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Abstract 

Background: Accurate prediction of copy number variations (CNVs) from targeted cap-
ture next-generation sequencing (NGS) data relies on effective normalization of read 
coverage profiles. The normalization process is particularly challenging due to hidden 
systemic biases such as GC bias, which can significantly affect the sensitivity and speci-
ficity of CNV detection. In many cases, the kit manifests provide only the genome 
coordinates of the targeted regions, and the exact bait design of the oligo capture 
baits is not available. Although the on-target regions significantly overlap with the bait 
design, a lack of adequate information allows less accurate normalization of the cover-
age data. In this study, we propose a novel approach that utilizes a 1D convolution 
neural network (CNN) model to predict the positions of capture baits in complex 
whole-exome sequencing (WES) kits. By accurately identifying the exact positions 
of bait coordinates, our model enables precise normalization of GC bias across target 
regions, thereby allowing better CNV data normalization.

Results: We evaluated the optimal hyperparameters, model architecture, and com-
plexity to predict the likely positions of the oligo capture baits. Our analysis shows 
that the CNN models outperform the Dense NN for bait predictions. Batch normaliza-
tion is the most important parameter for the stable training of CNN models. Our results 
indicate that the spatiality of the data plays an important role in the prediction perfor-
mance. We have shown that combined input data, including experimental coverage, 
on-target information, and sequence data, are critical for bait prediction. Furthermore, 
comparison with the on-target information indicated that the CNN models performed 
better in predicting bait positions that exhibited a high degree of overlap (>90%) 
with the true bait positions.

Results: This study highlights the potential of utilizing CNN-based approaches to opti-
mize coverage data analysis and improve copy number data normalization. Subse-
quent CNV detection based on these predicted coordinates facilitates more accurate 
measurement of coverage profiles and better normalization for GC bias. As a result, this 
approach could reduce systemic bias and improve the sensitivity and specificity of CNV 
detection in genomic studies.
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Background
Copy number variations (CNVs) are structural genomic alterations that involve the 
deletion and/or duplication of DNA segments. CNVs have been implicated in various 
human diseases, including cancer and rare monogenic diseases. Accurate identification 
and characterization of CNVs are crucial for understanding the genetic basis of these 
diseases and developing effective diagnostic and therapeutic strategies[1]. Advances in 
high-throughput sequencing technologies, such as next-generation sequencing (NGS), 
have revolutionized the field of genomics and provided a wealth of data for studying 
CNVs. NGS platforms generate massive amounts of sequencing data, which contain val-
uable information about genomic variations. The most widely used Illumina short-read 
sequencing technology is suitable for single nucleotide variant (SNV) and small inser-
tion/deletion detection. However, the analysis of sequence data for CNV detection and 
characterization presents significant challenges due to the complexity and scale of the 
data [2, 3].

Although whole-genome sequencing (WGS) is becoming more common, a large por-
tion of genetic diagnoses are based on whole-exome sequencing (WES) [4]. WES is a 
targeted enrichment method in which only the coding regions of genes are sequenced. 
The majority of WES kits are hybridization-based, where hundreds of thousands of oligo 
baits are used to capture and enrich the targeted regions of the genome. These oligo cap-
ture baits are short (typically 80–120 base pairs) DNA or RNA fragments with nucleo-
tide sequences specific to the targeted genomic region [5].

During the hybridization process, the DNA fragments of the sample are annealed with 
single-stranded oligo baits to form double-stranded DNA. Since the nucleotides forming 
the double-stranded chain bind with weak secondary hydrogen bonds, hybridization is 
a dynamic thermodynamic equilibrium under given conditions (temperature, ionic con-
centration). Next, the unbound and partially matching DNA fragments are removed, and 
the targeted DNA fragments complementing the oligo baits are captured and enriched 
[6]. The captured reads aligned to the reference genome show a distinct coverage pattern 
that reflects the bait design and the hybridization (and other wet-lab) conditions of the 
individual samples (Fig. 1).

CNV analysis relies on statistical models and algorithms that are designed to detect 
variations in read coverage across the genome [7–10]. In the case of WES-targeted 
enrichment, the hybridization of DNA fragments to thousands of oligo baits with unique 
sequence compositions introduces imbalances in the coverage data because the condi-
tions of hybridization influence the capture efficiency of different baits [5]. Thus, minor 
changes in the temperature and buffer concentrations of reagents used in the library 
preparation protocol will lead to sample- and batch-specific hybridization bias between 
cohorts.

This bias is often referred to as GC bias, where G and C represent the two nucleo-
tides (G = guanine, C = cytosine) that bind with three hydrogen bonds, leading to 
stronger (thermodynamically more stable) bonds between sequences with high GC 
content compared with AT-rich (A = adenine, T= thymine) sequences that bind with 
two hydrogen bonds. Consequently, changes in chemical or physical conditions that 
shift the thermodynamic balance during the hybridization process will also imbalance 
the hybridization efficiency and the proportion of captured DNA based on the GC 
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content, leading to GC bias [11]. Due to the sheer number of baits in a WES capture 
kit, the bait coordinates are designed by algorithms and sensible rules based on the 
GC content and the sequence context within and around each target region. Since the 
aim is to achieve uniform, reproducible target capture, the applied rules try to mini-
mize the factors (including GC bias) leading to too low or too high capture efficiency 
around the target regions. Accordingly, it is also advantageous to design baits with 
similar GC ratios, as hybridization of all baits is performed in a single reaction. Simi-
larly, placing more baits around poorly enriched areas and avoiding repetitive areas 
based on the reference genome context can lead to better bait design that produces 
more uniform sequence coverage of the target regions [12, 13].

