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Background
Clinical decision support systems are critical in the healthcare sector [1, 2], with diag-
nostic prediction being a central application [3–5] that spans various medical special-
ties and scenarios [4, 6, 7], and sequential diagnosis prediction is one kind of prediction 
based on patients’ historical visits. Research in diagnostic prediction evolves and iterates 
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with technological advancements. Early diagnostic prediction models relied on heuris-
tics and expert systems, such as the MYCIN system [8], which was limited by high main-
tenance costs due to manual rule curation. Advances in traditional machine learning 
approaches [9] have since automated the training of classifiers from electronic medical 
records, treating diagnosis prediction as a multi-class classification task. Deep learn-
ing, particularly with recurrent neural networks (RNNs) and attention mechanisms, has 
shown significant promise in capturing temporal dynamics within medical records [10]. 
Models like Med2Vec [11] and MiME [12] utilize multi-level representation learning to 
integrate visit sequence and medical code co-occurrence data. Others, including Dipole 
[13] and RETAIN [14], directly apply RNNs to model temporal relationships in patient 
histories. Attention-based models such as MMORE [15], MusaNet [16], and HiTANet 
[17] focus on capturing multi-scale temporal features. Although these models consid-
ered the temporal information of patient visits, they fail to effectively capture deeper 
information, such as the irregularity of visit intervals. SETOR [18] employs a neural 
ordinary differential equation addressing visit intervals and length of stay in an end-to-
end learning manner, which significantly enhances the prediction effect, while the irreg-
ularity of visit intervals has not been fully explored. This paper mainly focused on handle 
this problem.

Electronic medical records often present diagnostic imbalance. To enhance medi-
cal code embedding [19] and predictive performance, some studies have incorporated 
external medical ontologies [20]. Choi et al. proposed the Graph-based Attention Model 
for Representation Learning (GRAM) [21], which integrates medical ontologies with 
attention mechanisms and RNNs for representation learning. Ma et al. additionally con-
sidered auxiliary information for learning embeddings from non-leaf nodes in medical 
ontologies [22] to extend GRAM. SETOR [18] utilized Ontological Representation and 
transformer. Hongyi Zhang et al. addressed the imbalance issue through the active bal-
ancing mechanism for imbalanced medical data [23], and Hsu-Hsiang Chang et al. pro-
posed a meta-learning approach for electronic health records with a high imbalanced 
ratio [24]. This paper employed the widely-adopted methodology of integrating ontolo-
gies to effectively addressing the diagnostic imbalance encountered in medical data.

Multi-task learning enhances model generalization across various tasks [25]. Caruana 
et  al. proposed the hard parameter sharing paradigm [26], in which hidden layers are 
shared among all tasks in neural network, and each task has its own independent output 
layer, reducing the risk of overfitting on individual tasks. It has been applied in medi-
cine for joint diagnosis and prognosis [27, 28]. Haque et al. developed MULTIMIX [29], 
which jointly learns disease classification and lesion segmentation in a cautiously super-
vised manner. Harutyunyan et  al. employed LSTM for multi-task joint training [30], 
demonstrating excellent performance on multiple patient outcome prediction tasks. 
Mulyar et  al. proposed the MT-Clinical BERT model [31], leveraging the multi-task 
BERT architecture for text encoding and simultaneously learning features for multiple 
clinical task prediction heads, achieving higher F1 scores on the i2b2-2012 dataset. This 
paper utilized Multi-task learning for modeling.

To this end, this paper proposed the Multi-task Fusion Visit Interval for Sequential 
Diagnosis Prediction (MISDP) framework. It featured private layers for diagnostic pre-
diction and visit interval prediction, with the former leveraging ontologies to enhance 
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diagnosis representation and the latter using positional encoding and interval encoding 
to capture irregular visit intervals. Shared layers integrated these features, followed by 
an optimization step using historical attention residue within a multi-head self-attention 
mechanism. This refined the representation of historical disease diagnoses. The decod-
ing layer then generated the final sequential diagnosis predictions through a classifier, 
yielding disease prediction outcomes.

In summary, our primary contributions are:

•	 The proposal of a multi-task framework named "MISDP", which employed a visit 
interval prediction sub-task to enhance Sequential Diagnosis Prediction and bolster 
its generalization capability.

•	 The utilization of positional encoding and interval encoding in the visit interval pre-
diction sub-task to fully captured the intervals and sequence of visits.

•	 The introduction of historical attention residue to optimize the transformer’s multi-
head self-attention module, enhancing the model’s capacity to learn from long-term 
dependencies.

