90% 100%

nTPs nFNs nFPs nTPs nFNs nFPs nTPs nFNs nFPs

Ciiider 43 17 10 43 17 10 34 26 9

DWT-toolbox 60 0 65 60 0 65 45 15 65

FIMO 57 3 17 57 3 17 45 15 17

HOMER 58 2 1002 58 2 1002 43 17 1002

INSECT 2.0 45 15 12 45 15 12 36 24 12

Matrix scan 50 10 13 50 10 13 41 19 13

MCAST 51 9 0 51 9 0 42 18 0

MOODS 52 8 12 52 8 12 43 17 12

Morpheus 54 6 142 51 9 142 46 14 142

MotEvo 60 0 35 60 0 35 45 15 35

PWMScan 57 3 20 57 3 20 45 15 20

TFBStools 9 51 2 0 60 2 0 60 2

Fig. 2 Sensitivity of TFBS prediction tools at different overlap percentages
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When examining the PPVs obtained for the three different overlap percentages, it was 
observed that the tools Ciiider, INSECT 2.0, Matrix-scan, MCAST, and MOODS con-
sistently provided the best PPVs (0.750 or higher) throughout all three overlap percent-
ages; of these, MCAST tool exhibited the highest PPV (1.000) at all overlap percentages 
(Fig. 3). Although the PPV of TFBStools was null at 100% and 90% overlap, a significant 
increase was observed at 80% overlap, making it the second highest (Fig. 3). Addition-
ally, the PPV of the DWT-toolbox, HOMER and Morpheus tools was relatively low com-
pared to other tools examined, at all three overlap percentages (PPV < 0.500).

Assessing the performance of TFBS tools based on the PC values revealed that the 
MCAST tool exhibits the best performance across all three overlap percentages (Fig. 4). 
Following MCAST, the tools MOODS and FIMO, secured the second and third-high-
est PC values, respectively, at 100% overlap (Fig. 4). However, at 90% and 80% overlap, 
FIMO emerged as the tool with the second-highest PC value, while MOODS exhibited 
the third-highest PC value (Fig. 4). Similar to statistical parameters: Sn, and PPVs, the 
TFBStools showed zero PC at 100% and 90% overlap but exhibited a value of 0.145 at 

Fig. 3 Positive predictive values of TFBS prediction tools at three different overlap percentages

Fig. 4 Performance coefficient of TFBS prediction tools at three different overlap percentages
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80% overlap (Fig.  4). Additionally, the PC of DWT-toolbox, HOMER, and Morpheus 
tools were considerably low across all three overlap percentages (PC < 0.500).

As shown in Fig. 5, MCAST demonstrated the best performance across all three over-
lap percentages based on the estimated ASP measures. Similar to the tool performances 
based on PCs, the MOODS tool exhibited the second-highest ASP and the FIMO tool 
showed the third-highest ASP at 100% overlap (Fig.  5). Furthermore, at 90% and 80% 
overlap, the second-best and third-best ASPs were shown by FIMO and MOODS tools, 
respectively. It was also noted that TFBStools showed ASP value only at 80% overlap. 
Similar to PCs and ASP measures, a consistent trend in tool performance was observed 
when considering the ACCg of the TFBS prediction tools (Fig. 6). The MCAST demon-
strated the highest ACCg across all overlap percentages, followed by FIMO and MOODS 
tools. HOMER and Morpheus tools exhibited relatively low ACCg compared to other 
tools examined, at all three overlap percentages (ACCg < 0.500). Taking into account the 
PC (Fig. 4), ASP (Fig. 5), and ACCg (Fig. 6), it became evident that the best-performing 
tools were MCAST, MOODS, and FIMO. 

Fig. 5 Average site performance of TFBS prediction tools at three different overlap percentages

Fig. 6 Geometric accuracy of TFBS prediction tools at three different overlap percentages
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The best TFBS prediction tool/tools could not be solely identified from the values of 
statistical parameters, as various tools dominated different parameters. Hence, to deter-
mine the best-performing tool/tools across all the statistical parameters considered in 
the present analysis, the tools were ranked under each parameter, and the average rank 
was calculated. The average ranks obtained at different overlap percentages are provided 
in Additional file 4. It was revealed that the MCAST tool outperformed others at 100% 
overlap, while MOODS and FIMO tools secured the second and third positions, respec-
tively. The average ranks obtained at 90% overlap (Additional file  4), further showed 
that the MCAST tool performed the best at 90% overlap, following FIMO and MOODS 
tools. Consistent with the findings at 100% and 90% overlaps, it was revealed that the 
MCAST tool exhibited the best performance across all statistical parameters at 80% 
overlap. Additionally, the FIMO and MOODS tools were observed to secure the second-
best and third-best rankings, respectively at 80% overlap (Additional file 4).

