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Abstract 

Background: As a key non-coding RNA molecule, miRNA profoundly affects gene 
expression regulation and connects to the pathological processes of several kinds 
of human diseases. However, conventional experimental methods for validating 
miRNA-disease associations are laborious. Consequently, the development of efficient 
and reliable computational prediction models is crucial for the identification and vali-
dation of these associations.

Results: In this research, we developed the PCACFMDA method to predict the poten-
tial associations between miRNAs and diseases. To construct a multidimensional 
feature matrix, we consider the fusion similarities of miRNA and disease and miRNA-
disease pairs. We then use principal component analysis(PCA) to reduce data complex-
ity and extract low-dimensional features. Subsequently, a tuned cascade forest is used 
to mine the features and output prediction scores deeply. The results of the 5-fold 
cross-validation using the HMDD v2.0 database indicate that the PCACFMDA algorithm 
achieved an AUC of 98.56%. Additionally, we perform case studies on breast, esopha-
geal and lung neoplasms. The findings revealed that the top 50 miRNAs most strongly 
linked to each disease have been validated.

Conclusions: Based on PCA and optimized cascade forests, we propose 
the PCACFMDA model for predicting undiscovered miRNA-disease associations. The 
experimental results demonstrate superior prediction performance and commendable 
stability. Consequently, the PCACFMDA is a potent instrument for in-depth exploration 
of miRNA-disease associations.
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Introduction
MiRNAs typically consist of approximately 20–24 nucleotides and regulate the function 
of target messenger RNA (mRNA) at the post-transcriptional stage by precisely match-
ing the 3’ non-coding region of the target mRNA [1]. In the realm of human RNAs, aside 
from mRNA, which is responsible for protein synthesis, there are various non-coding 
RNAs including snRNAs [2], circRNAs [3, 4] and lncRNAs [5, 6]. Although these non-
coding RNAs do not encode proteins, their importance in regulating biological pro-
cesses such as embryogenesis, stem cell homeostasis, cellular differentiation, metabolic 
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regulation, signaling pathways, and immune response has been widely demonstrated [7]. 
Current research has revealed immediate and complex connections between miRNAs 
and diseases. The abnormalities in their expression levels are often closely associated 
with the processes underlying the occurrence of various complicated diseases [8]. There-
fore, revealing the functional properties of unknown miRNAs and their specific roles 
in the disease process not only offers novel insights for therapeutic target identification 
and drug development but also promotes the development of miRNA-based biomark-
ers. These biomarkers can greatly facilitate the diagnostic accuracy of diseases and bring 
advances in clinical treatment strategies.

Exploration of miRNA-disease association (MDA) has benefited much from con-
ventional experimental methods like polymerase chain reaction (PCR) [9] and reverse 
transcription polymerase chain reaction (RT-PCR) [10]. The cancer [11] is usually diag-
nosed at a late stage, which severely limits the effectiveness of therapeutic interventions. 
Therefore, it is essential to construct accurate miRNA-disease prediction models. These 
models can significantly improve the efficiency and speed of laboratory validation. Fur-
thermore, multidisciplinary research has demonstrated that the molecular interaction 
networks in organisms are intricate and complex, including protein-disease, gene-dis-
ease, microbe-disease, and non-coding RNA-protein interactions [12], which provide 
novel perspectives for predicting MDA. For example, Deng et al. [13] successfully identi-
fied several key genes closely related to cervical carcinogenesis using various bioinfor-
matics tools. Zhao et al. [14] innovatively employed gene expression profiling instead of 
miRNA expression data or gene-miRNA pairing information. In addition, Yi et al. [15] 
constructed a highly integrated heterogeneous molecular association network, offering 
a valuable structure for comprehending the synergistic effects of these molecules in dis-
ease progression.

In bioinformatics research, many methods based on mathematical statistical analysis 
have been developed. These methods not only aid in addressing complex problems in 
bioinformatics but also promote the interdisciplinary exchange between biology and 
statistics. For instance, the CMFMDA model developed by Shen et  al. [16] leverages 
efficient mathematical algorithms, enhancing prediction accuracy while maintaining 
computational speed. Additionally, Gao et al. [17] implemented the NPCMF model on 
the framework of traditional matrix decomposition. The model uniquely incorporates 
relevant considerations of emerging miRNA and disease entities with their neighboring 
node information. It cleverly combines the concept of nearest-neighbor contour anal-
ysis (NP) [18], which greatly optimizes the prediction efficacy. Furthermore, Yao et al. 
combined the negative instance inference strategy with the low-rank matrix comple-
mentation approach [19] to deepen the inference capability for unassociated miRNA-
disease pairs. They comprehensively consider the complexity of heterogeneous network 
environments and alleviate the problem of an insufficient number of negative samples. 
Ha et al. proposed the IMIPMF model [20] for unknown miRNA-disease associations, 
inspired by Probabilistic Matrix Factorization (PMF) in recommendation systems. Sub-
sequently, Ha proposed the MDMF framework by adding disease similarity information 
to the matrix factorization [21], after which Ha also proposed the SMAP model [22], 
which integrates comprehensive information on miRNA and disease similarity into 
the matrix factorization framework. Additionally, Ha et  al. [23] combined the linear 
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function of Generalized Matrix Factorization (GMF) and the nonlinear capability of 
Multilayer Perceptron (MLP) to improve the prediction accuracy. Finally, Ha proposed 
a matrix decomposition method based on lncRNA expression profiles (EMFLDA) [24] 
for identifying lncRNA-disease associations by learning the latent space shared by lncR-
NAs and diseases and minimizing the difference between the original matrix values and 
the products of rows and columns of the latent space. The EDTMDA [25] ensemble 
learning framework proposed by Chen et al. cleverly incorporates PCA into each basic 
learning module to improve the model’s efficiency. Yu et  al. [26] used Tensor Robust 
Principal Component Analysis (TRPCA) to investigate the MDA. In contrast to previous 
approaches using binary associations, ternary associations of 〈miRNA, disease, type〉 were 
used to characterize complex relationships. Rajapandy et al. [27] transformed MDA data 
into a low-dimensional representation space via PCA. Furthermore, Liu et al. creatively 
combined the attention mechanism of the Graph Convolutional Neural Network (GCN) 
with PCA in the GCNPCA [28] method to enhance the explanatory power.