Since many of these decisions are not vendor but rather sequence context and 
hybridization specific, we hypothesize that the knowledge of target regions (which 
also defines the targeted sequence context) and the experimental coverage data in a 
cohort of samples can be used to pinpoint the most likely bait positions in any WES 
design. We propose a novel approach that harnesses the power of convolutional neu-
ral networks (CNNs) to optimize sequence data analysis for CNV bait position pre-
diction. CNNs are a class of deep learning models that have demonstrated remarkable 
success in various computer vision and natural language processing tasks [14]. By lev-
eraging the hierarchical and local feature extraction capabilities of CNNs, our objec-
tive is to capture the intricate patterns and relationships within the coverage profile 
and sequence context data that are indicative of bait positions and provide a robust 
and reliable tool to predict the most likely bait design. If the predicted bait positions 

Fig. 1 Visualization of NGS sequences and coverage profiles via the Integrative Genome Viewer. The tracks 
COVERAGE 1–3 display the coverage profiles of three different samples. The READ 1 track shows the actual 
NGS sequences aligned to the reference genome of sample 1, which is the basis of coverage profile 1. The 
RefSeq Genes track contains the exonic regions of a randomly selected gene (IMPDH1), while the ON-TARGET 
track shows the targeted region coordinates provided in the kit manifest. The BAITS track shows the actual 
bait design of this particular WES kit
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largely overlap with the exact bait coordinates, better CNV normalization could be 
achieved even when the bait design is not publicly available.

To test the feasibility of our approach, we used publicly available WES sequence data 
based on a WES kit where the exact bait design (the ground truth for training) was pro-
vided. As this dataset is publicly available, our methodology can be easily reproduced 
and tested without the privacy concerns of actual clinical WES data. In our manuscript, 
we provide a comprehensive description of the tested network architectures, the data 
preprocessing techniques, and the training procedures. We also compared the different 
machine learning models and the effects of various optimizations to determine the ML 
models with the best accuracy and to balance the training speed and CPU requirements. 
In addition,

Furthermore, we discuss the potential applications and implications of our method in 
the field of genomics and personalized medicine. CNV mutations contribute approxi-
matively 5–10% of the mutation spectrum while large majority of CNV mutations are 
not routinely detected from WES NGS sequences. The main problem is the inadequate 
GC bias normalization of read counts at the target regions due to the lack of informa-
tion of the actual oligo bait design. The use of approximate GC normalization based on 
the on-target coordinates leads to lower sensitivity and specificity, especially for detect-
ing smaller CNVs. Through the application of deep learning techniques, our approach 
represents a significant step toward improving the GC bias normalization by accurately 
predicting the bait positions for the majority of WES kits that do not include the bait 
coordinates in their design manifests. As WES is still the most widely used method in 
clinical genetic diagnosis, our results could improve the sensitivity and specificity of 
CNV detection with such kits. This in turn could facilitate diagnostic and research on 
copy number variations and contribute to advancing our understanding of the genetic 
basis of complex disorders.

Methodology
In this section, first we present a systematic workflow for the proposed model designed 
to predict the positions of CNV baits from whole exome sequencing (WES) data. The 
model follows a four-step process (Fig. 2). The first step involves the acquisition of the 
dataset, where the on target data, WES sequence data, human reference sequence data, 
and Truth bait coordinates data are gathered. The second step focuses on data preproc-
essing to prepare the data for subsequent analysis. In the third step, the data are par-
titioned into training, evaluation, and validation datasets for different models. Finally, 
the fourth step is the training and evaluation of the model to predict the position of the 
CNV bait.

Used datasets

In accordance with national regulations in Hungary (“a humángenetikai ada-
tok védelméről, a humángenetikai vizsgálatok és kutatások, valamint a biobankok 
működésének szabályairól”/Act XXI of 2008 on the protection of human genetic data, 
the rules of human genetic testing and research, and the operation of biobanks), genetic 
data that could enable personal identification such as whole exome sequencing (WES) 
data can only be uploaded to restricted, request-only closed repositories, even with 
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patient consent. Consequently, our analysis was conducted using a dataset that is pub-
licly available after registration in a closed public repository hosted by BaseSpace, a plat-
form provided by Illumina. Specifically, we utilized publicly available demo sequence 
data generated by the Illumina Nextera WES kit, accessible on BaseSpace (https:// bases 
pace. illum ina. com/ proje cts/ 20611 5910/ about). This WES kit includes the bait design 
(the exact genomic coordinates of each bait) that we used as the ground truth for training 
the machine learning models. This dataset contains the sequence data of the NA12878 
sample from the 1 KG phase III sample collection in 96 replicates that were sequenced 
on the NovaSeq Illumina sequencing platform using a 2x150 base pair S2 flow cell. We 
downloaded the raw FASTQ files and aligned the reads to the GRCh37 human refer-
ence genome using the BWA-MEM algorithm for paired-end alignment [15]. We used 
the PICARD tool MarkDuplicate to mark PCR and optical duplicate reads.