Methods
Dataset and processing

Our analysis was conducted using data extracted from the Medical Information Mart 
for Intensive Care III (MIMIC-III) database, a publicly accessible and comprehensive 
resource for critical care research. The MIMIC-III database, which encompasses detailed 
clinical information from patients admitted to intensive care units at a major tertiary 
care hospital in Boston, spans the period from June 1, 2001, to October 10, 2012 [32]. 
For this study, we utilized the MIMIC-III v1. 4 dataset, released on September 2, 2016.

To ensure a robust analysis, we focused on patients with a minimum of two recorded 
visits and one diagnosis within the database, as shown in Fig. 1. This criterion resulted 
in a final cohort comprising 7, 499 unique patients. The average number of visits per 
patient was 2. 66, with an average of 13. 1 ICD-9 codes documented per visit, ranging up 
to a maximum of 39 ICD-9 codes per visit.

Model framework

In this section, we propose the Multi-task Fusion Visit Interval for Sequential Diagnosis 
Prediction (MISDP) model, the model architecture, as depicted in Fig. 2, is composed of 
private layers for two sub-tasks, shared layers for feature integration, and decoding lay-
ers for generating the final output.

Private layers

The MISDP model’s private layers are designed to handle two distinct sub-tasks: visit 
interval prediction and sequential diagnosis prediction.

Interval prediction sub‑task

The interval prediction sub-task focused on modeling the intervals between patient 
visits, which could indicate the stability or acute changes in a patient’s health 



Page 4 of 14Zhu et al. BMC Bioinformatics          (2024) 25:387 

condition. The visit intervals are calculated by extracting the time intervals between 
consecutive visits. The time interval between visits Vt−1 and is denoted as It , with 
the first visit interval being zero by definition. The embedding representation of these 
intervals is represented by the vector EIV  . The order of visit intervals is encoded 
using the positional embedding approach from the Transformer model, as defined in 
Eq. (1).

Fig. 1  Flowchart of enrolment

Fig. 2  Schematic representation of the MISDP model architecture, which includes private layers for interval 
prediction and sequential diagnosis prediction, shared layers for feature integration, and decoding layers for 
final output generation
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where represents the absolute position of the visit intervals, start from one, then get 
the order of visit intervals EIP.

By connecting and EIP , we obtain the integrated expression EI for the visit intervals 
and sequence, as shown in Eq. (2),

Sequential diagnosis prediction sub‑task

The sequential diagnosis prediction sub-task involves encoding both visit records and 
medical ontologies, fusing their heterogeneous features, and applying attention pooling 
to derive a single context-aware vector representation. This process employed the same 
method as the Ontological Encoder and Attention Pooling used in SETOR [18].

Shared layers

The shared layers facilitated information sharing between tasks. Initially, feature vectors 
from the interval prediction sub-task and the sequential diagnosis prediction sub-task 
were integrated through concatenation, as shown in Eq. (3).

where EOt represented the diagnostic code for the patient’s t-th visit, EIt represented 
the encoding of the t-th intervals and sequence, Vt denoted the patient’s t-th visit, Econcat

Vt
 

represented the visit vector for the t-th visit.
Subsequently, the model employed a multi-layer bidirectional Transformer struc-

ture for encoding, generating hidden representations for each visit within the patient’s 
visit history, as detailed in Eq. (4). The Transformer Encoder utilized multi-head atten-
tion, feedforward neural networks, and residual connections to effectively learning the 
dependencies between visits.

Here we innovatively introduced historical attention into Transformer, implement-
ing residual multi-head self-attention to better capture the long-term dependencies 
between visit sequences, as shown in Fig. 3. This module initially employed a 1 × 1 con-
volutional layer to process the historical attention probability matrix, linearly combining 
the information of each attention head through convolution. Subsequently, a learnable 
rate parameter was used to weight and sum the current attention probability matrix with 
the historical attention matrix. Finally, a softmax operation was applied to normalize the 
weighted sum of the attention probability matrix into a probability distribution.

Decoding layers

The sequential diagnosis prediction sub-task was formulated as a multi-class classifi-
cation problem, targeting various disease diagnostic categories. In the decoding layer, 
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the feature vector output from the shared layer was first subjected to a fully connected 
layer for dimensionality reduction, yielding a one-dimensional vector vT−1′ . The soft-
max function was then applied to obtain the predictive results. Assuming all param-
eters during the model training process are denoted by θ , the classifier transforms 
into the conditional probability distribution P

(
yi|vT−1′, θ

)
 of the diagnostic outcome 

y ∈
{
y1, y2, ..., y|C|

}
 , was the ICD-9 codes set, as illustrated in Eq. (5).