Machine learning methods excel in identifying patterns and regularities from large 
datasets. For example, Jiang et  al. [29] demonstrated the effective application of 
SVM in predicting the MDA. Chen et  al. [30] proposed the DRMDA model, which 
combines SVM and autoencoder (AE) for association prediction, demonstrating the 
potential of SVM in complex bioinformatics prediction tasks. However, a major limi-
tation of this supervised learning algorithm is its heavy reliance on the completeness 
of positive and negative samples. It requires sufficient known associated and unas-
sociated data as a training basis, which may pose a major challenge in practical appli-
cations. The RKNNMDA model innovatively combined the KNN and SVM ranking 
methods [31] to enhance the performance of MDA prediction. The MSCHLMDA [32] 
model merges KNN and K-means to form a two-layer hypergraph structure, show-
casing how algorithm combinations can enhance prediction model performance. In 
the development of AMNDA [33], Chen et al. cleverly applied K-means clustering to 
screen unlabeled miRNA-disease pairs. They enhanced the stability and noise resist-
ance of the model by evenly sampling negative examples from different clusters. In 
metric learning, the similarity between objects is transformed into the correspond-
ing distance metric, which overcomes the problem of not conforming to the trian-
gular inequality prevalent in matrix decomposition-based methods. The MLMD 
model proposed by Ha et  al. [34], constructs miRNA-disease bipartite graphs and 
uses distance metric learning to infer miRNA-disease associations. The proposal of 
the RFMDA model [35] marked the initial success of RF. IRFMDA model [36] further 
optimized the screening and utilization of features by introducing the variable radio 
frequency score. The MDA-CF model [37] used an autoencoder for feature dimen-
sionality reduction, followed by the application of cascaded forests on the optimized 
feature space, which embodies the effective integration of deep learning with tradi-
tional machine learning algorithms. The DFELMDA model [38] and the CFSAEMDA 
method [39] then further deepened this combination by realizing an advanced inte-
gration of deep and integrated learning of feature representations and improving pre-
diction accuracy through deep random forests and stacked autoencoder, respectively. 
Gradient boosting tree algorithms, such as XGBoost, LightGBM and CatBoost, show 
significant advantages in handling large-scale datasets and improving prediction 
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accuracy. The clinical decision support system constructed using these algorithms in 
a study by Kim et al. [40] not only pushed forward the development of healthcare AI 
but also offered new perspectives on MDA prediction. Similarly, the KS-CMI model 
[41] combined denoising autoencoder and CatBoost, enhancing feature representa-
tion and bolstering prediction robustness through balance theory. Furthermore, Zhao 
et  al. [42] explored the application of adaptive enhancement techniques in complex 
metric spaces. Then the ABPUSVM model proposed by Zhong et  al. [43] creatively 
combined the Positive-Unlabeled learning strategy and SVM to address the sample 
imbalance in the MDA prediction problem.

Deep learning approaches can analyze massive amounts of high-dimensional biolog-
ical data, allowing for more accurate and efficient bioinformatics analysis and predic-
tion. For example, Chen et  al. [44] pre-trained a restricted Boltzmann machine using 
all miRNA-disease associations to reduce the impact of limited known associations on 
prediction accuracy. They then fine-tuned a Deep Belief Network (DBN) with the same 
number of positive and negative samples and obtained the prediction results. Ji et al. [45] 
implemented a semi-supervised learning strategy that combines the expression features 
and applies Variational Autoencoder (VAE) to the existing MDA to reveal unknown cor-
relations. The GAEMDA algorithm [46] employs a Graph Autoencoder (GAE) to con-
struct miRNA-disease features of low-dimensional embeddings and employs a bilinear 
decoding mechanism to parse the association between them. On the other hand, Wang 
et al. [47] processed these features with the help of stacked GAE, transformed them into 
low-dimensional representations, and finally predicted miRNA-disease interactions 
using MLP. In addition, VGAE-MDA [48] extracts features from the composite network 
of miRNAs and diseases and quantifies the strength of their association by Variational 
Graph Autoencoder (VGAE). This framework optimizes MDA prediction by integrat-
ing the prediction scores of different subnetworks, effectively mitigating the noise prob-
lem introduced by random negative case selection, and fuses the strengths of GCN and 
VAE. The MSCNE model [49] innovatively integrated Convolutional Neural Network 
with AE to create a multi-level feature extraction subnetwork for the final association 
prediction. The MDA-GCNFTG method [50] relied on the greedy strategy of GCN and 
graph sampling to solve the common problem of proliferation of the number of neigh-
boring nodes in GCN. Further, the LAGCN model [51] strengthens the learning efficacy 
of GCN through multilayer convolution and attention-guided embedded representation 
learning. The NSAMDA model [52] marked a turning point by introducing the attention 
mechanism into spatial-domain-based graph neural networks, which achieves effective 
aggregation of node features. Compared with traditional approaches that rely on com-
plex matrix operations, this model only needs to consider first-order neighborhood 
information. Li et al. [53] then implemented attention learning at the node and semantic 
levels by constructing a hierarchical graph attention network model as a means to assess 
the significance of different meta-paths and used a bilinear decoder to recover potential 
links, demonstrating a strong feature differentiation capability. Finally, the AMHMDA 
method proposed by Ning et al. [54] fused multi-view networks with hypergraph learn-
ing and used the attention mechanism to integrate multi-view outputs from GCN. Spe-
cifically, the principal contributions of this research are enumerated as follows:
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• We innovatively fuse PCA and Cascade Forest (CF) to predict MDA, which is 
enhanced by a two-stage strategy. Firstly, the miRNA-miRNA similarity informa-
tion, disease-disease similarity information and validated miRNA-disease associa-
tion information are integrated to obtain a comprehensive feature representation of 
miRNAs and diseases. Then PCA is applied to obtain the key information of these 
features. Finally, an optimized cascade forest is used for prediction and get the final 
result.

