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Abstract 

The evaluation of drug-gene-disease interactions is key for the identification of drugs 
effective against disease. However, at present, drugs that are effective against genes 
that are critical for disease are difficult to identify. Following a disease-centric approach, 
there is a need to identify genes critical to disease function and find drugs that are 
effective against them. By contrast, following a drug-centric approach comprises 
identifying the genes targeted by drugs, and then the diseases in which the identified 
genes are critical. Both of these processes are complex. Using a gene-centric approach, 
whereby we identify genes that are effective against the disease and can be targeted 
by drugs, is much easier. However, how such sets of genes can be identified with-
out specifying either the target diseases or drugs is not known. In this study, a novel 
artificial intelligence-based approach that employs unsupervised methods and iden-
tifies genes without specifying neither diseases nor drugs is presented. To evaluate 
its feasibility, we applied tensor decomposition (TD)-based unsupervised feature 
extraction (FE) to perform drug repositioning from protein-protein interactions (PPI) 
without any other information. Proteins selected by TD-based unsupervised FE include 
many genes related to cancers, as well as drugs that target the selected proteins. Thus, 
we were able to identify cancer drugs using only PPI. Because the selected proteins 
had more interactions, we replaced the selected proteins with hub proteins and found 
that hub proteins themselves could be used for drug repositioning. In contrast to hub 
proteins, which can only identify cancer drugs, TD-based unsupervised FE enables 
the identification of drugs for other diseases. In addition, TD-based unsupervised FE 
can be used to identify drugs that are effective in in vivo experiments, which is difficult 
when hub proteins are used. In conclusion, TD-based unsupervised FE is a useful tool 
for drug repositioning using only PPI without other information.

Keywords:  Protein-protein interaction, Drug repositioning, Artificial intelligence, 
Unsupervised learning, Tensor decomposition

Introduction
The identification of drug-gene-disease information is critical for drug repositioning. 
Nevertheless, due to the fact that this does not involve a simple identification of paired 
information but rather of triplet information, identifying drug-gene-disease information 
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is not an easy task. The identification of drug-gene-disease information is often per-
formed in two steps. From the perspective of the genes (i.e. drug-centric approach), the 
identification of drug-gene relationships is performed first, followed by the extraction of 
gene-disease information by identifying diseases related to the selected genes. By con-
trast, when starting from the perspective of the diseases (i.e. disease-centric approach), 
the identification of gene-disease relations is performed first, followed by the extraction 
of drug-gene information via the identification of drugs that target the genes selected. 
Since the existence of a significant relationship at the second stage is not guaranteed 
(i.e., gene-disease information for the drug-centric approach or drug-gene information 
for the disease-centric approach), the identification of drug-gene-disease information is 
much more difficult than the identification of only gene-disease information or drug-
gene information.

Several studies have reported on such drug-gene-disease relationships. Zickenrott 
et al. [1] attempted to predict disease-gene-drug relationships using differential network 
analysis, while Wong et al. [2] searched for gene-drug-disease interactions in pharma-
cogenomics by using GeneDive. Yu et al. [3] predicted drugs with opposing effects on 
disease genes using a directed network, Sun [4] investigated gene-gene, drug-drug, and 
disease-disease networks and studied their relationships, and Qahwaji et al. [5] reviewed 
the genetic approaches to drug development and therapy. Furthermore, Iida et  al. [6] 
investigated network-based characterization of disease-disease relationships in terms of 
drugs and therapeutic targets. Lastly, Quan et al. [7] considered genetic disease genes 
as promising sources of drug targets. While these are only some examples, all focused 
on diseases, drugs, or both, and no studies have focused on genes without considering 
drugs and diseases. Thus, the relevant literature is not free from the use of a two-stage 
approach.

To address this difficulty, linear algebra has often been used to identify drug-gene-dis-
ease information, since it enables the identification of drug-gene-disease information in 
neither a drug-centric nor disease-centric manner. Wang et  al. [8] applied matrix fac-
torization to gene expression matrices for drug and disease treatments, while Kim and 
Cho [9] employed tensor decomposition (TD) to extract drug-gene-disease information 
starting from the product of ID embedding vectors for drugs, genes, and diseases. In 
these approaches, because the identification of drug-gene-disease information is per-
formed without the need for a two-stage approach, these approaches can often avoid the 
difficulty associated with this approach.