Furthermore, each data type of the benchmark dataset was analyzed independently, 
irrespective of species, to assess the performance of TFBS prediction tools with an 
80% overlap between the length of predicted and known binding sites. DWT-toolbox 
and MotEvo identified the maximum nTPs in all three datasets. In addition to these 
tools, HOMER and PWMScan identified all 20 binding sites present in the real dataset 
(Table 4). However, HOMER resulted in a considerably higher number of FPs across all 
data types. Furthermore, TFBStools resulted in a notably lower number of TPs across all 
data types.

When assessing the Sn of tools in predicting binding sites, it was observed that gen-
erally, all tools except TFBStools exhibited Sn greater than 0.500 across all data types 
(Fig. 7a). Among these, two tools (DWT-toolbox and MotEvo) exhibited maximum Sn 
across all three data types. Based on the results obtained for the PPVs of the tools, it 
was observed that only the MCAST tool consistently performed well across all three 
data types (Fig. 7b). All tools, except HOMER and Morpheus, exhibited PPVs greater 

Table 4 Number of true positives (nTPs), false negatives (nFNs), and false positives (nFPs) detected 
by each TFBS prediction tool, categorized by data type with an 80% overlap

Tool Data type

Real Generic Markov

nTPs nFNs nFPs nTPs nFNs nFPs nTPs nFNs nFPs

Ciiider 15 5 4 14 6 0 14 6 1

DWT toolbox 20 0 10 20 0 4 20 0 11

FIMO 16 4 4 17 3 0 17 3 0

HOMER 20 0 267 19 1 262 19 1 264

INSECT 2.0 15 5 4 15 5 0 15 5 0

Matrix scan 16 4 4 17 3 0 17 3 0

MCAST 17 3 0 17 3 0 17 3 0

MOODS 17 3 4 18 2 0 17 3 0

Morpheus 18 2 33 18 2 30 18 2 29

MotEvo 20 0 4 20 0 2 20 0 2

PWMScan 20 0 3 19 1 1 18 2 3

TFBStools 3 17 1 3 17 0 3 17 0
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than 0.500 for all data types. Similarly, the comparison of PC values of the tools across 
the three data types revealed that the MCAST tool performed equally well across all 
data types (Fig. 7c). In addition, MotEvo showed greater performance across all data 
types. It was also observed that the TFBStools, Morpheus, and HOMER tools exhib-
ited comparatively lower performance (PC < 0.500).

Fig. 7 Tool performance matrices across different data types. a Sensitivity, b Positive predictive values, and c 
Performance coefficient
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Performance evaluation of de novo motif discovery tools

The results of our independent assessment of four commonly used de novo motif discov-
ery tools provide valuable insights into their performance. The evaluation was conducted 
as described by Jayaram et al. [14], using a 70% overlap between the known binding site 
and the binding site identified by the tool. Among the tools assessed, MEME emerged 
as the top performer, identifying 59 binding sites of the 60 binding sites in the bench-
mark dataset. MotifSampler and STREME both identified 39 binding sites, indicating 
a comparable level of performance between these two tools (Table 5). When evaluating 
the tools based on Sn, PC, ASP, and ACCg values, MEME consistently demonstrated the 
highest performance across these metrics.

Evaluation of the best‑performing tools

To further evaluate the performance of the top three TFBS prediction tools identified 
in the present study—MCAST, FIMO, and MOODS, a comparative analysis was con-
ducted using the top 20 motifs identified from randomly selected promoter regions of A. 
thaliana and H. sapiens. In the A. thaliana sequences, none of the predicted motifs were 
shared across the three tools (Fig. 8a). However, 12 motifs were commonly identified by 
both MCAST and FIMO, while MOODS identified a distinct set of motifs within its top 
20 results (Fig. 8a). In the human promoter sequences, three motifs were predicted by 
all three tools. Additionally, six motifs were commonly identified by both MCAST and 
FIMO, while five motifs were shared between FIMO and MOODS (Fig. 8b).