• We implement 5-fold and 10-fold cross-validation methods on the HMDD v2.0 data-
base. The PCACFMDA model achieves 98.56% and 98.58% AUC values. In addition, 
experimental comparisons of the reduced dimensionality data using multiple clas-
sification algorithms are performed. A comprehensive evaluation of our model with 
other relevant and similar predictive models is also performed.

• To further confirm the practical value of the PCACFMDA model, three common 
diseases are selected as case studies for a comprehensive evaluation. The possible 
MDAs calculated by the model have been confirmed by independent experimental 
studies, confirming the approach’s great accuracy and reliability in discovering true 
biological connections.

Methods
Dataset

HMDD v2.0 contains 495 miRNAs, 383 diseases, and 5430 experimentally validated 
associations, as well as 184,155 unvalidated potential associations [55]. To systemati-
cally represent the MDA, we constructed an adjacency matrix A(i,j) with 495 rows and 
383 columns. The corresponding elements A(i,j) of matrix A are assigned a value of 1 if 
miRNA i is associated with disease j, and 0 otherwise. In evaluating the model’s perfor-
mance, we employed a balanced sampling strategy, i.e., using the 5430 confirmed asso-
ciations as the positive sample set. At the same time, an equal number of 5430 unlabeled 
associations were randomly selected from the 184,155 unlabeled associations as the 
negative sample set, ensuring a balanced sample set for a more precise assessment of 
model’s effectiveness. Table 1 demonstrates the detailed sample distribution.

Numerous human health problems such as cancer, neurological diseases, cardiovascu-
lar diseases, and metabolic abnormalities are closely related to miRNA regulatory dys-
function. Considering that miRNA involved in similar pathological processes may have 
similar biological functions, we can obtain raw miRNA functional similarity data con-
cerning previous studies [56]. The MFS ( mi , mj ) in this study indicates the functional 
similarity of two miRNAs.

To obtain disease associations, we used a Directed Acyclic Graph (DAG) [57] to char-
acterize the Medical Subject Headings (MeSH), which is adept at describing complex 

Table 1 Dataset sample

Dataset Known MDA Unknown MDA

Original 5430 184,155

Balanced 5430 5430
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causal or subordinate links between elements. In quantifying the semantic similarity (DSS) 
between diseases, two core algorithmic strategies are adopted: the first algorithm considers 
that two diseases with a higher number of shared parent nodes in the DAG are more similar 
to each other; the other algorithm emphasizes that diseases at different levels have hierar-
chical differences in semantic importance. The first approach does not take into account 
the frequency of recurrence of diseases in the DAG structure. The second approach com-
pensates for this by assigning different weights to diseases at the same level. Combining 
these two considerations, we arrived at a more comprehensive semantic similarity score of 
diseases by calculating their average value, which serves as the baseline result of the study. 
The DSS ( di , dj ) in this study indicates the semantic similarity of the two diseases.

Disease characteristics often show associations with functionally similar miRNAs, 
whereas functionally unrelated miRNAs are typically linked to distinct disease profiles 
[58]. The Gaussian Interaction Profile (GIP) kernel similarity [59] approach is employed to 
quantify the level of functional association among miRNAs. The calculation formulas are as 
follows:

where γm controls the kernel bandwidth and nm is the number of miRNAs, γ ′
m equal to 1. 

Similarly, we can calculate the GIP kernel similarity between two diseases using the fol-
lowing formula:

Some miRNAs lack functional similarity, and certain diseases may not exhibit semantic 
similarity. Therefore, for miRNAs, we integrated information from both MFS and GFS. 
When the MFS for any pair of miRNAs is non-zero, we use the average of MFS and GFS 
to represent the fusion similarity. If the MFS is zero, it indicates that they are not directly 
functionally related, in which case we rely solely on the GFS to estimate their similarity. 
Similarly, for diseases, the fusion similarity calculation follows a parallel logic. The calcu-
lations are as follows:

 

(1)GMS(mi,mj) = exp(−γm�IP(mi)− IP(mj)�
2)

(2)γm =
γ ′
m

1
nm

∑nm
i=1 �IP(mi)�2

(3)GDS(di, dj) = exp(−γd�IP(di)− IP(dj)�
2)

(4)γd =
γ ′
d

1
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MFS(mi,mj)+ GFS(mi,mj)

2
, ifMFS(mi,mj) exists

GFS(mi,mj), otherwise

(6)SM =

{

DSS(di, dj)+ GDS(di, dj)

2
, if DSS(di, dj) exists

GDS(di, dj), otherwise
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PCACFMDA

This research introduces the PCACFMDA, a novel predictive framework, as illustrated 
in Fig. 1. Drawing inspiration from the study [38], we follow three steps to create high-
quality feature representations. First, we form a 495-dimensional matrix SMij by summa-
rizing the fusion similarity between miRNAs, which quantifies the combined similarity 
between any two miRNAs in terms of function and interaction. Similarly, a 383-dimen-
sional matrix, denoted as SDij , represents the integrated similarity among diseases, 
capturing the amalgamated disease similarities based on semantic attributes and inter-
actions. Leveraging these matrices, we amplify the attributes of miRNAs and diseases. 
The resulting feature vectors encapsulate crucial information for each miRNA and dis-
ease, laying a robust groundwork for subsequent prediction of associations. The feature 
generation process can be elucidated through the following mathematical expressions:

Fig. 1 The structure of PCACFMDA
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where A contains 5430 corroborated association records and A′ is its transposed form. 
The feature matrix Fm was designed to contain 189,585 rows and 990 columns, with each 
row corresponding to a miRNA and each column representing a specific feature dimen-
sion. Similarly, the disease characterization matrix Fd has 18,958 rows and 766 columns. 
To synthesize this multilevel information and facilitate the subsequent analysis, we per-
form an efficient horizontal splicing operation between Fm and Fd to generate a unified 
and comprehensive feature matrix F. This integrated feature matrix F not only contains 
information about the biological behaviors of miRNAs but also covers the complex asso-
ciations between diseases, providing a strong basis for predicting the potential MDA. 
The formula is expressed as follows:

where F denotes 189,585 samples and 1756 columns of characteristics. To maintain 
model training balance and accuracy, we chose cases with the same number of known 
positive associations from the remaining unconfirmed MDA as negative sample sets, 
totaling 10,860 samples.