Another advantage of these linear-algebra-based approaches is that they are fully unsu-
pervised. Therein, there is no need for any drug- or disease-specific information (e.g., 
differential expression between healthy controls and patients), and we are free to iden-
tify drug-gene-disease information in a fully data-driven manner. We recently applied a 
TD-based unsupervised FE [10, 11] to integrate PPI with gene expression in cancer [12]. 
We found that integrated analysis enhanced the coincidence with clinical labels. In this 
study, we also found that PPI only contained information related to cancers, even though 
PPI themselves are unlikely to be associated with cancers. In this paper, we attempt to 
determine the degree of the relationship between PPI and cancers using TD-based unsu-
pervised FE without integrating other information (e.g. gene expression). As a result, 
we found that applying TD-based unsupervised FE to PPI enabled the identification of 
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cancer-related genes that were also used for drug repositioning. After identifying that 
the selected proteins were likely to be hub proteins in PPI, we replaced the proteins 
selected via TD-based unsupervised FE with hub proteins and found that the hub pro-
teins could be used for drug repositioning. The distinction between hub proteins and 
those selected using TD-based unsupervised FE was the strength of the correlation 
among the interactions; that is, proteins selected using TD-based unsupervised FE were 
found to exhibit a greater number of shared interactions. Only proteins selected using 
TD-based unsupervised FE had hits in the in vivo-based drug database DrugMatrix. The 
identification of proteins that not only have more interactions (i.e., hub proteins) but 
also more shared interactions may be the key to identifying more promising proteins for 
drug repositioning.

Results
Figure 1 illustrates the analysis conducted in this study.

TD‑based unsupervised FE

The first matrix to be integrated was human PPI, n1
ii′
∈ R

24875×24875 (for BioGRID) 
or n1

ii′
∈ R

4901×4901 (for DIP), and the second was mouse PPI, n2
ii′
∈ R

16645×16645 
(for BioGRID) or n2

ii′
∈ R

2342×2342 (for DIP). Since the number of common protein, 
N common , is 9688 (for BioGRID) or 1097 (for DIP), and the number of orthogonal pro-
tein, N ortho , is 4026 (for BioGRID) or and 432 (for DIP), the resulting integrated tensor 
is nii′k ∈ R

N×N×2 where N = 24875+ 16645− 9688− 4026 = 27806 (for BioGRID) or 
N = 4901+ 2342− 1097− 432 = 5714 (for DIP). After applying HOSVD to nii′k , we 
obtained Eq. (7). Pi s were attributed to is using u2i (for BioGRID and DIP) or u3i (only for 
DIP) using Eq. (6) with replacing uℓi with uℓ1i and are corrected using the BH criterion 
[10, 11] (The reason why u3i was considered only for DIP was because genes selected by 

Fig. 1  Flowchart of the analyses in this study. PCA-based unsupervised FE was applied to human PPI, but 
failed. TD-based unsupervised FE was applied to tensor generated from human and mouse PPI. Gene names 
associated with the identified proteins were uploaded to Enrichr to identify associated diseases and drugs. 
Hub proteins and proteins selected via cluster analyses were tested and used for the identification of diseases 
and drugs
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u3i for DIP share the same enriched diseases, cancers, with those by u2i , which was not 
the case for BioGRID. For more details, see the latter part of this paper.) Thus, 195 (using 
u2i for BioGRID) and 196 (using u2i for DIP) and 59 (using u3i for DIP) proteins were 
associated with adjusted P-values less than 0.01. The Uniprot accession numbers associ-
ated with these proteins were converted to 217 (using u2i for BioGRID), 193 (using u2i 
for DIP), and 57 (using u3i for DIP) gene names by Uniprot ID mapping (see Supplemen-
tary Information for the list of proteins and gene names). 217, 193, and 57 gene names 
were uploaded to Enrichr [13] for evaluation purposes.

Next, the types of diseases associated with three sets of gene names were identified. 
Firstly, we considered the category of “Jensen Diseases”.

For the 217 gene names selected by u2i on BioGrid (Table S1 and Fig. 2), not only were 
there highly significant diseases, but most were cancers or tumors (“cancer,” “stomach 
cancer,” “adenoma,” “immune system cancer,” “ovarian cancer,” “ductal carcinoma in situ,” 
“esophageal carcinoma,” and “lymphoid leukemia”).