Data preprocessing

We downloaded the target region and bait coordinate data files from the Illumina 
Nextera WES kit manifest files from the Illumina web site (https:// suppo rt. illum ina. 
com/ downl oads/ nexte ra- dna- exome- produ ct- files. html). We extended the target 
region coordinates with 2000 base pairs with bedtools [16] using the “slop -b 2000” 
option and merged the resulting genome regions with “bedtools merge” to create 
non-overlapping continuous genomic regions that includes all of the target regions 
with a sufficiently large genomic context. All together, this resulted in 99188 chunks 
of non-overlapping genome regions [https:// doi. org/ 10. 5281/ zenodo. 11102 581: 
GRCh37_coordinates]. Using the genome coordinates of these genomic regions we 
used “samtools depth” with the “-aa -b regions.bed” options to generate the coverage 

Fig. 2 Overview of NN workflow for prediction of CNV bait positions

https://basespace.illumina.com/projects/206115910/about
https://basespace.illumina.com/projects/206115910/about
https://support.illumina.com/downloads/nextera-dna-exome-product-files.html
https://support.illumina.com/downloads/nextera-dna-exome-product-files.html
https://doi.org/10.5281/zenodo.11102581
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data for each genome position of the regions of interest [17]. The public data set was 
already normalized (60 M PE reads per sample corresponding to ∼ 72× mean target 
coverage). Accordingly we did not have to normalize the observed absolute genome 
coverages across the samples.

From the used GRCh37 reference data we looked up the nucleotide sequence for 
each position of the regions of interest and coded them numerically (1 - A, 2 - T, 3 - 
C, 4 - G, 0 - N). For the same position, we also coded the target region information of 
the kit manifest as 1 or 0 denoting whether a given genome position is targeted (1) or 
not (0) in the Illumina Nextera WES kit manifest. Lastly, we also created our truth for 
the same genome position, coded as 1 or 0 denoting whether the given genome posi-
tion is covered by a bait (1) or not (0).

Although some machine learning models can accommodate variable-length input 
sequences, our CNN model architecture requires that all training examples have a 
uniform data shape. However, since our dataset consists of 99,188 genomic chunks 
that vary in length, we implemented the following strategy to segment these genomic 
regions into equal-sized genomic windows (fixed-length data segments):

• For each replicate sample and each genomic chunk, we used a random offset “ran-
dom (window size)” to avoid bias due to placing the experimental high-read cov-
erage regions or bait features at specific positions (i.e., centers) of the data win-
dows.

• Using this offset, we split the consecutive genomic positions of the genomic chunk 
into window size segments; if the last segment was smaller than the window size, 
we excluded this segment.

• Since we extended all genomic chunks with 2000 base pairs on both sides, a large 
portion of the genomic positions in the resulting genomic chunks were not tar-
get regions, had no experimental read coverage, or did not intersect the actual 
bait coordinates and could not be used for training; consequently, we excluded all 
resulting windows (data segments) that

– had a length less than the bait length (80 base pairs) of overlap with bait posi-
tions

– or had less than 40 mean read coverage at the covered bait positions

We hypothesized that the available genomic context around the peak data (sequence 
information, additional target regions, and additional peaks in the coverage near the 
analyzed region) can influence the accuracy of the prediction. Furthermore, larger 
data windows with more data and memory requirements are also expected to increase 
the training time of the machine learning model. Thus, to investigate the benefits and 
trade-offs, we used 500- and 1000-base pair (bp) length window sizes for segmenting 
our data.

In theory, any particular data window can include between 80 and the window size 
number of bait positions (as we excluded all data segments that had less than 80 bait 
position overlaps, i.e., less than one single bait overlapping the segment). However, 
in our experimental data, the number of cases in which we had exactly one bait or 
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more baits in the training window was not random, as exonic regions in the genome 
(the target regions) have cluster like distribution, and the lengths of the target regions 
are widely different. Hence, many regions are only covered by a single bait, but a sig-
nificant portion of target regions are targeted by more overlapping or sparsely distrib-
uted baits. Consequently, the numbers of training examples for these different cases 
are not equal. Furthermore, the difficulty of predicting a single nonoverlapping bait or 
the best combination of sparse, potentially overlapping baits is radically different. To 
avoid overtraining for the most frequent and easiest bait per train window example 
situation, we classified our training examples by the following criteria:

• exactly 80 bait positions (1 bait)
• 81–160 bait positions (1–2 baits)
• 161–240 bait positions (2–3 baits)
• 41–320 bait positions (3–4 baits)
• 321-or more bait positions (5 or more baits)

Using the above classification criteria, we calculated the count of each class of the train-
ing window from the 1 M training examples and defined the reverse weight of each class 
of the example by the following equation

where ŵ is the reverse weight of the bait count in the ith class, min (C) is the minimum of 
the example bait count of the five different classes and ith is the example count of the ith 
class.

Since training is based on calculating the global loss and accuracy of the whole train-
ing dataset this would favor the model to generalize on the most frequent and easiest 
training example while performing worse on the least frequent and much harder cases 
when a combination of sparse potentially overlapping baits are designed to capture a 
larger difficult target region. With the applied reverse weighting based on the frequency 
of the different complexity cases, we tried to counterbalance the model training to 
achieve better predictions for the hard cases without significantly sacrificing the global 
performance.

Data partitioning for model training and evaluation

Splitting the data into equal-sized windows and applying the described exclusion criteria 
resulted in ≈ 18.1 M data segments (examples) for the 500 base pairs and ≈15.9M data 
segments for the 1000 base pair length window size. For training, validation, and evalu-
ation of the proposed CNN models, we split the 500-bp and 1000-bp example data sets 
into training, validation, and evaluation subsets [https:// doi. org/ 10. 5281/ zenodo. 11102 
581: train_data].

To avoid bias due to learning specific sequence contexts during training, we ensured 
that the nucleotide sequences in the target regions did not contain an excessive number 
of homologous sequences (see Additional File 6: Nucleotide Sequence Homology Test). 
Subsequently, we partitioned the data so that the training, validation, and evaluation 

(1)ŵ(ci) =
min (C)

ci
,

https://doi.org/10.5281/zenodo.11102581
https://doi.org/10.5281/zenodo.11102581
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datasets comprised data from different random genome chunks. This approach guaran-
teed that each dataset was derived from unique genomic regions of the human reference 
genome.