By employing PCA, we achieve a concise feature representation through dimen-
sional compression of relevant features. This approach eliminates extraneous vari-
ables while preserving the fundamental structure and patterns within the data, 
allowing the model to focus on learning the key features. This enhances prediction 
efficacy and reduces computational complexity. PCA transforms complex raw fea-
tures into a combination of principal components via a linear transformation, with 
component weights established based on the data’s feature vectors. Notably, these 
principal components are ranked by their ability to explain data variance, thereby fil-
tering out minor noise and redundant features. This process significantly contributes 
to advancing prediction model accuracy and resilience.

Specifically, we use the pre-constructed 1756-dimensional feature vectors as inputs 
to train the PCA model and extract the principal components. Next, we deeply ana-
lyze the percentage of variance explained by each principal component, to specify 
their respective shares of contribution to the overall data variability. By calculating 
and accumulating these variance percentages, we obtain a cumulative sequence of 
variance contributions, demonstrating how the degree of explanation of total data 
variability accumulates as the number of principal components increases. We ana-
lyzed the cumulative variance contribution of PCA, which was evaluated from 0% 
to 100% with an interval of 5%. The results show that the PCACFMDA model per-
forms best when the cumulative variance contribution rate reaches 95%. Therefore, 
we chose 95% as the final cumulative variance contribution threshold. Our goal is to 
identify that key principal component ordinate that marks the first time the cumula-
tive variance contribution exceeds the 95% threshold. Figure 2 visualizes this process 
of accumulating the variance contribution ratio, highlighting the balance between 

(7)Fm =(SM1A
′
1, · · · , SM1A

′
383, · · · , SM495A

′
1, · · · , SM495A

′
383)

T

(8)Fd =(SD1A1, · · · , SD1A495, · · · , SD383A1, · · · , SD383A495)
T

(9)F = (Fm, Fd)
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information retention and simplicity of the dimensionality reduction degree we chose, 
effectively promoting the double improvement of analysis performance and efficiency.

The Cascade forest, an efficient ensemble learning model, uses a series of multi-level 
random forests to gradually improve the accuracy. In this model, each level of random 
forest serves as the basic unit to specifically cope with the data samples that are not suf-
ficiently differentiated from the previous level. Through this sequential refinement of 
the processing process, in-depth mining of data features and cumulative performance 
enhancement are realized. Compared to the complex deep neural network, cascade for-
est is superior in computational efficiency. It is highly interpretable and the process of 
tuning hyperparameters is easier.

This study revolutionizes the standard cascade forest architecture by constructing a 
composite model that integrates two random forests, an AdaBoost classifier and a Cat-
Boost classifier. We evaluated the number of decision trees in these four classifiers rang-
ing from 10 to 100 with an interval of 10. The results show that the PCACFMDA model 
performs best when the number of decision trees is 50. Therefore, we set the number 
of decision trees for all classifiers to 50. The integrated model has 200 decision trees 
distributed across four components, each with 50 trees, and tries to reduce reliance on 
computer resources while maintaining efficient computing speed via a highly optimized 
structure. Specifically, AdaBoost strengthens the learning of those samples that cannot 
be classified well by dynamically adjusting the sample weights and focusing on the sam-
ples misclassified by previous models. CatBoost uses advanced gradient boosting tech-
niques and incorporates optimization strategies designed specifically for classification 
variables, as well as built-in regularization methods to improve model resilience.

Each forest within the cascade consists of multiple decision trees, with each tree pro-
ducing a probability vector for a certain category. These individual tree outputs are 
aggregated and averaged across all trees in the forest to give the final decision result, 
as shown in Fig.  3. For this task, four independent predictors jointly contribute a set 
of eight probability values representing different confidence estimates for the two cat-
egories. These refined probability vectors, as additional features, are merged with the 
original data features to expand the feature space. The predictor for the cascade forest 

Fig. 2 Cumulative explained variance by principal components
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was set to SVM and assessed using linear, polynomial, and radial basis functions. The 
findings indicate that the PCACFMDA model performs most effectively with the poly-
nomial kernel function. Consequently, the polynomial kernel function is selected as the 
SVM kernel function. To mitigate overfitting risks, a five-fold cross-validation approach 
is employed for all predictors during model training to enhance generalization capabili-
ties. Notably, the model’s cascade structure is adaptable and not pre-set, operating as a 
dynamic strategy. Specifically, the model decides whether or not to extend its structure 
based on whether or not it can significantly improve the accuracy of cross-validation by 
adding new cascade levels. This adaptive mechanism allows the model to automatically 
optimize its complexity level based on the specific attributes and complexity of the data, 
eliminating the need to manually specify a fixed cascade depth.

Experimental setup

After feature fusion, we obtained 189,585 samples with 1756 features, representing the 
integrated miRNA-disease association features. Following the undersampling process, 
we obtained 10,860 samples for model training. Subsequently, we used the PCA method 
from the sklearn library to determine the number of features that achieve a cumulative 
variance contribution ratio of 95%, thereby extracting low-dimensional features. For the 
cascade forest evaluator, we used 2 random forest classifiers, 1 AdaBoost classifier and 
1 CatBoost classifier, each containing 50 decision trees. Meanwhile, the predictor used 
a support vector machine with polynomial kernel functions. The experiments were per-
formed in a Windows 10 OS with a 12th Gen Intel Core i7-12700KF 3.60GHz CPU, an 
RTX 3090 Graphics card, and 64GB of RAM.