For the 193 gene names selected by u2i for the DIP (see Table S2 and Fig. 3), not only 
were there highly significant diseases, but more than half were cancers or tumors (“lym-
phoid leukemia,” “immune system cancer,” “cancer,” “biliary tract cancer,” and “ovarian 
cancer”). Additionally, “familial adenomatous polyposis” is known to develop into cancer 
[14].

For the 57 gene names selected by u2i for DIP (Table S3 and Fig. 4), not only were there 
highly significant diseases, but more than half were cancer or tumors (“ovarian cancer,” 
“immune system cancer,” “breast cancer,” “biliary tract cancer,” “ductal carcinoma in situ,” 
and “hereditary breast ovarian cancer”). In addition, “Li-Fraumeni syndrome” is known 
to be the cause of several cancers [15].

Next, we considered the “OMIM Diseases” category of Enrichr.
For the 217 gene names selected by u2i for BioGrid (Table S4 and Fig. 5), six diseases 

were cancer or tumors (“breast cancer,” “ovarian cancer,” “thyroid carcinoma,” “pros-
tate cancer,” “colorectal cancer,” “pancreatic cancer,” and “gastric cancer”), although 

Fig. 2  Top 10 diseases in the “Jensen Diseases” category of Enrichr for 217 gene names selected by u2i for 
BioGrid. Blue: P < 0.05 , *: adjusted P < 0.05



Page 5 of 24Taguchi and Turki ﻿BMC Bioinformatics          (2024) 25:377 	

statistical (i.e., associated with adjusted P-values less than 0.05) significance was only 
observed for the top two.

In contrast to BioGRID, which failed to identify sufficiently large significant dis-
eases, 193 gene names selected by u2i for DIP (Table  S5 and Fig.  6), not only were 
there highly significant diseases, but four diseases were related to cancers or tumors 
(“colorectal cancer,” “breast cancer,” “leukemia,” and “lymphoma”). Additionally, “Fan-
coni anemia” is also often associated with cancer [16].

For 57 gene names selected by u3i for DIP (Table S6 and Fig. 7), not only there were 
highly significant diseases, but also more than half of the diseases were cancers or 
tumors (“pancreatic cancer,” “ovarian cancer,” “colorectal cancer,” “breast cancer,” 
“prostate cancer,” and “melanoma”). In addition, “Fanconi anemia” was also identified. 

Fig. 3  Top 10 diseases in the “Jensen Diseases” category of Enrichr for 193 gene names selected by u2i for DIP. 
Blue: P < 0.05 , *: adjusted P < 0.05

Fig. 4  Top 10 diseases in the “Jensen Diseases” category of Enrichr for 57 gene names selected by u3i for DIP. 
Blue: P < 0.05 , *: adjusted P < 0.05
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In conclusion, these three sets of proteins were found to be highly related to can-
cers and tumors regardless of the PPI datasets used, excluding the 217 gene names 
selected by u2i for BioGRID.

Next, we considered potential drug repositioning using these gene sets. Multiple cat-
egories can be used for drug repositioning in Enrichr: “LINCS L1000 Chem Pert Con-
sensus Sigs,” “DSigDB,” “DrugMatrix,” “Drug Perturbations from GEO down,” and “Drug 
Perturbations from GEO up.” All of these categories return a list of compounds that 
are supposed to significantly target a set of uploaded genes. Because three sets of gene 
names are supposed to be deeply related to cancers and tumors, drugs that target these 
genes can be used to treat tumors and cancers.

Fig. 5  Top 10 diseases in the “OMIM Diseases” category of Enrichr for 217 gene names selected by u2i for 
BioGrid. Blue: P < 0.05 , *: adjusted P < 0.05

Fig. 6  Top 10 diseases in the “OMIM Diseases” category of Enrichr for 193 gene names selected by u2i for DIP. 
Blue: P < 0.05 , *: adjusted P < 0.05
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A list of the top 10 compounds in the “LINCS L1000 Chem Pert Consensus Sigs” 
category for 217 gene names selected by u2i for BioGrid and 193 gene names selected 
by u2i for DIP (no significant hit for 57 gene names selected by u3i for DIP is provided 
in Tables S7 and S8 and Figs. 8 and 9).

