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Introduction
Quantifying the dependence between variables in biological networks is crucial, as 
understanding condition-responsive activations of biological processes relies on accu-
rately constructing these networks [1]. Several computing criteria are used to quantify 
relationships either between paired variables or among multiple variables [2]. Correla-
tion methods, such as Pearson correlation coefficient and partial correlation, are widely 
employed to assess the linear relationship between paired variables. In contrast, infor-
mation measures can evaluate the dependence between two or more variables, offering 
significant advantages over correlation methods. These advantages include the ability 
to capture more general nonlinear associations and reflect dynamics between variables. 
Commonly used information measures include mutual information (MI), conditional 
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PMI is another measure that dedicates to quantifying the nonlinear direct dependence 
between two random variables given a third, particularly if any one variable has a poten-
tially strong correlation with the third. For the discrete variables X, Y and Z, the formula 
for PMI is:

where p(x, y|z) = p∗(x|z) · p(y|z) is the partial independence of discrete variable X and Y 
given Z. Here p∗(x|z) and p∗(y|z) are defined as:

Another multivariate information measure is II, which quantifies the amount infor-
mation (synergy or redundancy) contained in a set of variables beyond any subset of 
those variables. The II value can be either negative or positive. For three-variable cases, 
a positive interaction information value typically indicates synergistic or cooperative 
relationships among the first two variables given the third, meaning that the combined 
information from the variables provides more insight together than individually. In con-
trast, a negative interaction information value suggests redundant or suppressive inter-
actions between the first two variables, where knowing the first two variables together 
yields less information than expected from their individual pairwise interactions [17]. 
The formula for II is expressed as:

PID is another emerging information measure that decomposes the source informa-
tion acting on a target into four parts: joint information (synergy), individual informa-
tion (two unique components), and shared information (redundancy). For three discrete 
variables X, Y and, the formula for PID is:

Synergy represents the additional information about Z provided by X and Y together, 
not by each individual variable. Redundancy refers to the portion of information about 
Z provided by either variable X or Y alone. The unique contribution from X (or Y) is the 
part of information provided only by X (or Y).

In summary, MI is suitable for quantifying nonlinear dependence between two vari-
ables in biological networks, while CMI and PMI are ideal for trivariate network infer-
ence. The synergistic and redundant information decomposed from II and PID can help 
biologists better decipher the cooperative and competitive relationships in more com-
plex biological networks.

(3)
CMI

(

X;Y|Z
)

=
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p(x, y, z) log

(
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)
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(4)PMI
(

X;Y
∣

∣Z
)

=
∑
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p(x, y, z)log
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(5)p∗(x|z) =
∑

y∈Y
p(x|z, y)p(y), p∗(y|z) =

∑

x∈X
p(y|z, x)p(x)

(6)II(X;Y;Z)= MI(X;Y)−CMI(X;Y|Z)

(7)
PID(X;Y, Z) = Synergy(Z;X, Y)+ UniqueY(Z;X)

+ UniqueX(Z;Y)+ Redundancy(Z;X, Y)
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Implementation and main functions
Our toolkit is an extension of the entropy R package. We leveraged three distinct 
entropy estimators from this package. Our key innovation lies in extending these 
entropy estimators to five unique information measures, which can be applied 
directly to pairs or triples of variables, offering enhanced versatility in analyzing vari-
able interactions.

The implementation of information measures typically involves first discretizing 
continuous variables into a count table, evaluating probabilities from the counts, 
estimating entropy based on the (joint) probability matrix, and finally calculat-
ing the information value associated between the variables. The package breaks the 
entire implementation process into three main parts: data discretization, probability/
entropy estimation, and information estimation. This user-oriented implementation 
allows users to freely combine discretization methods, probability or entropy evalua-
tors, and information metrics according to their specific requirements.

Two of the most common discretization methods are adopted in this package. The 
default method is a uniform width-based method, which divides the continuous data 
into N bins with equal width. The alternative is a uniform frequency-based approach, 
which divides the continuous data into N bins with an equal count. By default, both 
methods initialize the number of bins to the round-off value of the square root of the 
data size:

√
N .

In the probability estimation process, three types of probability estimators, refer-
enced from the ‘entropy’ package, are available: the empirical estimator (default), the 
Dirichlet distribution estimator, and the shrinkage estimator. The Dirichlet distribu-
tion estimator includes four different distributions with different prior values:

• method = ”ML”: maximum likelihood estimator, also referred to empirical prob-
ability,

• method = ”Jeffreys”: Dirichlet distribution estimator with prior a = 0.5,
• method = ”Laplace”: Dirichlet distribution estimator with prior a = 1,
• method = ”SG”: Dirichlet destruction estimator with prior a = 1

length(XY )
 , where 

XY is the joint count table for variables X and Y,
• method = ”minimax”: Dirichlet distribution estimator with prior a =

√
∑

(XY )

length(XY )

,
• method = ”shrink”: shrinkage estimator.