Results
Evaluation criteria

To rigorously assess the efficacy of the PCACFMDA model, this study utilizes 5-fold 
and 10-fold cross-validation methods to enhance the reliability and robustness of 
the evaluations. Throughout the assessment, the discriminative power of the model 
is quantified by the area under the ROC curve (AUC), with higher AUC values sig-
nifying better predictive performance. For comprehensive performance analysis, a 
range of widely recognized evaluation metrics is employed, such as Accuracy (Acc), 

Fig. 3 Decision-making processes in forest
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Precision (Pre), Recall (Rec), F1 Score (F1), and the area under the Precision-Recall 
Curve (AUPR). The calculations for Acc, Pre, Rec, and F1 are as follows:

We initially performed a five-fold cross-validation on the PCACFMDA model. Figure 4 
displays the outcomes, demonstrating an average AUC of 98.56%. The individual valida-
tion results were 98.40%, 98.64%, 98.56%, 98.55%, and 98.67%, respectively. Additionally, 
the model achieved an average AUPR of 98.66%, with individual validation outcomes of 
98.49%, 98.76%, 98.55%, 98.72%, and 98.79%. The experimental results indicate that both 
the ROC and P-R curves confirm the performance and practicality of the PCACFMDA 
model.

Figure  5 depicts the outcomes of the PCACFMDA model after applying 10-fold 
cross-validation, achieving an average AUC of 98.58%. The result combines the spe-
cific scores obtained from the various rounds of validation, which are 98.37%, 98.85%, 
98.86%, 98.29%, 98.09%, 98.19%, 98.97%, 98.63%, 98.63% 98.63%, and 98.95%. Of par-
ticular interest is the fact that the PCACFMDA model exhibits a subtle difference in 
the mean AUC values. These findings demonstrate the robustness and consistency of 
the algorithm. It can maintain a high and stable level of predictive efficacy across dif-
ferent sizes of training and testing set allocation scenarios.

(10)Acc =
TP + TN

TP + TN + FP + FN

(11)Pre =
TP

TP + FP

(12)Rec =
TP

TP + FN

(13)F1 =
2TP

2TP + FP + FN

Fig. 4 The ROC and PR curves of PCACFMDA in 5-fold cross-validation
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Ablation study

In this section, we constructed three models to explore the effectiveness of the pro-
posed dimensionality reduction methods and the improvements made with the Cas-
cade Forest approach. The descriptions of the models are as follows:

• Model A: This model combines a PCA dimensionality reduction method with an 
80% variance contribution with an unmodified base cascade forest estimator.

• Model B: Compared to model A, model B employs a more stringent PCA setup, 
i.e., retaining the principal components with 95% variance contribution and con-
tinuing with the unmodified base cascade forest estimator.

• PCACFMDA model: This model adopts the same PCA dimensionality reduction 
strategy, retaining a 95% variance contribution rate. Simultaneously, the subse-
quent cascade forest estimator is fully optimized, enhancing both the diversity of 
the estimator and the accuracy of the predictor.

All three models utilize the approach of averaging the prediction results to obtain 
the final prediction output, as illustrated in Table 2. PCA is employed for dimension-
ality reduction, while the cascade forest handles classification or regression tasks. The 
results demonstrate that increasing the number of principal components enhances 
the prediction performance of model B. Compared to model B, the PCACFMDA 
model exhibits superior performance across all evaluation metrics. Adjusting PCA 

Fig. 5 The ROC and PR curves of PCACFMDA in 10-fold cross-validation

Table 2 Various performance indicators for Model A, Model B and PCACFMDA models

Methods Acc (%) Pre (%) Rec (%) F1 (%) AUC (%) AUPR (%)

A 88.08 87.80 88.47 88.12 95.15 94.95

B 89.57 89.56 89.60 89.57 95.78 95.90

PCACFMDA 94.48 94.74 94.18 94.46 98.56 98.66
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parameters and optimizing the cascade forest estimator significantly improve the 
overall performance of the models.

Comparative study of classifiers

In this section, we conducted experimental evaluations for the sample set. First, we 
obtained the feature data through PCA and applied various classifiers for comparative 
analysis, including SVM, LightGBM, Random Forest (RF), XGBoost, and Cascade Forest 
(CF). Among these, the number of decision trees was set to 100 for LightGBM, RF and 
XGBoost, while CF was configured with default parameters. The 5-fold cross-validation 
was performed on these classifiers.

The validation results are shown in Table 3 and Fig. 6. SVM performs relatively weakly 
in all evaluation metrics, especially in accuracy (86.84%), precision (86.84%) and F1 
score (86.84%). LightGBM performs better in accuracy (88.28%), precision (87.64%), and 
F1 score (88.38%), but has better performance in AUC (95.12%) and AUPR (94.84%) are 
slightly inferior to CF. RF excels in recall (90.89%) but falls short of CF in other met-
rics, especially precision (85.85%) and F1 score (88.29%). XGBoost performs better in 
the aggregate, with accuracy (88.78%), precision (88.41%) and F1 score (88.83%) are 
close to CF, but slightly inferior to CF in AUC (95.45%) and AUPR (95.20%). CF dem-
onstrates significant advantages in the five key evaluation dimensions, namely Acc, Pre, 
F1 Score, AUC, and AUPR. CF has an accuracy of 89.31%, a precision of 89.66%, an F1 
Score of 89.27%, an AUC of 95.64%, and an AUPR of 95.70%, all of which are higher than 

Table 3 Various performance indicators for different classifiers

Methods Acc (%) Pre (%) Rec (%) F1 (%) AUC (%) AUPR (%)

SVM 86.84 86.84 86.83 86.84 94.29 94.11

LightGBM 88.28 87.64 89.14 88.38 95.12 94.84

RF 87.95 85.85 90.89 88.29 95.05 94.91

XGBoost 88.78 88.41 89.27 88.83 95.45 95.20

CF 89.31 89.66 88.89 89.27 95.64 95.70

Fig. 6 The ROC and PR curves of different classifiers in 5-fold cross-validation
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the corresponding metrics of other classifiers. Although CF is not the absolute leader in 
recall, it excels in other core evaluation dimensions. Therefore, its potential and advan-
tages in practical applications are further verified.