Table 5 Number of true positives (nTPs), false negatives (nFNs), and false positives (nFPs) detected 
by de novo motif discovery tools at 70% overlap

Tool nTPs nFNs nFPs

MEME 59 01 20

MotifSampler 39 21 18

STREME 39 21 14

rGADEM 19 41 08

Fig. 8 Distribution of the top 20 motifs predicted by MCAST, FIMO, and MOODS tools for randomly selected 
promoter sequences. a Arabidopsis thaliana, b Homo sapiens 
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Case study 1: assessing transcription factor binding sites in the promoters of the genes 

involved in the anthocyanin biosynthesis pathway

The anthocyanin biosynthesis is one of the most extensively studied pathways in plants, 
making it an ideal target for analyzing TFBSs in the promoter regions of related genes. 
In this study, we analyzed the promoter regions of 149 A. thaliana, 129 G. max, 74 O. 
sativa, and 70 Z. mays genes associated with anthocyanin biosynthesis using the three 
best-performing TFBS prediction tools: MCAST, FIMO, and MOODS. The analysis 
revealed that none of the top 20 motifs were shared across all three tools in any of the 
species analyzed. However, a notable overlap was observed between the motifs identified 
by MCAST and FIMO. Specifically, these two tools shared eight motifs in A. thaliana, 
ten motifs in G. max, ten motifs in O. sativa, and eight motifs in Z. mays, respectively 
(Additional file 5).

MYB (v-Myb myeloblastosis viral oncogene homolog) TFs are key regulators of antho-
cyanin biosynthesis in plants [108–112]. In our analysis, MCAST identified only a few 
MYB binding sites among the top 20 motifs for A. thaliana (10%), G. max (5%), and 
O. sativa (5%) (Additional file 5). In contrast, neither FIMO nor MOODS detected any 
MYB motifs in the top 20 motifs for these species. Moreover, in the promoter sequences 
of Z. mays, none of the tools detected MYB or MYB-related motifs among the top 20 
motifs. As the number of analyzed motifs increased, the detection of MYB and/or MYB-
related motifs increased. In A. thaliana, both FIMO and MOODS began detecting 
MYB and/or MYB-related bindings sites within the top 40 motifs (Fig. 9a). Similarly, in 
G. max, FIMO detected MYB motifs within the top 60 motifs, while MOODS detected 
MYB-related motifs starting at the top 40 (Fig. 9b). For O. sativa sequences, MOODS 
failed to identify any MYB binding sites even within the top 100 motifs (Fig. 9c). How-
ever, for Z. mays, MYB binding sites were detected by MCAST, FIMO and MOODS 
starting from the top 40, 80 and 60, respectively (Fig. 9d).

Notably, in the promoter regions of A. thaliana and G. max, MCAST primarily iden-
tified cystein-rich polycomb-like protein (CPP) motifs as the most abundant among 
the top 20 motifs, followed by DNA-binding with one finger (DOF) motifs. In contrast, 
FIMO predicted DOF motifs as the most abundant, followed by CPP motifs (Additional 
file 6). Furthermore, all of the top 20 motifs identified by MOODS in both species were 
DOF binding sites (Additional file  6). In the monocot species O. sativa and Z. mays, 
MCAST and FIMO primarily detected dehydration-responsive element-binding protein 
(DREB) binding sites within the top 20 motifs, while MOODS predominately identified 
DOF binding sites, followed by DREB binding sites (Additional file 6).

These findings highlight the variability in motif detection across different tools, even 
when analyzing the same gene list within a species. This underscores the importance of 
carefully selecting the appropriate tools for TFBS discovery.