After obtaining the probabilities for each diagnosis, the top k diagnoses with the 
highest probabilities were selected as the predictive results ŷT .

Loss function

The sequential diagnosis prediction task was addressed as a multi-class classification 
problem using Focal Loss (FL), introduced by Lin et al. at ICCV 2017 [37], as depicted 
in Eq. (6).

Here represents the estimated probability of the model for the recommended diag-
nosis, γ ≥ 0 denotes the adjustable focusing parameter.

The visit interval prediction task, predicting continuous numerical values, was 
treated as a regression task, employing Mean Squared Error Loss (MSE Loss, MSE), 
as shown in Eq. (7).

(5)P
(
yi|v

′
T−1, θ

)
= softmax (v′T−1) =

exp
(
P
(
yi|v

′
T−1, θ

))
∑c

(j=1) exp
(
P
(
yj|v

′
T−1, θ

))

(6)FL(pt) = −(1− pt)
γ log(pt)

Fig. 3  The schematic diagram of the shared layer, illustrating the integration of diagnostic and interval 
features
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To balance the demands and optimization objectives of multi-task learning more 
effectively, this study designs a joint utilization of Focal Loss (FL) for multi-class classifi-
cation problem and Mean Squared Error (MSE) for regression task, as shown in Eq. (8).

where ∂1 and ∂2 denoted hyperparameters used to adjust the weight factors of the respec-
tive loss functions.

Effect evaluation

This study employed the Accuracy@k metric, following baseline model KAME [22], 
MMORE [15] and SETOR [18], to evaluate the model’s performance. This metric quanti-
fied the proportion of correct diagnoses within the top k predictions for each test case, 
as delineated in Eq. (9).

Specifically, we counted the number of positive labels fall into top-k and computed 
the ratio over the number of all positive labels in this sample. Accuracy@k averaged the 
ratios on the samples from the entire test set.

Results
Model configuration and training parameters

Ontological Representation and Encoder Settings The parameters for the ontological 
representation and encoder in our model are aligned with those utilized in SETOR [18].

Transformer encoder setting

•	 Hidden Layer Dimension: The model employed a hidden layer dimension of 512.
•	 Feedforward Neural Network Layer Dimension: A dimension of 2084 was used for 

the feedforward neural network layers.
•	 Number of Encoding Layers: The Transformer encoder consisted of 6 encoding lay-

ers.
•	 Attention Head Dimension: Each attention head operated with a dimension of 64.
•	 Non-linear Activation Function: ReLU was employed as the non-linear activation 

function.

Training setting

•	 Pre-training Learning Rate: An initial learning rate of 0. 002 was used for pre-train-
ing.

(7)MSE =
1

n

n∑

i=1

(
yi − ŷi

)2

(8)MixLoss = ∂1FL+ ∂2MSE

(9)Accuracy@k =
# of true positives in the top k predictions

# of positives
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•	 Maximum Total Input Sequence Length: The model was configured to handle a max-
imum sequence length of 64.

•	 Total Training Batch Size: A batch size of 32 was used for training.
•	 Learning Rate: The learning rate for the main training phase was set to 0. 00005.
•	 Multi-task Ratio: A ratio of 0. 7 was applied.
•	 Pre-training Proportion: The pre-training phase constitutes 0. 1 of the overall train-

ing.
•	 Historical Attention to Current Attention Ratio: The model integrated a ratio of 0. 01 

for historical attention relative to current attention, emphasizing the importance of 
past consultations.

•	 Optimizer: Adadelta was selected as the optimizer.
•	 Training Epochs: The model undergoed 20 training epochs.
•	 Dataset Proportions: The dataset was divided into training, validation, and test sets 

in a ratio of 14:3:3.

These meticulously calibrated parameters and training configurations ware designed 
to optimize the model’s predictive accuracy and generalization capabilities across a 
range of clinical prediction tasks.

Feature evaluation

Loss trend analysis To assess the model’s learning dynamics, we charted the progres-
sion of training and validation loss across 20 epochs, as illustrated in Fig. 4. Each epoch 
encompassed a batch size of 32. The trajectories of both losses are congruent, evidencing 
a downward trend that plateaus, indicative of model convergence.