Comparative study of models

In this section, we conduct a comparative analysis of the proposed PCACFMDA method 
against a selection of state-of-the-art prediction techniques, namely MDA-CF [37], 
ERMDA [60], DFELMDA [38], and CFSAEMDA [39]. Comprehensive explanations of 
each technique are provided below:

• The MDA-CF uses a cascade forest structure for MDA prediction, which internally 
combines two XGBoost models and two random forest models as base estimators.

• The ERMDA method employs a resampling strategy to generate multiple balanced 
small-scale training sets, trains independent learners on each subset, and applies a 
soft-voting mechanism to combine single learners’ prediction outcomes for their 
final choice.

• DFELMDA extracts low-dimensional expressions of miRNAs and disease features 
separately using a two-way deep AE, then gets correlation results for each type using 
deep random forests.

• CFSAEMDA employs a stacked AE to obtain the underlying feature representations 
and applies an improved cascade forest algorithm to accomplish the final prediction 
task.

To ensure a fair comparison, the source codes of the MDA-CF, ERMDA, DFELMDA, 
and CFSAEMDA methods were appropriately adjusted to carry out this evaluation in 
the same experimental environment. Figure 7 shows the experimental results. In terms 
of AUC value, the PCACFMDA model achieves the highest at 98.56%. The CFSAEMDA 
and DFELMDA models are the next best, with 97.60% and 95.10%. The AUC values of 
the ERMDA and MDA-CF models are lower but still perform well. PCACFMDA per-
forms well in AUPR assessment measures, with 98.66%. The CFSAEMDA model comes 

Fig. 7 The ROC and PR curves of different models in 5-fold cross-validation
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next with an AUPR value of 97.80%. The MDA-CF and ERMDA models also have high 
AUPR values of 94.59% and 93.88%. The DFELMDA model has a significantly lower 
AUPR value than the other models, which is only 57.68%. This set of data robustly con-
firms the effectiveness of the PCACFMDA method. Evaluated from both AUC and 
AUPR perspectives, PCACFMDA demonstrates superior predictive capability and 
higher accuracy.

Case study

To thoroughly substantiate the applicability and reliability of our proposed PCACFMDA 
model in real-world healthcare contexts, we meticulously plan and execute case studies 
focused on breast neoplasms(BN), esophageal neoplasms(EN), and lung neoplasms(LN). 
In particular, we start by removing from the dataset any known association records 
that are directly linked to a certain illness. Subsequently, the processed training set is 
adjusted using a balancing strategy to guarantee sufficient representation of all sam-
ple types. The PCACFMDA model then calculates probability scores of association to 
estimate the potential relationship between each miRNA and a specific disease. In the 
final step, based on the association probabilities determined by the model, we rank the 

Table 4 Top 50 predicted miRNAs associated with BN, where H4, dbD and m2D represent HMDD 
v4.0, dbDEMC3.0 and miR2Disease

Rank MiRNA Evidence Rank MiRNA Evidence

1 hsa-mir-29b H4, dbD, m2D 26 hsa-mir-133a H4, dbD

2 hsa-mir-345 H4, dbD 27 hsa-mir-31 H4, dbD, m2D

3 hsa-mir-199a H4, dbD 28 hsa-mir-34c H4, dbD

4 hsa-mir-21 H4, dbD, m2D 29 hsa-mir-19a H4, dbD

5 hsa-let-7i H4, dbD, m2D 30 hsa-let-7c H4, dbD

6 hsa-mir-92a H4, dbD 31 hsa-mir-429 H4, dbD, m2D

7 hsa-mir-125b H4, dbD, m2D 32 hsa-let-7a H4, dbD, m2D

8 hsa-mir-155 H4, dbD, m2D 33 hsa-mir-29c H4, dbD, m2D

9 hsa-mir-214 H4, dbD 34 hsa-mir-205 H4, dbD, m2D

10 hsa-mir-1 H4, dbD 35 hsa-mir-200b H4, dbD, m2D

11 hsa-mir-449b H4, dbD 36 hsa-let-7g dbD

12 hsa-mir-200a H4, dbD, m2D 37 hsa-mir-192 H4, dbD

13 hsa-mir-34a H4, dbD 38 hsa-mir-143 H4, dbD, m2D

14 hsa-mir-19b H4, dbD 39 hsa-mir-198 H4, dbD

15 hsa-mir-146b H4, dbD, m2D 40 hsa-mir-25 H4, dbD

16 hsa-let-7d H4, dbD, m2D 41 hsa-mir-106b H4, dbD

17 hsa-let-7e H4, dbD 42 hsa-mir-9 H4, dbD, m2D

18 hsa-mir-29a H4, dbD 43 hsa-let-7b H4, dbD

19 hsa-mir-30a dbD, m2D 44 hsa-mir-223 H4, dbD

20 hsa-mir-20a H4, dbD, m2D 45 hsa-mir-26b H4, dbD

21 hsa-mir-145 H4, dbD, m2D 46 hsa-mir-99b H4, dbD

22 hsa-mir-125a H4, dbD, m2D 47 hsa-mir-144 H4, dbD

23 hsa-mir-126 H4, dbD, m2D 48 hsa-mir-196b H4, dbD

24 hsa-mir-221 H4, dbD, m2D 49 hsa-mir-7 H4, dbD, m2D

25 hsa-mir-195 H4, dbD, m2D 50 hsa-mir-96 H4, dbD, m2D
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miRNAs and select the top 50 corresponding miRNAs. The ranked lists are subsequently 
subjected to validation in three authoritative databases, dbDEMC3.0 [61], miR2Disease 
[62] and HMDD v4.0 [63].