Case study 2: assessing transcription factor binding sites in the promoters of the genes 

involved in the pentose phosphate pathway in Homo sapiens

The pentose phosphate pathway (PPP) is a fundamental component of cellular metabo-
lism and plays a significant role in various human diseases [113]. An analysis of the pro-
moter regions of 31 genes involved in the PPP using the TFBS prediction tools MCAST, 
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FIMO, and MOODS revealed that six motifs were consistently detected among the top 
20 motifs by all three tools (Fig.  10). Additionally, FIMO and MOODS shared eight 
motifs, while MCAST and FIMO shared five motifs, highlighting both the overlap and 
variation in motif detection across these tools. Notably, most of the top 20 motifs identi-
fied by all three tools corresponded to binding sites for TFs belonging to the C2H2 zinc 
finger family (C2H2-ZF), highlighting the significance of this TF family in PPP regula-
tion (Additional file 6).

Discussion
Advances in bioinformatics have revolutionized biological research by providing 
scientists with a range of computer tools for retrieval, analysis, and visualization 
of omics data, thereby uncovering the complexities of living organisms. However, 
this also presents a challenge for researchers, as the findings and conclusions may 

Fig. 9 Frequency of motifs detected in promoter sequences of genes involved in the anthocyanin 
biosynthesis pathway in plants. a Arabidopsis thaliana, b Glycine max, c Oryza sativa, d Zea mays 
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significantly depend on the choice of tools used for the analysis. To address this, 
benchmarking studies are often conducted to rigorously compare the performance of 
different tools, identify their strengths, and provide recommendations on the most 
suitable tools for specific analyses [114]. Designing a robust performance evaluation 
of computational tools is challenging due to various factors, such as selecting appro-
priate benchmark datasets, determining optimal tool parameters, and choosing suita-
ble statistical measures for performance evaluation. Therefore, it is essential to design 
benchmarking studies carefully to ensure accurate, unbiased, and informative results 
[114].

To date, only a limited number of assessments have been conducted to evaluate the 
performance quality of TFBS prediction tools. For instance, Tompa et  al. [77], pro-
vide a comparative analysis of several TFBS discovery tools, including AlignACE, 
ANN-Spec, Consensus, GLAM, Improbizer, MEME, MITRA, MotifSampler, oligo/
dyad-analysis, QuickScore, SesiMCMC, Weeder, and YMF. Additionally, Jayaram 
et al. [14], evaluate a set of TFBS prediction tools (i.e., MCast, Baycis, Cister, Cluster-
Buster, Comet, FIMO, Clover, Matrix-Scan, Patser and Possum-Search), as well as de 
novo motif discovery tools (i.e., MEME-ChIP, HOMER, ChIPMunk and rGADEM). 
Among the 16 tools assessed in the present study, the performance of INSECT 2.0, 
Morpheus, Ciiider, PWMScan, MOODS, MotEvo, DWT-toolbox, and TFBStool has 
not been previously evaluated. Our study was conducted from a general user’s per-
spective, employing default settings wherever possible or the recommended settings 
provided in the corresponding user manuals. If no recommendations were available, 
settings were chosen based on personal preference.

The selection of the reference dataset plays a crucial role in benchmarking compu-
tational methods [114]. Previous studies evaluating TFBS prediction tools often relied 
on reference datasets consisting of preprocessed ChIP-seq peaks or annotated TFBSs 
from the TRANSFAC database (14, 77, 81]. However, in our study, we opted to utilize 

MOODS
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8

Fig. 10 Distribution of the top 20 motifs identified by MCAST, FIMO, and MOODS across the promoter 
regions of the genes involved in the pentose phosphate pathway in Homo sapiens 
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the information stored in the JASPAR database which provides annotated TFBSs 
alongside sequences obtained from ChIP-seq experiments and is freely accessible, 
unlike TRANSFAC. To construct the reference or benchmark dataset, we incorpo-
rated four types of data: real, generic, Markov, and negative sequences. This approach 
aimed to minimize biases that could potentially favor certain tools over others [77, 
114].

Establishing criteria for defining an actual binding site (true positive) is crucial for 
comparing different TFBS or motif prediction tools. Employing a 100% overlap per-
centage between the length of actual and predicted binding sites to classify them as 
TPs may introduce bias, given the difficulty in precisely predicting TFBSs by many 
tools. In the study conducted by Jayaram et al. [14], an overlap percentage of 70% was 
used, while Tompa et  al.  [77], considered an overlap by at least one-quarter of the 
length of the known site as a TP. Consequently, in this study, different overlap per-
centages were applied: 100%, 90%, and 80% for TFBS prediction tools. No significant 
changes in results were observed beyond an 80% overlap, and thus, lower overlap per-
centages were not considered. Additionally, for de novo motif discovery tools, a 70% 
overlap was employed, following the approach described by Jayaram et al. [14].