We included slightly more than 1 million examples for both the training and the vali-
dation data sets, while the evaluation data set included all remaining examples. We 
trained all NN models for 100 epochs [https:// doi. org/ 10. 5281/ zenodo. 11102 581: saved_
models]. During training, we limited the train and validation data to the same 1-1  M 
examples to make a runtime assessment of training and the CNN model data setups 
comparable. We calculated the mean loss and accuracy of the train/validation at the end 
of each epochs and saved the best model for each NN model [https:// doi. org/ 10. 5281/ 
zenodo. 11102 581: saved_models]. After model training, the best mean loss models were 
evaluated for all tested NN models using the same 1 M random examples from the eval-
uation data set. Due to size constraints, we deposited all raw metrics files generated dur-
ing the evaluation of NN models at a Zenodo deposit [https:// doi. org/ 10. 5281/ zenodo. 
11102 581: eval_output].

Proposed CNN model architecture

To predict the positions of the CNV bait, our proposed 1D CNN model uses the tar-
geted genomic region, sequence information, and experimental coverage data as input. 
The model uses a series of convolutional layers, batch normalization, and reverse 
weighting to handle the varying number of training examples of different difficulty lev-
els, based on the overlap potential of baits within each data segment. Additionally, we 
incorporate dropout regularization, max pooling, and dense layers to train the model 
and make predictions across a specified window length. While the proposed CNN archi-
tecture includes flattening and pooling layers these can be optionally excluded without 
significantly impacting the model’s predictive performance (Additional file 6: The pro-
posed CNN model architecture for prediction of bait position.). In the initial convolu-
tional layer, our model applies 50 filters, each of size 60, with a stride of 40. This layer 
uses ReLU activation and causal padding, which preserves the temporal sequence order. 
Following each convolutional layer, batch normalization is applied to standardize the 
activations, thereby improving training stability and speed. Additional convolutional 
layers follow, each configured with unique filter sizes and counts. Each layer is paired 
with batch normalization and dropout regularization. These layers include: Conv1D (80, 
20): applies 80 filters of size 20, with causal padding and ReLU activation. Conv1D (30, 
10): applies 30 filters of size 10, with causal padding and ReLU activation. Conv1D (40, 
5): applies 40 filters of size 5, with causal padding and ReLU activation. Conv1D (4, 2): 
applies 4 filters of size 2, with causal padding and ReLU activation. Following the con-
volutional layers, we add a dense layer with the same number of neurons as the window 
size, activated by a sigmoid function. The output layer of the CNN model provides sig-
moid-activated probabilities, which represent the likelihood of bait presence within each 
position. The bait prediction score is calculated as the product of the sigmoid activation 
value and the probability, enabling biological significance assessment of predicted bait 
locations within a genomic window. The final output of the dense layer is reshaped to fit 
the desired format for bait position predictions in the input sequence data. To classify 
the presence or absence of bait within a genomic window, we use cross-entropy as the 

https://doi.org/10.5281/zenodo.11102581
https://doi.org/10.5281/zenodo.11102581
https://doi.org/10.5281/zenodo.11102581
https://doi.org/10.5281/zenodo.11102581
https://doi.org/10.5281/zenodo.11102581
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loss function, which helps balance sensitivity and specificity, thus reducing bias during 
training [18]. We used causal padding, which does not alter the one-to-one correspond-
ence between the input and output layouts. Given that accurate bait prediction likely 
requires the surrounding genomic and coverage context, we also assessed prediction 
performance within data segments based on relative position. This approach allows us to 
account for the impact of flanking regions on prediction accuracy.

Results
Comparing the model training performance

Our first experiment compared the training performance of the proposed CNN model 
to that of the dense layer models in terms of the training and validation accuracy and 
evaluated the effect of the relevant hyperparameter optimizations. In our case, two mod-
els consisted of dense layer models, and the other eight models were 1D CNNs with dif-
ferent parameterizations, as shown in Table 1.

As described in the data partitioning section of the Methods, we used 500 and 1000 
base pair lengths of data segments for model training. We trained all the models for 
100 epochs with 1  M training and 1  M validation examples. The basic metrics (accu-
racy, loss) calculated for the training and validation data at the end of each epoch dur-
ing training can provide important insight for the models. Large differences between the 
loss/accuracy of the training and validation datasets can indicate that training on the 
training dataset has less generalization power on the overall data for the model. Thus, we 
also calculated the mean loss and accuracy metrics of the training and validation data. 
We summarized the changes in the most important metrics (loss and accuracy) during 
training (Additional file  2; Figs.  3 and 4). Large fluctuations in the loss, accuracy and 
AUC metrics during training indicate poor training convergence of a model for a spe-
cific task. In the case of model three, our results indicated that in this task, batch nor-
malization is essential for CONV1D models (Additional file 1: Training history of model 
3; 1D CNN without batch normalization). According to our results, dense models with 
or without batch normalization (models 2 and 4) had very similar performances; how-
ever, the accuracy and loss were worse than those of any of the CONV1D models (mod-
els 1 and 5–10) with batch normalization. To assess the complexity of the models, we 

Table 1 Summary of the tested 10 models, including the neural network architecture, input data, 
and the applied optimizations