BN is the most common cause of cancer-related mortality among women in indus-
trialized countries. Although there have been tremendous advancements in medical 
therapies, metastatic and recurrent breast cancer are still a serious concern and present 
a significant barrier to clinical care. In light of this, it is important to explore novel strat-
egies to deepen the understanding of breast cancer mechanisms. Notably, multiple stud-
ies have revealed that alterations in the expression of hsa-miR-29b, a tumor suppressor 
miRNA, may be an important biomarker indicative of recurrence and metastasis of the 
patient’s disease [64]. As shown in Table 4, the top 50 miRNAs most strongly associated 
with BN have been validated.

EN belongs to the category of highly prevalent neoplasms globally, in which benign 
neoplasms are mainly manifested as smooth muscle neoplasms. Squamous cell car-
cinoma, which ranks sixth in cancer-related mortality, is the most prevalent type of 
malignant neoplasm. Extensive scientific evidence indicates that dysregulated miRNA 
expression is intimately linked with the development of esophageal neoplasms. For 
instance, the down-regulation of hsa-mir-15a expression plays a crucial role in the 

Table 5 Top 50 predicted miRNAs associated with EN, where H4, dbD and m2D represent HMDD 
v4.0, dbDEMC3.0 and miR2Disease

Rank MiRNA Evidence Rank MiRNA Evidence

1 hsa-mir-15a H4, dbD 26 hsa-let-7i H4, dbD

2 hsa-mir-150 H4, dbD 27 hsa-mir-10b H4, dbD

3 hsa-mir-126 dbD 28 hsa-mir-140 H4, dbD

4 hsa-mir-146a H4, dbD 29 hsa-let-7g dbD

5 hsa-let-7a dbD 30 hsa-mir-34a H4, dbD

6 hsa-mir-203 H4, dbD, m2D 31 hsa-mir-18a H4, dbD

7 hsa-mir-127 H4, dbD 32 hsa-mir-133a H4, dbD

8 hsa-mir-103b dbD 33 hsa-mir-106a dbD

9 hsa-mir-21 H4, dbD, m2D 34 hsa-mir-199a dbD

10 hsa-mir-155 H4, dbD 35 hsa-mir-146b H4, dbD

11 hsa-mir-223 dbD, m2D 36 hsa-mir-193b dbD

12 hsa-mir-19a dbD 37 hsa-mir-30b dbD

13 hsa-mir-221 dbD 38 hsa-mir-195 H4, dbD

14 hsa-mir-34b H4, dbD 39 hsa-mir-198 dbD

15 hsa-mir-125a H4, dbD 40 hsa-mir-483 H4, dbD

16 hsa-mir-16 H4, dbD 41 hsa-mir-29b H4, dbD

17 hsa-mir-205 H4, dbD, m2D 42 hsa-mir-31 dbD

18 hsa-mir-27b dbD 43 hsa-mir-27a H4, dbD

19 hsa-mir-7 H4, dbD 44 hsa-mir-24 H4, dbD

20 hsa-mir-210 dbD 45 hsa-mir-124 H4, dbD

21 hsa-mir-200b H4, dbD 46 hsa-mir-101 dbD

22 hsa-mir-200c H4, dbD 47 hsa-mir-122 dbD

23 hsa-mir-148a H4, dbD 48 hsa-let-7b dbD

24 hsa-mir-20a dbD 49 hsa-mir-141 dbD

25 hsa-mir-29a dbD 50 hsa-let-7e dbD
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genesis and progression of esophageal squamous cell carcinoma (ESCC). Therefore, the 
detection of serum levels of hsa-mir-15a is anticipated to serve as a novel diagnostic and 

Table 6 Top 50 predicted miRNAs associated with LN, where H4, dbD and m2D represent HMDD 
v4.0, dbDEMC3.0 and miR2Disease