Tables S9, S10, and S11 and Figs. 10, 11, and 12 list the top 10 compounds in the 
“DSigDB” category for 217 gene names selected by u2i for BioGRID, 193 gene names 
selected by u2i for DIP, and 57 gene names selected by u3i for DIP.

Tables S12 and S13 and Figs. 13 and 14 list the top 10 compounds in the “DrugMa-
trix” category for 217 gene names selected by u2i for BioGRID and 193 gene names 
selected by u2i for DIP (no significant hits for 57 gene names selected by u3i for DIP).

Fig. 7  Top 10 diseases in the “OMIM Diseases” category of Enrichr for 57 gene names selected by u3i for DIP. 
Blue: P < 0.05 , *: adjusted P < 0.05

Fig. 8  Top 10 drugs in the “LINCS L1000 Chem Pert Consensus Sigs” category of Enrichr for 217 gene names 
selected by u2i for BioGrid. Blue: P < 0.05 , *: adjusted P < 0.05
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Tables S14, S15, and S16 and Figs.  15, 16, and 17 list the top 10 compounds in the 
“Drug Perturbations from GEO down” category for 217 gene names selected by u2i for 
BioGRID, 193 gene names selected by u2i for DIP, and 57 gene names selected by u3i for 
DIP.

Tables S17, S18, and S19 and Figs.  18, 19, and 20 list the top 10 compounds in the 
“Drug Perturbations from GEO up” category for 217 gene names selected by u2i for 
BioGRID, 193 gene names selected by u2i for DIP, and 57 gene names selected by u3i for 
DIP.

As can be seen above, although it is not true for all categories, three sets of gene 
names were often associated with lists of drugs that significantly target these sets of 
gene names. Thus, we can conclude that our proposed gene-centric drug repositioning 

Fig. 9  Top 10 drugs in the “LINCS L1000 Chem Pert Consensus Sigs” category of Enrichr for 193 gene names 
selected by u2i for DIP. Blue: P < 0.05 , *: adjusted P < 0.05

Fig. 10  Top 10 drugs in the “DSigDB” category of Enrichr for 217 gene names selected by u2i for BioGrid. Blue: 
P < 0.05 , *: adjusted P < 0.05
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strategy can be performed employing TD-based unsupervised FE to select a set of pro-
teins based on PPI networks, regardless of the PPI dataset employed.

PCA‑based unsupervised FE

One might wonder why we needed to integrate human and mouse PPI. Simply using 
only human PPI might result in a similar or even better performance. To address this 
problem, we applied PCA-based unsupervised FE [10, 11] to human PPI and attempted 
to obtain a set of proteins associated with adjusted P-values less than 0.01. Neverthe-
less, when considering the u2i for BioGRID, although 158 proteins were associated with 
adjusted P-values less than 0.01, the “DrugMatrix” category failed to identify enriched 
drug for gene names associated with these proteins. Similarly, when considering u2i for 

Fig. 11  Top 10 drugs in the “DSigDB” category of Enrichr for 193 gene names selected by u2i for DIP. Blue: 
P < 0.05 , *: adjusted P < 0.05

Fig. 12  Top 10 drugs in the “DSigDB” category of Enrichr for 57 gene names selected by u3i for DIP. Blue: 
P < 0.05 , *: adjusted P < 0.05
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DIP, only one protein was found to be associated with adjusted P-values of less than 0.01. 
This results suggest that TD-based unsupervised FE is superior to PCA-based unsuper-
vised FE and thereby worth testing.

Cluster analyses

However, another concern is whether TD-based unsupervised FE is required when 
selecting a set of proteins since several methods exist with which to select sub-clusters 
within large networks. Such methods can replace TD-based unsupervised FE in the 
selection of a set of proteins. Following Zhao et al [17], we employed three methods, 
multi-level [18], label-progration [19], and edge-betweenness [20], which enabled us 
to identify sub-clusters. When considering PPI human for BioGrid, edge-betweenness 

Fig. 13  Top 10 drugs in the “DrugMatrix” category of Enrichr for 217 gene names selected by u2i for BioGrid. 
Blue: P < 0.05 , *: adjusted P < 0.05