Model Model Architecture Hyper-parameter optimizations Input data

1 Conv1D batch normalization, causal padding, reverse weight COV, SEQ, ONTARGET

2 Dense batch normalization, reverse weight COV, SEQ, ONTARGET

3 Conv1D causal padding, reverse weight COV, SEQ, ONTARGET

4 Dense reverse weight COV, SEQ, ONTARGET

5 Conv1D batch normalization, causal padding COV, SEQ, ONTARGET

6 Conv1D batch normalization, reverse weight, valid padding COV, SEQ, ONTARGET

7 Conv1D batch normalization, reverse weight, same padding COV, SEQ, ONTARGET

8 Conv1D batch normalization, causal padding, reverse weight COV, SEQ

9 Conv1D batch normalization, causal padding, reverse weight COV, ONTARGET

10 Conv1D batch normalization, causal padding, reverse weight SEQ, ONTARGET
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also calculated the mean CPU runtime of the epochs required for training. A summary 
of these parameters for the 10 tested models is provided in Table 2.

Our analysis shows that CONV1D models (models 1, 3, and 5–10) not only offer bet-
ter accuracy and loss based on the 1 M training/validation data used but also require less 
CPU run time for training than do Dense models (models 2 and 4).

Evaluation and dissection of the models performance

During NN training, we calculated the mean loss (train and validation dataset) at the 
end of each epoch, and based on this value, we saved the “best loss” models. Using these 
models, we predicted 1 M random data examples from the evaluation subset of our data 

Table 2 The best accuracy, loss and means of training and validation dataset of the analyzed 
models in 100 epochs and the mean time required for training one epoch

MODEL WINDOW train loss val loss mean loss train acc val acc mean acc mean time
(seconds)

1 500 0,0182 0,0316 0,0275 0,9613 0,9272 0,9415 1861,8

2 500 0,0561 0,0558 0,0559 0,8565 0,8559 0,8562 8508,1

3 500 0,0447 0,0410 0,0445 0,8916 0,8996 0,8921 1451,6

4 500 0,0563 0,0558 0,0561 0,8557 0,8559 0,8558 4877,8

5 500 0,0569 0,0927 0,0805 0,9764 0,9601 0,9667 1845,3

6 500 0,0212 0,0322 0,0292 0,9544 0,9245 0,9359 1536,4

7 500 0,0196 0,0313 0,0280 0,9581 0,9276 0,9396 1821,1

8 500 0,0372 0,0497 0,0468 0,9189 0,8866 0,8975 1811,3

9 500 0,0301 0,0332 0,0317 0,9304 0,9221 0,9260 1824,1

10 500 0,0174 0,0482 0,0402 0,9628 0,8760 0,9143 1836,2

1 1000 0,0161 0,0302 0,0255 0,9802 0,9611 0,9691 3813,1

2 1000 0,0615 0,0628 0,0622 0,9056 0,9034 0,9045 19675,8

3 1000 0,0364 0,0363 0,0363 0,9508 0,9508 0,9508 3059,8

4 1000 0,0618 0,0628 0,0623 0,9051 0,9034 0,9043 9757,1

5 1000 0,0306 0,0570 0,0477 0,9875 0,9759 0,9812 3798,9

6 1000 0,0172 0,0312 0,0265 0,9788 0,9585 0,9681 3361,9

7 1000 0,0160 0,0303 0,0253 0,9803 0,9603 0,9696 3727,4

8 1000 0,0372 0,0523 0,0476 0,9532 0,9346 0,9418 3793,2

9 1000 0,0278 0,0321 0,0299 0,9633 0,9572 0,9602 3770,2

10 1000 0,0174 0,0552 0,0432 0,9787 0,9183 0,9484 3839,7

Fig. 3 The distribution of different classes of 1 M train examples of the 500 and 1000 base pairs data sets. The 
classes (1–5) represent the bait count in the data segment (exactly 1, 1–2, 2–3, 3–4, 4 or more)
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and compared the predictions with the ground truth (bait positions provided by the kit 
manufacturer) to calculate the most informative metrics. As described in the Methods 
section, we used an uneven random number of different complexity (based on the num-
ber of baits in the data segment) training examples (Fig. 3).

For each window size of input data we predicted the probability of a bait in a win-
dow size of spatial data points. Accordingly, we calculated the metrics (TP, TN, FP, FN, 
accuracy, precision, sensitivity, specificity, F1 score, MCC) for the 1 M individual win-
dow size of bait predictions ([https:// doi. org/ 10. 5281/ zenodo. 11102 581: eval_output]). 
As stated earlier, in many cases only the on-target region information is provided in the 
capture kits; thus, CNV detection/normalization is based on these genome coordinates 
instead of the exact capture bait coordinates. Accordingly, as a baseline for this scenario 
(model 11), we used the positions of the on-target region as “prediction” and calculated 
the metrics for the same 1  M examples. We visualized the distribution of these met-
rics in each prediction difficulty class (single bait or more, potentially overlapping sparse 
baits in the data window) for the different models (Additional file 2: Distribution of the 
accuracy, precision, sensitivity, specificity, MCC metrics for the 5 train classes based on 
the 1 M individual predictions of the evaluation data set). The F1 and MCC scores dif-
ferentiate the models best as they incorporate the true- and misclassification for both 
true positives and true negatives. In Fig. 4, we present the F1 score distribution of the 10 
evaluated NN model predictions (and the baseline) in the different prediction difficulty 
classes.