Performance metric assessment Further analysis involved monitoring the accuracy 
and precision metric (k = 20) for both the validation and test dataset throughout the 
training process, as presented in Fig. 5. The accuracy and precision metrics for both sets 
paralleled each other closely, exhibiting a sharp ascent from baseline values and attain-
ing a stable, elevated level by the 5th epoch. This pattern underscored the model’s robust 
learning capacity and its ability to generalize effectively, as evidenced by the comparable 
performance on both dataset post-convergence.

Fig. 4  Illustration of the training and validation loss trend
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Comparison with state‑of‑the‑art algorithms

This section outlined the state-of-the-art approaches for sequential diagnosis predic-
tion task in healthcare, and detailed their implementation. Our proposed model’s per-
formance was benchmarked against the following leading models, as summarized in 
Table 1.

We segmented the training dataset into proportions of 20%, 40%, 60%, and 80% to 
evaluate model performance variability. With an average of 13. 1 diagnostic codes per 
visit, we set k = 20 for evaluating Accuracy@20, as detailed in Table 2.

The MISDP model notably outperformed other models, especially under data scarcity 
conditions. Specifically, with only 20% training data, MISDP achieved a 4. 2% improve-
ment over KAME, highlighting its robustness. When training data ranged from 60 to 
80%, MISDP surpassed SETOR, the top baseline, by 0. 8%. The results indicated that 
MISDP predicted better outcomes than other baselines both when the training data is 
insufficient and sufficient.

Fig. 5  Visualization of the performance metric trends for validation and test dataset

Table 1  Introduction to baseline models

Baseline models Introduction

KAME [22] Utilizes medical ontologies to learn representations of medical codes and their hierarchies, 
which are then input into a neural network to predict sequential diagnoses

MMORE [15] Generates multiple representations for each disease diagnosis via attention mechanisms, 
offering clinically enriched sub-classifications

SETOR [18] Employs neural ordinary differential equations to manage irregular intervals between patient 
visits and captures dependencies through multi-layer transformer blocks, integrating medical 
ontologies to enhance data scarcity challenges

Table 2  Accuracy@20 (%) comparison among models at different training data proportions

The bold font is utilized to emphasize the results of the MISDP method

Model 20% 40% 60% 80%

KAME 53.9 55.8 57.9 60.0

MMORE 55.0 57.4 60.0 61.9

SETOR 57.4 59.2 61.9 62.4

MISDP 58.1 59.4 62.7 63.2
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Through iterative experimentation, we identified an optimal training set proportion of 
0. 7 for peak model performance. A comparison of Accuracy@k, parameter count, and 
floating-point operations (FLOPs) under these conditions was presented in Table 3.

The finding indicated that the MISDP model achieved superior accuracy across vari-
ous k-values when compared to established baseline models. Specifically, MISDP’s 
accuracy exceeded that of the benchmark SETOR model by up to 0. 81%, highlighting 
its enhanced predictive capabilities. This improvement was attained with a minimal 
increase in computational resources: a mere 0. 09 rise in parameter count and a 0. 05 
augmentation in floating-point operations (FLOPs). In the context of medical diagnos-
tics, where precision was paramount, even marginal gained in accuracy can significantly 
impact patient outcomes. The MISDP model’s ability to deliver these improvements 
without a substantial increase in computational expense underscores its efficiency and 
practicality for real-world clinical applications.

Ablation study

We performed a detailed ablation study to assess the impact of two critical components 
in MISDP model for this study: the visit interval prediction sub-task and the attention 
residue. The evaluation metric employed was Accuracy@K. The results of the ablation 
study were presented in Table 4.

•	 w/o Interval: remove the visit interval prediction sub-task from the private layer.
•	 w/o Residue: remove the historical attention residue from the shared layer.

Ablated interval The visit interval prediction sub-task, mainly analyzing the inter-
vals and sequence of patient visits, was identified as a significant factor in the model’s 
predictive accuracy. It played a crucial role in capturing the fluctuations in a patient’s 
health status. Following the removal of this component, the model exhibited a decrease 

Table 3  Comparative results at optimal k values

The bold font is utilized to emphasize the results of the MISDP method

Model Accuracy@5 Accuracy@10 Accuracy@20 Accuracy@30 Parameters(M) FLOPs (G)

KAME 27.98 41.81 57.31 68.02 – –

MMORE 28.97 43.74 56.18 71.61 – –

SETOR 31.18 45.80 62.36 72.46 9.39 9.01

MISDP 31.61 46.56 63.17 72.97 9.48 9.06

Table 4  Ablation Performance Comparison

The bold font is utilized to emphasize the results of the MISDP method

Ablation Module Accuracy@5 Accuracy@20

MISDP 31.61 63.17
w/o Interval 31.18 62.36

w/o Residue 31.34 62.91
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in accuracy by 0. 43% at k = 5 and by 0. 81% at k = 20, underscoring the importance of 
interval prediction in enhancing the model’s performance.