Among the tools evaluated, MCAST stands out for its unique ability to avoid FPs 
across all three overlap percentages. This remarkable performance can be attributed 
to its algorithm, which is based on HMMs. MCAST is specifically designed to identify 
clusters of non-overlapping motifs, commonly referred to as cis-regulatory modules 
(CRMs) [65]. By focusing on clusters of motifs rather than individual occurrences, 
MCAST effectively reduces the likelihood of FPs, enhancing the accuracy of motif 
detection. However, while MCAST excels in minimizing FPs, its sensitivity was below 
that of many of the tools including FIMO and MOODS. Sensitivity is essential for 
ensuring that true binding sites are not overlooked. In applications where detecting 
all possible binding sites is crucial, this limitation of MCAST should be taken into 
account. Lower sensitivity means that some true binding sites may not be identified, 
which can be a significant drawback in comprehensive motif discovery studies.

The findings of the present study align with those of Jayaram et  al. [14], where 
MCAST and FIMO emerged as the best best-performing tools. However, in our study, 
MOODS outperformed FIMO at a 100% overlap percentage, while FIMO surpassed 
MOODS at the other two overlap percentages. Both of these tools are designed to 
identify individual binding sites, unlike MCAST. FIMO offers both web-based and 
command-line interfaces, with the web tool being particularly user-friendly [30]. In 
contrast, MOODS operates solely via the command line on Linux systems, though it 
boasts a faster runtime compared to FIMO [32].

Comparing the performance quality of TFBS prediction tools poses a challenge due 
to their reliance on different algorithms for motif discovery. Our benchmark dataset 
included only one binding site per sequence and therefore, was not affected by these 
algorithmic differences. However, in real datasets, multiple binding sites may be pre-
sent in a given DNA sequence. Hence, it is more reliable to conclude that for an aver-
age-end user aiming to identify CRMs with minimal FPs, MCAST stands out as the 
best option. Conversely, for identifying individual binding sites, FIMO and MOODS 
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emerge as the best options. The choice between FIMO and MOODS may depend on 
factors such as run-time, user-friendliness, and the expected level of accuracy.

Although MCAST, FIMO, and MOODS outperformed other tools overall, DWT-
toolbox and MotEvo excelled in identifying the highest number of TPs at both 80% 
and 90% overlaps. DWT-toolbox, a command line tool employing a Bayesian network 
model, effectively addresses a critical issue in TFBS prediction tools: pairwise depend-
ency [15, 115]. Unlike the PWM method used in most tools, which assumes independ-
ence between positions, the DWT-toolbox considers all possible pairwise dependencies 
within a rigourous probabilistic framework devoid of tunable parameters, automatically 
avoiding overfitting [106]. MotEvo, another command line tool, employs a Bayesian 
probabilistic model-based algorithm specifically designed for analyzing TFBSs across 
phylogenetically related multiple organisms [68], but can also handle single species 
sequences. However, considering its file requirements and parameters, it is conceivable 
that MotEvo could have performed even better with phylogenetically related sequences.

Consistent with previous findings [77], our evaluation of TFBS prediction tools across 
three different data types: real, generic, and Markov, further underscores the critical 
role of experimental design in performance evaluation research. Notably, a considerable 
increase in the number of FPs was observed in the real dataset compared to the other 
data types. This suggests the presence of putative binding sites for other TFs beyond 
those known and utilized in the current experimental design. Consequently, tools that 
successfully identify these additional binding sites may be unfairly penalized due to the 
experimental setup. To mitigate this bias, generic and Markov datasets were included 
in the benchmark, ensuring a more balanced evaluation across different tools. MCAST 
demonstrated consistent performance across all three data types and all statistical 
parameters assessed, reinforcing its reliability as a TFBS prediction tool.