The most important functions in this package are the five different information meas-
ures, each ending with ‘.measure()’ as the postfix. They are ‘MI.measure()’ for MI, ‘CMI.
measure()’ for CMI, ‘II.measure()’ for II, ‘PID.measure()’ for PID and ‘PMI.measure()’ 
for PMI. Each function can be called with just a joint count table, but they also pro-
vide six probability estimation methods and three different base logarithmic calculations 
for users to choose from. All functions, except ‘PID.measure()’, return a numeric value 
representing the information measure between two variables or among three variables. 
The ‘PID.measure()’ function returns a list that includes synergistic information, unique 
information from one source variable, unique information from the other source vari-
able, redundant information, and the sum of the four parts of information.
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In the three-variable case, we apply CMI and PMI for the triplet network inference, as 
both measures evaluate the influence of a third variable on the mutual information of 
two joint variables. Such characteristics make them suitable for ceRNA network infer-
ence. For example, in lncRNA-associated ceRNA triplets, the calculation pertains to 
the perturbation intensity on miRNA-mRNA by lncRNA. As shown in Fig. 1B, the PMI 
value is higher than the CMI value. This discrepancy arises because PMI accurately can 
evaluate the dependence between hsa-miR-26a-5p and PTEN, even though PTENP1 has 
a strong correlation with PTEN. In contrast, CMI tends to underestimate the result in 
this scenario.

For exploring the cooperative or competitive regulation mechanisms of two miRNAs 
on a common target mRNA, we apply II and PID to extract synergetic and/or redundant 
information between variables. As shown in Fig. 1C and D, the positive value of II and 
the high synergy value of PID indicate that the two miRNAs together provide most of 
the information for the target variable, suggesting a cooperative mechanism between the 
two miRNAs. The boxplot demonstrates that the expression patterns of hsa-miR-34a-5p 
and hsa-miR-34b-5p are similar yet distinct from the target MYC, which is consistent 
with the notion that the two miRNAs coordinately regulate the common target mRNA.

Discussion and conclusion
Our goal is to provide researchers with a comprehensive toolkit of information meas-
ures to address specific research purposes. The developed tool, Informeasure, is an R/
Biocondutor package with well-documented functions and demonstration examples in 
the vignette, allowing users to easily access these information measures. In the current 
version, our primary focus is on applying information measures to two- and three-vari-
able cases, although measures such as II and PID can potentially be extended to higher 
dimensions. However, to the best of our knowledge, identifying nonlinear dependence 
between two- and three-variable is currently the main concern. Therefore, we have cho-
sen three variables as the largest network unit handled by this toolkit.

We recommend applying appropriate normalization methods specific to the data type 
before feeding the data into our toolkit. As demonstrated in our software vignette, RNA-
seq data, which can have a highly skewed distribution, benefits from log2 transforma-
tion to bring expression values to a comparable scale before discretization. For single 
cell RNA-seq data, we suggest using a global-scaling normalization method like “Log-
Normalize” which is used by default in the Seurat package to handle sparse single cell 
data [18]. Additionally, we recommend using imputation strategies such as MAGIC or 
SAVER to address dropout issues for single cell RNA-seq data before applying our pack-
age [19, 20]. In the case of qPCR data, which often features a narrower range of expres-
sion values, log2 transformation can still be beneficial depending on the dynamic range 
of the data.

In conclusion, we have implemented five information measures in this R package. A 
brief survey of information theory guided users in choosing appropriate measures for 
specific purposes. The illustrations successfully demonstrate the application of informa-
tion measures for inferring various types of regulatory networks from expression profile 
data, with a primary focus on trivariate networks. We are convinced that Informeasure 
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can be widely serving as a valuable tool for facilitating the inference of condition-specific 
regulatory networks.

Availability and requirements
Project name: Informeasure

Project home page: https:// bioco nduct or. org/ packa ges/ relea se/ bioc/ html/ Infor measu 
re. html

Operating system(s): Platform independent
Programming language: R
Other requirements: R ≥ 4.0
License: None
Any restrictions to use by non-academics: None

Acknowledgements
The authors thank Dr. Junpeng Zhang, Mr. Nitesh Turaga, and Mr. Martin Morgan for their informative suggestions on 
writing the R package.

Author Contributions
CP conceptualization, writing-original software, supervision, funding acquisition, writing-original draft, project adminis-
tration, writing-review and editing. YC writing-original software, writing-review and editing

Funding
This work was supported by National Natural Science Foundation of China [62102144 to C.P.]

Availability of data and materials
The RNA-seq dataset for breast cancer was downloaded from The Cancer Genome Atlas (TCGA, https:// portal. gdc. cancer. 
gov)

Declarations

 Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing of interests
The authors declare that they have no competing of interest.

Received: 9 August 2024   Accepted: 21 November 2024

References
 1. Hill SM, Heiser LM, Cokelaer T, Unger M, Nesser NK, Carlin DE, Zhang Y, Sokolov A, Paull EO, Wong CK, et al. 