Rank MiRNA Evidence Rank MiRNA Evidence

1 hsa-mir-17 H4, dbD, m2D 26 hsa-mir-145 H4, dbD, m2D

2 hsa-mir-146a H4, dbD, m2D 27 hsa-mir-20a H4, dbD, m2D

3 hsa-mir-133b H4, dbD, m2D 28 hsa-mir-96 H4, dbD

4 hsa-mir-214 H4, dbD, m2D 29 hsa-mir-146b dbD, m2D

5 hsa-mir-155 H4, dbD, m2D 30 hsa-let-7c H4, dbD, m2D

6 hsa-mir-199a H4, dbD, m2D 31 hsa-let-7f dbD, m2D

7 hsa-mir-196a H4, dbD 32 hsa-mir-31 H4, dbD, m2D

8 hsa-mir-29b H4, dbD, m2D 33 hsa-mir-15a H4, dbD

9 hsa-mir-34a H4, dbD 34 hsa-mir-449b dbD

10 hsa-mir-200b H4, dbD, m2D 35 hsa-mir-93 H4, dbD, m2D

11 hsa-mir-27a H4, dbD 36 hsa-mir-92a H4, dbD

12 hsa-mir-148a H4, dbD 37 hsa-mir-125a H4, dbD, m2D

13 hsa-mir-152 H4, dbD 38 hsa-mir-205 H4, dbD, m2D

14 hsa-mir-195 H4, dbD, m2D 39 hsa-mir-125b H4, dbD, m2D

15 hsa-mir-182 H4, dbD, m2D 40 hsa-mir-1 H4, dbD, m2D

16 hsa-mir-296 H4, dbD 41 hsa-mir-143 H4, dbD, m2D

17 hsa-mir-200c H4, dbD, m2D 42 hsa-mir-16 H4, dbD, m2D

18 hsa-mir-126 H4, dbD, m2D 43 hsa-mir-132 H4, dbD

19 hsa-let-7a H4, dbD, m2D 44 hsa-mir-130b H4, dbD

20 hsa-mir-106b H4, dbD 45 hsa-let-7b H4, dbD, m2D

21 hsa-mir-30a dbD, m2D 46 hsa-mir-29a H4, dbD, m2D

22 hsa-mir-25 H4, dbD 47 hsa-mir-223 H4, dbD

23 hsa-mir-18a dbD, m2D 48 hsa-mir-200a H4, dbD, m2D

24 hsa-mir-21 H4, dbD, m2D 49 hsa-mir-141 H4, dbD, m2D

25 hsa-mir-183 H4, dbD, m2D 50 hsa-mir-30e dbD, m2D

Table 7 Enrichment results for esophageal neoplasms-related miRNAs

KEGG pathway p-value miRNAs

Proteoglycans in cancer 4.31e−13 47

ECM-receptor interaction 6.00e−10 44

Hippo signaling pathway 7.31e−09 45

ErbB signaling pathway 2.27e−08 45

Fatty acid biosynthesis 9.19e−08 23

TGF-beta signaling pathway 9.19e−08 44

Pathways in cancer 6.28e−07 48

Rap1 signaling pathway 2.20e−06 47

Adherens junction 6.17e−06 44

Neurotrophin signaling pathway 8.02e−06 45

Renal cell carcinoma 1.23e−05 43

Focal adhesion 1.95e−05 47

MAPK signaling pathway 4.59e−05 47
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prognostic biomarker with an important potential for clinical application [65]. As shown 
in Table 5, the top 50 miRNAs most strongly associated with EN have been validated.

LN involves aggregates of neoplasms originating in lung tissue or metastasizing to the 
lungs from other body parts, and metastatic conditions are specifically referred to as 
pulmonary metastatic neoplasms. Recent studies have shown a high correlation between 
miRNAs and the pathological processes involved in various lung cancers. The hsa-miR-
133b [66] significantly inhibits cell proliferation in non-small cell lung cancer (NSCLC) 
by directly targeting the epidermal growth factor receptor (EGFR) and disrupting its 
downstream signaling pathways. This mechanism provides a revolutionary perspective 
for understanding and developing targeted therapies against EGFR-dependent cancers. 
Our prediction model selected the top 50 miRNAs associated with LN. As shown in 
Table 6, the top 50 miRNAs most strongly associated with LN have been validated.

Pathway analysis

Using the DIANA-MirPath v.3 web tool [67], we analyzed the top 50 miRNAs in 
esophageal neoplasms to investigate miRNA-mediated pathway disruption and 

Fig. 8 The illustration of heatmap based on esophageal neoplasms-related miRNAs
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regulatory roles. As demonstrated in Table 7, pathways associated with esophageal 
neoplasms were substantially enriched, indicating that most candidate targets were 
closely related to those of esophageal neoplasms’ biological pathways. For example, 
reduced expression of the TGF-β receptor in esophageal squamous carcinoma was 
associated with depth of infiltration, lymph node metastasis, pathological stage and 
poor prognosis [68]. ErbB family receptors, especially EGFR, play important roles 
in several cancer types. Studies have shown that mutations and overexpression 
of EGFR are also present in esophageal neoplasms [69] and are closely associated 
with disease progression. We also used mirPathDB 2.0 [70] to create a heat map of 
miRNA targets and associated pathways. As demonstrated in Fig.  8, deeper colors 
imply a greater association between miRNA targets and their respective pathways. 
In conclusion, the experimental results of PCACFMDA exhibited outstanding per-
formance in predicting miRNA-disease correlations.

Survival analysis

To assess the reliability of PCACFMDA, we employed miRpower [71] to statistically 
analyze breast cancer-related miRNAs. First, we used the TCGA database to identify 

Fig. 9 Kaplan-Meier plots of hsa-miR-198, hsa-miR-30a, hsa-miR-31, and hsa-let-7b for survival of patients 
with breast cancer
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miRNAs with p-values of less than 0.005, considered as prospective biomarkers for 
breast cancer diagnosis and prognosis. Then we focused on four specific potential miR-
NAs: hsa-miR-198, hsa-miR-30a, hsa-miR-31, and hsa-let-7b. To assess their poten-
tial impact on patient prognosis, we plotted Kaplan-Meier survival curves to visualize 
survival probabilities over time. If there is a significant difference between the survival 
curves of different groups, then these miRNAs could be the key factors influencing 
patient survival. As a result, we performed a detailed comparative analysis of the high-
risk and low-risk breast cancer groups and showed that there was patients with some of 
the most prominent miRNA expression profiles had significantly different survival out-
comes, highlighting the potential of these miRNAs as key biomarkers for prognostic and 
targeted therapies. By identifying and understanding these associations, we can better 
tailor treatment strategies to improve the prognosis of breast cancer patients. Figure 9 
demonstrates that PCACFMDA efficiently extracts disease-related miRNAs and is a 
good technique for discovering prospective biomarkers in the biomedical area.

Discussion and conclusion
MicroRNAs are key endogenous molecules that play crucial roles in post-transcrip-
tional gene regulation, influencing numerous essential biological processes. In this 
study, we propose the PCACFMDA model to predict novel miRNA-disease associa-
tions. The model operates through three primary phases: First, we develop a frame-
work that integrates multidimensional similarity features, capturing intricate patterns 
in the data. Next, PCA is applied to distill and refine deep structural information from 
these features. Finally, an enhanced cascade forest method is employed to predict 
potential miRNA-disease links accurately. Experimental results demonstrate that the 
PCACFMDA model not only achieves excellent predictive performance but also exhibits 
robustness and strong generalization capabilities. In future work, we aim to consider the 
impact of miRNA multi-targeting effects on disease association predictions. By utilizing 
additional bioinformatics tools and databases, such as TargetScan and miRTarBase, we 
plan to incorporate the influence of miRNAs targeting multiple mRNAs. Although our 
current model does not account for this factor, its performance on existing datasets vali-
dates its potential and reliability.
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