Our results show that all NN models (models 1–10) resulted in better predictions than 
did the baseline model (model 11), especially for the most numerous easy (classes 1–3) 
bait examples. In the case of very dense bait coverage, model 11 seems to be artificially 

Fig. 4 F1 score distribution of 1 M predictions of the different classes (based on the number of included 
baits) of train examples for window 1000 and 500 data segments

https://doi.org/10.5281/zenodo.11102581
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better, especially for class 5 (with 4 or more 80 base pair length baits in the data seg-
ment) examples in the 500 base pair long data window, since in these cases, the majority 
of the data segment positions are also true bait positions. In the larger 1000-base pair 
data window case, there are fewer such extreme examples; consequently, the F1 score 
decreases for Model 11.

The dense models with or without batch normalization (models 2 and 4) perform 
much worse than the CNN models. Not surprisingly, the MCC metrics of the examined 
models were nearly identical (Additional file 2: Distribution of the accuracy, precision, 
sensitivity, specificity, and MCC metrics for the 5 training classes based on the 1 M indi-
vidual predictions of the evaluation dataset). Without the batch normalization option, 
the Conv1D model 3 performance was unstable during training (Additional file 1: Train-
ing history of Model 3; 1D CNN without batch normalization), and the evaluation also 
revealed worse performance for this model (Fig. 4).

We noticed that the sensitivity of bait prediction was good even for Dense NNs; how-
ever, the specificity and precision differed greatly (Additional file 2: Distribution of the 
accuracy, precision, sensitivity, specificity, and MCC metrics for the 5 training classes 
based on the 1 M individual predictions of the evaluation dataset). Seemingly, the 
reverse weighting of uneven numbers of different difficulty examples helps only slightly 
in the case of the 500-base pair window examples for class 5 (4 or more baits in the data 
segment). In this window, the number of examples with very high bait numbers was con-
siderably lower than that in single bait cases (Fig. 3). However, in the case of 1000 base 
pair data windows, the nonreverse weighted train option (Model 5) has a slight advan-
tage, even for highly difficult cases. The padding options have minimal effects; causal 
and same padding (models 1 and 7) seem to be the best options, while the option of valid 
padding (model 6), where the data are not padded and only valid input points are used, 
is slightly worse. Our results also showed that all three input data sources (experimen-
tal coverage, on-target information and sequence data) of the input were required for 
the best prediction. Excluding the nucleotide sequence information in the data window 
(model 9) resulted in the smallest negative effect, most notably leading to slightly worse 
F1 and MCC predictions in the most numerous “easy” single bait situations. This likely 
means that when multiple near-equal solutions exist, the sequence context can help to 
pinpoint the most suitable position. The lack of on-target information (information on 
which region should be targeted by the baits) and especially the experimental coverage 
information (indicating which positions were covered by more reads) resulted in much 
worse performance and a much greater variance in the metric distribution, underlining 
the importance of this information. In the convolution models, the beginning and the 
end of the data segments partially lack flanking spatial information, as we have no or 
limited spatial information on one side. To evaluate the effect of the surrounding spatial 
context, we calculated and plotted the means of the metrics in the predicted data win-
dows ((Fig. 5), Additional file 3: Position metric plots of the evaluated models for 1000 
and 500 train sizes).

The accuracy and precision were less influenced; however, the specificity, sensitivity, 
F1, and MCC scores were much lower on both sides of the data segments, indicating 
the importance of the surrounding spatial context for bait position predictions. Con-
sequently, we have better predictions at the inner portion of the data segment, while 
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we have worse predictions at the flank of the data segments. The same effect can be 
observed in the performance of all other models (Additional file 3: Position metric plots 
of the evaluated models for 1000 and 500 train sizes). Our results suggest that regardless 
of the data segment size, approximately one bait length (80 base pairs) of flanking con-
text is required at both sides of our prediction position for the best results. Furthermore, 
our results also show that a larger genomic window with sufficient data context not only 
increases the relative ratio of good/bad prediction positions in a data segment but also 
improves the prediction power of the model at the inner positions of the data segment.

Visual analysis of the bait predictions

For all models, we predicted mixed (class 1–5) 1  M train examples. For each individ-
ual, prediction we calculated the TP, TN, FP, and FN compared to known bait positions 
(truth). Based on these values we calculated the individual accuracy, precision, sensitiv-
ity, specificity, F1, and MCC metrics in the case of all models and data windows. We 
ranked the 1 M predictions by the F1 score ([https:// doi. org/ 10. 5281/ zenodo. 11102 581: 
eval_output]) and visualized a few best case ( 99th percentile), median case (median), and 
the worst case ( 1st percentile) examples for both window sizes (Figs. 6 and 7; Additional 
file 4: example plots of all models representative for the top 99, median and worst 1 per-
centile predictions based on the F1 score rankings of 1 M predictions).

Out of 1  M predictions model 1 resulted in 240704 perfect predictions (F1 = 1.0) 
in case of window size 500 and 225597 exact predictions in case of window size 1000 
(Additional file 5: Metric evaluation of 1 M individual predictions for model 1 and 2). 
While even at the 50th percentile of examples (median) the F1 scores were ≈ 0.9473 for 
Windows 500 and ≈ 0.9965 for Windows 1000. In the worst case scenario, the F1 scores 
dropped to ≈ 0.6611 and ≈ 0.6942 at Windows 500 and 1000 respectively. However still 

Fig. 5 The mean of the evaluation metrics based on the position in the spatial data segment

https://doi.org/10.5281/zenodo.11102581
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in the worst-case scenarios, the predicted bait positions are mainly overlapping and/
or flanking the true bait positions (Figs. 6, 7, bottom panes). In the case of the Dense 
models only 421 (window 500) and 592 (window 1000) were predicted exactly (F1 = 1.0) 
score and overall they also show much worse predictions (Additional file 5: Metric eval-
uation of 1 M individual predictions for model 1 and 2).