When evaluating the overall performance of TFBS prediction tools across various 
overlap percentages and data types, most tools demonstrated satisfactory performance, 
with some emerging as the best performers. However, both HOMER and TFBStools 
exhibited notably poor performances. HOMER, a command-line tool, ranked among the 
lowest performers due to its tendency to identify a high number of FPs, despite its ability 
to accurately recognize TPs. This high FP rate reduces its overall reliability, highlight-
ing the need for more precise algorithms or improved parameter settings. Furthermore, 
TFBStools, an R package, performed poorly in identifying TPs in our study, especially at 
100% and 90% overlaps, with only a few TPs detected at 80% overlap. While TFBStools 
did not generate many FPs, its limited ability to predict most binding sites, even after 
parameter adjustments, raises concerns regarding its effectiveness as a TFBS predic-
tion tool. This limited predictive capability suggests that TFBStools may require signifi-
cant algorithmic improvements or more sophisticated parameter tuning to enhance its 
performance.

Among the de novo motif discovery tools examined, the comprehensive dominance 
of MEME underscores its reliability and efficiency in accurately identifying binding 
motifs. MEME directly identifies motifs within user input sequences, making it highly 
effective for straightforward motif discovery tasks. Although both MEME and STREME 
are part of the MEME suite, they utilize different algorithms. STREME compares user 
sequences with a set of control sequences to detect relatively enriched motifs [53]. This 
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methodological distinction suggests that STREME may offer superior performance for 
certain types of analyses, particularly those involving differential motif enrichment. 
MotifSampler’s performance, while notable, may be impacted by a lack of updates and 
maintenance. This could affect its usability and reliability. Furthermore, our findings pre-
sent a contrast to the results reported by Jayaram et al. [14], where rGADEM was shown 
to outperform tools such as ChIPMunk, HOMER, and MEME-ChIP. In our study, rGA-
DEM exhibited the poorest performance across most metrics, except for PPV. This dis-
crepancy could be attributed to the parameter settings used during the motif discovery 
process. While Jayaram et al. [14], manually optimized rGADEM’s parameters to achieve 
better results, our study utilized the default settings. This highlights the importance of 
fine-tuning parameters for motif discovery tools to maximize their efficacy. Default set-
tings, while convenient, may not always capture the nuances required for accurate motif 
identification. Users of rGADEM and similar tools should consider customizing param-
eters based on the specific characteristics of their datasets to improve performance 
outcomes.

To further evaluate the performance of the best-performing tools—MCAST, FIMO, 
and MOODS, we focused on two distinct biological pathways: the anthocyanin bio-
synthesis pathway in plants and the PPP in humans. In addition, we analyzed a set of 
random promoter sequences from A. thaliana and H. sapiens genomes to assess the con-
sistency in motif detection across the tools. Overall, our comparative analysis revealed 
considerable variability in motif detection across the tools, highlighting the importance 
of selecting the appropriate TFBS prediction tool(s) for different biological contexts to 
enhance prediction accuracy.

In plants, MYB TFs are one of the key regulators of anthocyanin biosynthesis [110, 
116]. Our analysis revealed inconsistencies in detecting MYB binding sites among differ-
ent tools when analysing the same set of promoter sequences and focusing on the top 20 
motifs. Specifically, MCAST identified MYB motifs within the top 20 motifs in the pro-
moters of anthocyanin biosynthesis-related genes in A. thaliana, G. max, and O. sativa. 
In contrast, neither FIMO nor MOODS detected MYB motifs within this range for these 
species. This suggests that MCAST may be more sensitive in detecting motifs based on 
their frequency within the top 20 motifs. Nevertheless, only a few MYB motifs were 
identified among the top 20 motifs: MYB23 and MYB58 binding sites were detected in 
A. thaliana, and MYB31 binding sites were identified in both G. max and O. sativa. As 
this analysis was expanded to include the top 40–100 motifs in increments of 20, both 
FIMO and MOODS began to detect MYB motifs, indicating that these tools may per-
form better with a broader search range.

A recent study analyzing TFBSs in Arabidopsis anthocyanin biosynthesis-related 
genes using FIMO, sorted by a user-defined Significance Score (S-Score), reported a 
prevalence of MYB TFs within the top 20 motifs [41]. In contrast, our present study, 
which also analyzed the same Arabidopsis anthocyanin gene list using FIMO but sorted 
based on motif frequencies, did not detect any MYB binding sites within the top 20 
motifs. However, binding sites for MYB51, MYB80, and MYB93, as identified in Grau 
and Franco-Zorrilla [41], were detected among the top 100 motifs in our analysis. This 
discrepancy in motif detection may be due to differences in the TFBS sorting crite-
ria, and/or the set of PWMs employed during promoter scanning. For instance, in the 
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present analysis, we utilized PWMs from the JASPAR database, which do not include 
certain PWMs such as MYB6, MYB37, and MYB38, which were considered in the analy-
sis by Grau and Franco-Zorrilla [41].