Fig. 14  Top 10 drugs in the “DrugMatrix” category of Enrichr for 193 gene names selected by u2i for DIP. Blue: 
P < 0.05 , *: adjusted P < 0.05
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failed to converge after waiting more than eight hours (i.e longer than the ten minutes 
required for TD-based unsupervised FE, which includes the time consuming process 
of generating tensor, nii′k ∈ R

N×N×2 ), and the first and the second clusters generated 
by multi-level were too large (6406 and 2776). The first and the second clusters gen-
erated by label-progration were 24501 and 1, which was not reasonable at all. How-
ever, when human PPI for DIP was considered, the results improved. Table  1 lists 
the performances for the identification of diseases and drugs significantly associated 
with selected proteins in individual identified sub-clusters (label-progration could 
not identify large enough clusters to be used for enrichment analyses). It is clear that 
the tensor method outperforms the clustering methods, even for DIP. In conclu-
sion, in contrast to conventional cluster analysis in which cluster sizes varied heavily 

Fig. 15  Top 10 drugs in the “Drug Perturbations from GEO down” category of Enrichr for 217 gene names 
selected by u2i for BioGrid. Blue: P < 0.05 , *: adjusted P < 0.05

Fig. 16  Top 10 drugs in the “Drug Perturbations from GEO down” category of Enrichr for 193 gene names 
selected by u2i for DIP. Blue: P < 0.05 , *: adjusted P < 0.05



Page 12 of 24Taguchi and Turki ﻿BMC Bioinformatics          (2024) 25:377 

depending on the PPI dataset used, using TD-based unsupervised FE can provide a 
stable and reasonable size for a set of genes. Thus, TD-based unsupervised FE appears 
to be superior to conventional cluster analysis.

Other species

Although we only used human and mouse PPI, it is possible to employ other combi-
nations because BioGRID and DIP include more species-specific PPI. To validate this, 
we initially examined a combination of human and rat PPI for BioGRID. However, this 
outcome was not very promising. Next, 271 proteins associated with adjusted P-val-
ues less than 0.01 were selected, and the gene names associated with these proteins 
were uploaded. The “Jensen Diseases” and “OMIM Diseases” categories identified two 
and zero diseases enriched with the uploaded gene names, respectively. Because the 

Fig. 17  Top 10 drugs in the “Drug Perturbations from GEO down” category of Enrichr for 57 gene names 
selected by u3i for DIP. Blue: P < 0.05 , *: adjusted P < 0.05

Fig. 18  Top 10 drugs in the “Drug Perturbations from GEO up” category of Enrichr for 217 gene names 
selected by u2i for BioGrid. Blue: P < 0.05 , *: adjusted P < 0.05
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Fig. 19  Top 10 drugs in the “Drug Perturbations from GEO up” category of Enrichr for 193 gene names 
selected by u2i for DIP. Blue: P < 0.05 , *: adjusted P < 0.05

Fig. 20  Top 10 drugs in the “Drug Perturbations from GEO up” category of Enrichr for 57 gene names 
selected by u3i for DIP. Blue: P < 0.05 , *: adjusted P < 0.05

Table 1  Performances of various protein selection methods for DIP

© s denotes cases with more than or equal to 10 drugs associated with adjusted P-values less than 0.05. Otherwise, the 
corresponding practical numbers are presented

Methods Tensor multi-level edge-betweenness

Order 2nd 3rd 1st 2nd 1st 2nd

# of proteins 195 55 144 138 39 82

# of genes 193 57 128 164 30 111

Jensen Diseases © © © © 7 5

OMIM Disease 9 9 8 0 0 0

LINCS L1000 Chem Pert Consensus Sigs © 0 4 1 0 ©

DSigDB © © © © 0 ©

DrugMatrix 6 0 0 0 0 0

Drug Perturbations from GEO down © © 0 0 0 2

Drug Perturbations from GEO up © © 6 0 1 0
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identification of enriched diseases is the starting point, if the process fails at this point, 
there are no way to proceed. The reason for this is the inadequateness of rat PPI, which 
includes too few PPI; integrating human and rat PPI results in the wrong conclusion, 
namely that missing PPI in rats indicates a lack of interactions, although this may simply 
mean that PPI in rats has not been thoroughly investigated. Thus, combinations other 
than that between human and mouse PPI will not work until a more comprehensive PPI 
for species close to humans can be obtained.

In conclusion, PPI can be a useful source of information for drug repositioning when 
used in combination with TD.