Discussion
In targeted capture kits the oligo baits are used to capture and enrich the target DNA for 
NGS sequencing. The resulting sparse coverage data can be used to identify CNV vari-
ants, however due to random variations, batch effect of hidden systemic biases reflect-
ing the wet-lab conditions of capture it is still an unsolved problem [7–9, 19–21]. One 
of the major systemic effects is the GC bias that influences the hybridization efficiency 
of baits due to the differences in their GC composition and the hidden wet-lab factors 

Fig. 6 Visualization of predicted examples of model 1 based on the ranking of the F1 scores of 1 M individual 
predictions using the 1000 base pair data segment. Subpanels 99th , median, and 1st percentile are 3 different 
(A, B, C) prediction examples with their appropriate F1 score rank. The black lines show the relative coverage 
in the data segment, the red dots are the probability of bait positions, the green line represents the bait 
positions (value 1 for bait position, value 0 for no bait position, the lines are used to better visualize the start 
and end of bait regions in the data segment)
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(temperature, buffer concentrations, and pipetting error) that may vary between indi-
vidual and batch of sequenced samples.

Although the recommended wet-lab protocol aims to standardize the conditions 
throughout the often very long and complex library preparation steps, even minor 
changes can alter the hybridization efficiency of different oligo baits. For example, plac-
ing samples in the middle or side of the PCR machine could lead to temperature differ-
ences during hybridization while pipetting errors in the protocol can lead to minimal 
changes in buffer concentrations that could also lead to hidden differences between the 
samples. As these conditions influence the capture efficiency of baits based on their GC 
content, the resulting sample-specific differences lead to systemic bias in the read dis-
tribution between batches of samples and also between individual samples in WES data 
[22].

Accordingly, to allow proper CNV detection from WES data the underlying GC bias 
has to be mitigated. When the exact genomic coordinates of the oligo baits are known 

Fig. 7 Visualization of predicted examples of model 1 based on the ranking of the F1 scores of 1 M individual 
predictions with the 500 base pair data segment. Subpanels 99th , median, and 1st percentile are 3 different 
(A, B, C) prediction examples with their appropriate F1 score rank. The black lines show the relative coverage 
in the data segment, the red dots are the probability of bait positions, the green line represents the bait 
positions (value 1 for bait position, value 0 for no bait position, the lines are used to better visualize the start 
and end of bait regions in the data segment)
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the GC content of the bait can be determined. Using this information the systemic bias 
caused by the GC content of the baits can be reversed leading to better normalization 
of WES data. In theory, GC bias can be statistically normalized, in case we know the 
GC ratio of the capture oligo baits, however in many cases only the on-target informa-
tion is provided in the capture kit manifests. To lower the overall sequencing cost, all 
WES vendors employ sophisticated algorithms to come up with a bait design that results 
in uniform capture coverage to eliminate the need of over-sequencing. To protect their 
intellectual property, many vendors do not share the bait design in the kit manifest and 
only the intended targeted region coordinates are included. Due to the large overlap of 
the targeted regions and the actual bait coordinates, in most cases the target regions 
can be used to normalize for GC bias. However, in some challenging genomic regions 
(with repetitive DNA elements, extreme GC ratios of the reference sequence, or con-
served motif regions) the bait design needs to avoid certain genomic contexts. Thus, for 
such regions the GC content estimation based on the targeted region could be wrong as 
the overlap is smaller with the actual bait design in these regions. Consequently, knowl-
edge of exact (or most probable) bait coordinates compared to using the target region 
coordinates could improve GC bias normalization even for these challenging regions. 
This often missing information is key to improving the normalization of GC bias, one 
of the largest hidden factors of normalization in hybridization-based target enrichment 
methods.

There are approximately 200K target regions in a typical WES kit that consist pri-
marily of the coding regions of the exons of genes. The median exon size of the human 
genome is 120 base pairs, and approximately 70% of all exons are less than 200 base pairs 
in length [23]. However, due to the clustered, uneven distribution of exons, the optimal 
number and positions of baits to capture the whole targeted region with similar capture 
efficiency (and coverage) are not trivial [11]. Furthermore, extreme GC ratios, repetitive 
genomic contexts, and regions containing a high percentage of evolutionarily conserved 
genomic motifs have to be avoided in capture kit design. Accordingly, the spatiality of 
the genome context of the targeted and flanking regions also influences the selection of 
the optimal bait positions.

Because of the sheer number of baits and the complexity of the task in our work, we 
applied ML to predict the most likely bait positions of a capture kit. We evaluated the 
model performance based on the selected network architecture and hyperparameter 
optimization and provided input data to prove the robustness of our proposed CNN-
1D model compared to the classical dense layer model with comparable N-bait counts. 
Our second approach to model performance evaluation was based on data window 
size adjustment, as the spatial context was expected to influence the predictions of the 
models.

In our data preparation, we split our data into equal (window size) segments. We ran-
domized the offset of segmentation for each genomic region and sample to avoid bias 
from placing our predicted feature(s) in a nonrandom way inside the data segments. 
Since the majority of targeted (exons) regions are small (median exon size = 120 base 
pairs) but their position is not evenly dispersed in the human genome but rather clus-
tered, in our data segments, we had a random number of oligo capture baits. Accord-
ing to our data, the majority of the data segments contained 1 or 2 oligo baits, while 
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fewer data segments contained more sparsely placed, potentially overlapping oligo baits. 
Approximately only 1/10th of the data segments contained 4 or more baits compared to 
a single bait. Furthermore, we expected that the difficulty of predicting the position of a 
single continuous bait region versus the potentially overlapping sparse positions of more 
baits could be different. Therefore, we also tested the feasibility of a reverse weighting 
approach. We classified the training examples into 5 classes based on the number of 
baits in the data segment (exactly 1, 1–2, 2–3, 3–4, 4 or more).