Furthermore, the PWMs for several important MYB TFs that regulate anthocyanin 
biosynthesis in plants, specifically, MYB11, MYB12, MYB75, MYB90, and MYB114 
[117–119] were not included in either the JASPAR database or the study by Grau and 
Franco-Zorrilla [41]. This could limit the detection of important binding sites in the 
anthocyanin biosynthesis-related genes of the plant species if those binding sites are 
present. Therefore, as new TFs are identified and characterized, it is essential to continu-
ously update freely accessible databases like JASPAR to enhance the accuracy of TFBS 
detection.

In addition to the MYB TF family, several other TF families are known to be involved 
in anthocyanin biosynthesis [120–122]. However, the role of DREB TFs in this pathway 
has not been extensively studied. Interestingly, our analysis revealed a higher prevalence 
of DREB binding sites in the anthocyanin biosynthesis-related genes of monocotyledon 
species such as O. sativa and Z. mays, as detected by MCAST and FIMO. This find-
ing suggests that DREB TFs may play a regulatory role in the anthocyanin pathway in 
monocots. Therefore, future studies exploring the potential involvement of DREB TFs 
in mediating anthocyanin biosynthesis in monocots could provide valuable insights into 
the regulation of this important secondary metabolic pathway in plants. Moreover, we 
observed a predominant presence of C2H2-ZF family binding sites in the genes of the 
human PPP. This family of TFs represents the largest class of multifunctional regulators 
in both humans and plants [123, 124]. However, there is currently no information on the 
involvement of these TFs in the human PPP, opening avenues for future research.

Conclusion
As various TFBS prediction tools become available, understanding the performance 
of different tools in terms of accuracy, sensitivity, and specificity is crucial in genomic 
research. This study identified MCAST, FIMO, and MOODS as the top-performing 
TFBS prediction tools, while DWT-toolbox and MotEvo demonstrated increased effi-
cacy in predicting a higher number of true binding sites, indicating superior sensitivity. 
MEME emerged as the most reliable de novo motif discovery tool.

The observed performance variations in this study emphasize the necessity for contin-
uous benchmarking and independent assessments of TFBS prediction tools. Such evalu-
ations help to identify the strengths and weaknesses of tools, guiding users in selecting 
the most appropriate tool(s) for their specific research needs. Moreover, tool developers 
can leverage these insights to enhance algorithm robustness and usability, ensuring that 
default settings are more universally effective or providing clear guidance on parameter 
customization. Further studies should explore the impact of parameter optimization 
across different datasets to provide a more comprehensive understanding of each tool’s 
capabilities and limitations.

It is recommended to further evaluate the performance quality of TFBS predicting 
tools using diverse benchmark datasets derived from multiple organisms, containing a 
range of TFBSs. Furthermore, relying solely on a single type of binding site per sequence, 
as done in the present study, may not provide a comprehensive evaluation of a tool’s 
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performance. Utilizing benchmark datasets from various organisms with multiple bind-
ing sites per sequence can provide valuable insights into the tool’s performance across 
a broader spectrum of genomic contexts, better reflecting the complexity of regulatory 
regions in biological systems. Additionally, this approach will enhance the accuracy and 
reliability of the evaluations.

In summary, due to variations in sensitivity and specificity among TFBS prediction 
tools, it is recommended to integrate predictions from multiple tools to mitigate the 
limitations of individual tools, leading to a more thorough analysis of TFBSs. Thus, the 
development of a comprehensive toolbox that integrates TFBS prediction tools and de 
novo motif discovery tools would enable users to utilize a diverse array of tools, thereby 
increasing the likelihood of identifying significant binding sites/motifs. This integrative 
approach would facilitate a more robust and detailed understanding of transcriptional 
regulatory mechanisms, ultimately advancing genomic research.
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