Ablated residue The historical attention residue accounts for the patient’s visit history 
modeling long-term dependencies. The MISDP model’s complete architecture showed 
superior results compared to the variant without this mechanism, with a 0. 27% decrease 
in Accuracy@5 and a 0. 26% decrease in Accuracy@20. This indicated that the residue 
mechanism can improve the model’s accuracy to certain extent.

Discussion
The present study introduced the Multi-task Fusion Visit Interval for Sequential Diag-
nosis Prediction (MISDP) model, designed to address the shortcomings of current 
predictive models in handling the irregularity of patient visit intervals, a factor that sig-
nificantly impacts the accuracy of sequential diagnosis predictions. The model incor-
porated two novel features to capitalize on sequential information extracted from visit 
histories. Firstly, multi-task learning is employed to fuse visit interval prediction and 
sequential diagnosis prediction, capturing both the sequence and intervals of visits. 
Positional encoding represented the sequence of visits, while interval encoding reflected 
the stability or acute changes in a patient’s health condition. Secondly, the integration of 
historical attention information into current attention calculations enables the model to 
maintain long-term dependencies.

In comparison with baseline models such as KAME [22], which relied on neural net-
works, and MMORE [15], which employed attention mechanisms, MISDP demonstrated 
an enhanced ability to learn sequence information by integrating intervals and sequences 
of visits into a transformer architecture. Furthermore, when compared to SETOR [18], 
MISDP leverages multi-task learning to fuse visit interval prediction and sequential 
diagnosis prediction. Multi-task learning enhanced model generalization across various 
tasks [25]. Notably, with only 20% training data, MISDP achieved a 4. 2% improvement 
over KAME [22] and a 0. 7% improvement over best baseline model SETOR [18].

Computational efficiency and parameter setting were important for model training 
and clinical application. In terms of computational efficiency, The system was powered 
by an Intel Xeon Platinum 8350C CPU, enhanced with hardware acceleration from an 
NVIDIA GeForce RTX 3090 GPU, and was equipped with 42 GB of memory and 12 GB 
of video memory. In the training process, multiple epochs were employed and Itera-
tive experimentation identified optimal training parameters like the learning rate, data 
partition ratio of 14:3:3, ReLU activation function etc., which improved predictive per-
formance and stability. For clinical deployment, GPU is recommended to facilitate pre-
dictive capabilities. The parameter K is optimally set to 5 in outpatient settings, where 
the focus is on immediate visit diagnoses and the number of diagnoses is limited, and 20 
in inpatient settings, where a comprehensive view of the patient’s diagnoses is required 
and the number of diagnoses is higher.

This study also has some limitations. Firstly, the dataset only contained records in 
intensive care units, it is hard to fully represent patients’ medical condition change. 
Furthermore we will use hospital records combining outpatient and inpatient data for 
model validation. Secondly, the model mainly used diagnosis for prediction, laboratory 
and imaging results are crucial for disease prediction, while these indicators are specific 
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to certain specialties and are more suitable for predicting specific diseases. Thirdly, the 
interval sequence was mainly represented by interval encoding and positional encoding, 
furthermore we can explore relative positional encoding, complex embedding or large 
language model to capture visit records better. Moreover, the study primarily focused 
on the accuracy of sequential diagnosis prediction, with less emphasis on the predic-
tion of visit intervals, we will continue to explore visit interval prediction to enhance the 
model’s understanding of patient visitation patterns.

Conclusions
This study presented the Multi-task Fusion Visit Interval for Sequential Diagnosis 
Prediction (MISDP) model, a novel approach that integrated visit interval factors and 
historical attention residue within a multi-task learning framework to enhance the 
accuracy of sequential diagnosis predictions. Our experiments on the MIMIC III data-
set, including comparative and ablation studies, had validated the effectiveness of these 
innovations in improving predictive accuracy. The MISDP model exhibited superior 
performance even with limited training data, outperforming existing baseline models. 
The result highlighted the advantage of multi-task learning in synergistically enhanc-
ing the performance of individual sub-task, Notably, irregular visit interval factors and 
historical attention residue had been particularly instrumental in refining the precision 
of sequential diagnosis prediction. Future research will concentrate on optimizing visit 
encoding, visit interval prediction and Model validation based on other data, with the 
goal of refining the model’s capabilities and providing a more robust tool for clinical 
decision-making.
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