Our results show that 1D CNN with optimal parameters can be used to accurately pre-
dict the most likely bait design of complex target enrichment kits such as whole exome 
sequencing (WES) kits. In this task, the classic Dense NNs with a comparable number 
of trainable parameters perform worse and are also much more CPU intensive (Table 2, 
Fig. 4). Evaluation of our model shows that indeed each NN could predict a single or 1–2 
baits (class 1–2) in the data segments with better accuracy and most of the bad predic-
tions were from the more complicated class 3–5 data segments (Fig. 4, Additional file 2: 
Distribution of the accuracy, precision, sensitivity, specificity, MCC metrics for the 5 
train classes based on the 1 M individual predictions of evaluation data set, ([https:// doi. 
org/ 10. 5281/ zenodo. 11102 581: eval_output]). Our results suggest that in case the train 
examples have large differences in their relative abundance in the train data set then 
reverse weighting for the harder, less abundant examples may improve the prediction 
accuracy. However, our results suggest that in the case of larger data windows (1000 base 
pairs or more) where a larger portion of the data has sufficient spatial context, reverse 
weighting may not be required.

Our results show that in case we provide the not normalized absolute genome cover-
age count data in our input the “batch normalization” option is required for stable CNN 
training. We also propose that batch normalization is also useful to apply the model on 
data from different sources as the absolute coverage in the data can vary between indi-
vidual samples, used capture kits or laboratories. Interestingly this option has no effect 
on the Dense NNs. Other hyperparameters of CNNs, like the padding (valid, same or 
causal) play less role however causal and same options (padding of data) results in better 
accuracy than the “valid” option that uses only a portion of the data segment that is valid 
without padding.

Our results show that in case we provide the not normalized absolute genome cover-
age count data in our input the “batch normalization” option is required for stable CNN 
training. We also propose that batch normalization is also useful to apply the model on 
data from different sources as the absolute coverage in the data can vary between indi-
vidual samples, used capture kits or laboratories. Interestingly this option has no effect 
on the Dense NNs. Other hyperparameters of CNNs, like the padding (valid, same or 
causal) plays less role however causal and same options (padding of data) results in bet-
ter accuracy than the “valid” option that uses only portion of the data segment that is 
valid without padding. We have to note however, that our trained models are only valid 
on WES sequence data that has approximately ∼ 72× mean target coverage used to train 
the models. Thus, coverage data of samples largely deviating from this mean coverage 
should be scaled accordingly. According to our results, the experimental coverage data, 
the target region information and also the sequence information in the included genome 
context improves the prediction power.

https://doi.org/10.5281/zenodo.11102581
https://doi.org/10.5281/zenodo.11102581
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Our evaluation shows that the flanking genomic context is a major factor of prediction 
accuracy (Fig. 5, Additional file 3: Position metric plots of the evaluated models for 1000 
and 500 train sizes) in the data segment. Based on this observation, for prediction it is 
recommended to place the on-target regions in the middle of the data segment as we 
observed markedly worse accuracy at the beginning and end of the data segment ( ≈ 80 
base pair = one bait length of the start and end of the data segment).

While the “on-target” regions largely overlap with the bait design positions, in the 
case of the complex regions considerable part of the target regions are not bait posi-
tions (Figs. 6, 7; Additional file 5: example plots of all models representative for the top 
99, median, and worst 1 percentile predictions based on the F1 score rankings of 1 M 
predictions). Based on our experiments, even from 1 M train example, we can reach very 
high accuracy, specificity (0.97−0.98) and high ( > 0.9 ) F1, MCC scores at 1000 base pair 
data segments indicating that in general, the predicted baits are >90% overlapping with 
the truth.

Our results also show that the used CNN has still generalization power providing 
more train examples, and likely more genomic context (with larger data segments) could 
also improve the prediction. Compared to the scenario when the bait positions are not 
included in the kit manifest and the “on-target” regions are used as the “predicted” bait 
positions, the CNN models provide much higher accuracy. This was also reflected by 
the most informative F1 and MCC scores of the same 1 M individual evaluation exam-
ples. For example, our proposed Conv1D model with a 1000 base pair long data window 
could predict the exact bait positions (F1 score = 1.0) in nearly the top 25 percentile of 
predictions while the scenario of on-target region used as the predicted bait positions 
resulted in no perfect match (with the highest F1 score of 0.994 and 9 FP positions in the 
data segment).

Conclusion
Normalization of the read coverage profiles of complex WES kits is crucial for improv-
ing the sensitivity and specificity of CNV detection and thus could contribute to advanc-
ing our diagnostic capability for complex genetic disorders. One of the largest systemic 
biases is caused by the so called GC bias due to hidden differences in the wet-lab condi-
tions between samples. While the “on-target” regions (that are provided for capture kits) 
largely overlap with the positions of the oligo capture bait coordinates, enabling normal-
ization of the GC bias in many target regions, the exact bait positions could allow better 
GC bias normalization of the remaining more challenging regions. The predicted bait 
positions of our proposed 1D convolution model overlap >90% with the true bait posi-
tions. Consequently, downstream CNV detection based on these predicted coordinates 
to measure the coverage profile and normalize for GC bias could improve the normali-
zation of CNV data, ultimately leading to better CNV prediction from targeted capture 
NGS data.
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