Inferring causal molecular networks: empirical assessment through a community-based effort. Nat Methods. 
2016;13(4):310–8.

 2. Maetschke SR, Madhamshettiwar PB, Davis MJ, Ragan MA. Supervised, semi-supervised and unsupervised inference 
of gene regulatory networks. Brief Bioinform. 2014;15(2):195–211.

 3. Wyner AD. A definition of conditional mutual information for arbitrary ensembles. Inf Control. 1978;38(1):51–9.
 4. McGill W. Multivariate information transmission. Trans IRE Prof Group Inform Theory. 1954;4(4):93–111.
 5. Williams PL, Beer RD. Nonnegative decomposition of multivariate information. 2010. arXiv preprint arXiv: 1004. 2515.
 6. Zhao J, Zhou Y, Zhang X, Chen L. Part mutual information for quantifying direct associations in networks. Proc Natl 

Acad Sci. 2016;113(18):5130–5.
 7. Zhang X, Zhao X-M, He K, Lu L, Cao Y, Liu J, Hao J-K, Liu Z-P, Chen L. Inferring gene regulatory networks from 

gene expression data by path consistency algorithm based on conditional mutual information. Bioinformatics. 
2012;28(1):98–104.

 8. Zhang X, Liu K, Liu Z-P, Duval B, Richer J-M, Zhao X-M, Hao J-K, Chen L. Narromi: a noise and redundancy reduction 
technique improves accuracy of gene regulatory network inference. Bioinformatics. 2013;29(1):106–13.

 9. Sumazin P, Yang X, Chiu H-S, Chung W-J, Iyer A, Llobet-Navas D, Rajbhandari P, Bansal M, Guarnieri P, Silva J, et al. An 
extensive microrna-mediated network of rna-rna interactions regulates established oncogenic pathways in glioblas-
toma. Cell. 2011;147(2):370–81.

 10. Chiu H-S, Llobet-Navas D, Yang X, Chung W-J, Ambesi-Impiombato A, Iyer A, Kim HR, Seviour EG, Luo Z, Sehgal V, 
et al. Cupid: simultaneous reconstruction of microrna-target and cerna networks. Genome Res. 2015;25(2):257–67.

https://bioconductor.org/packages/release/bioc/html/Informeasure.html
https://bioconductor.org/packages/release/bioc/html/Informeasure.html
https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
http://arxiv.org/abs/1004.2515


Page 8 of 8Pan and Chen  BMC Bioinformatics          (2024) 25:382 

 11. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A Cerna hypothesis: the Rosetta stone of a hidden RNA language? 
Cell. 2011;146(3):353–8.

 12. Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Favera RD, Califano A. Aracne: an algorithm for the 
reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinform. 2006;7:1–15.

 13. Chan TE, Stumpf MP, Babtie AC. Gene regulatory network inference from single-cell data using multivariate informa-
tion measures. Cell Syst. 2017;5(3):251–67.

 14. Stumpf PS, Smith RC, Lenz M, Schuppert A, Müller F-J, Babtie A, Chan TE, Stumpf MP, Please CP, Howison SD, et al. 
Stem cell differentiation as a non-Markov stochastic process. Cell Syst. 2017;5(3):268–82.

 15. Meyer PE, Lafitte F, Bontempi G. minet: Ar/bioconductor package for inferring large transcriptional networks using 
mutual information. BMC Bioinform. 2008;9:1–10.

 16. Hausser J, Strimmer K. Entropy inference and the James-Stein estimator, with application to nonlinear gene associa-
tion networks. J Mach Learn Res. 2009;10(7).

 17. Timme N, Alford W, Flecker B, Beggs JM. Synergy, redundancy, and multivariate information measures: an experi-
mentalist’s perspective. J Comput Neurosci. 2014;36:119–40.

 18. Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A, Lee MJ, Wilk AJ, Darby C, Zager M, et al. Integrated 
analysis of multimodal single-cell data. Cell. 2021;184(13):3573–87.

 19. Van Dijk D, Sharma R, Nainys J, Yim K, Kathail P, Carr AJ, Burdziak C, Moon KR, Chaffer CL, Pattabiraman D, et al. Recov-
ering gene interactions from single-cell data using data diffusion. Cell. 2018;174(3):716–29.

 20. Huang M, Wang J, Torre E, Dueck H, Shaffer S, Bonasio R, Murray JI, Raj A, Li M, Zhang NR. Saver: gene expression 
recovery for single-cell rna sequencing. Nat Methods. 2018;15(7):539–42.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Informeasure: an Rbioconductor package for quantifying nonlinear dependence between variables in biological networks from an information theory perspective
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Introduction
	Mathematical theory of Information measures
	Implementation and main functions
	Application in inferring different transcriptome regulatory network types
	Discussion and conclusion
	Availability and requirements
	Acknowledgements
	References