Discussion
To understand the set of genes selected in this analysis, we computed the mean number 
of bindings of individual proteins, defined as

and compared �nii′1�i between the selected and non-selected proteins for the human PPI.
As can be seen in Table  2, �nii′1�i for 217 proteins selected by u2i for BioGRID, 195 

proteins selected by u2i for DIP, and 55 proteins selected by u3i for DIP were always sig-
nificantly larger than those of other (i.e. not selected) proteins. These results suggest that 
TD-based unsupervised FE selects proteins with more interactions in a fully data-driven 
and unsupervised manner.

Since proteins selected via TD-based unsupervised FE have more interactions, we 
proceeded to verify whether proteins were being selected for use in drug repositioning 
simply due to their greater number of interactions (hereafter, denoted as hub proteins). 
To verify this, we selected the top 200 and 50 proteins with more interactions (these 
numbers were selected to be close to the number of proteins selected using u2i and u3i . 
See Supplementary Information for a list of proteins and gene names) using human PPI.

Table  3 lists the confusion matrices for the selected proteins. Although they signifi-
cantly overlapped, because the majority were not shared, distinct sets of proteins were 
identified.

(1)�nii′1�i =
1

N

N
∑

i′=1

nii′1

Table 2  To compare �nii′1�i between the selected and not selected proteins when using various uℓ1 i 
to select proteins, P-values were computed using the t test based on the alternative hypothesis that 
the mean �nii′1�i of the selected proteins was larger that that of not selected proteins

uℓ1 i s used u2i u3i u6i

Selected Not selected Selected Not selected Selected Not selected

BioGRID

Mean �nii′1�i 3.63× 10
−2

1.84× 10
−3

1.97× 10
−2

1.78× 10
−3 — —

P-value  5.32× 10
−37

2.53× 10
−59 —

DIP

Mean �nii′1�i 1.12× 10
−3 4.17× 10

−4
3.12× 10

−3 4.13× 10
−4

2.14× 10
−3 4.26× 10

−4

P-value 2.4× 10
−4

5.3× 10
−5

2.04× 10
−13
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We uploaded the associated gene names to Enrichr to evaluate the top 200 and 50 
hub proteins.

Table 4 lists the performance achieved by the hub proteins. (for details on the top 
diseases and drugs in individual categories: see Tables S20 to S26 for the top 200 
hub proteins for BioGRID, Tables S29 to S33 for the top 200 hub proteins for DIP, 
and Tables S34 to S40 for the top 50 hub proteins for DIP). Their performances were 
essentially the same as those of TD-based unsupervised FE, excluding DrugMatrix for 
DIP.

Table 3  Confusion matrix of selected proteins between TD-based unsupervised FE and hub 
proteins

Hub proteins

TD based unsupervised FE Top 200

Not selected Selected

 BioGRID

Using u2i Not selected 27526 80

Selected 85 115

Odds ratio  465.58

P-value 2.88× 10
−209

DIP

Using u2i Not selected 5353 168

Selected 165 28

Odds ratio 5.4

P-value 4.55× 10
−11

Top 50

Not selected Selected

Using u3i Not selected 5625 42

Selected 30 17

Odds ratio 75.4

P-value 3.04× 10
−23

Table 4  Performances achieved by hub proteins

© s denote case with more than or equal to 10 drugs/associated with adjusted P-values less than 0.05. Otherwise, the 
corresponding practical numbers are presented

Methods Tesnor Hub proteins

 BioGRID DIP BioGRID DIP

Order 2nd 3rd 2nd 3rd 6th Top 200 Top 200 Top 50

# of proteins 195 475 195 55 38 199 179 45

# of genes 217 503 193 57 41 229 190 59

Jensen Diseases © 6 © © © © © ©

OMIM Disease 2 3 9 9 © 4 © 6

LINCS L1000 Chem Pert Consensus Sigs © © © 0 6 © © 0

DSigDB © © © © © © © ©

DrugMatrix © © 6 0 0 © 0 1

Drug Perturbations from GEO down © © © © © © © ©

Drug Perturbations from GEO up © © © © © © © ©
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Comparing the performance of TD-based unsupervised FE with hub proteins, to 
the best of our knowledge, there are no other studies that use hub proteins derived 
from only PPI for drug repositioning without using other information. This is because 
hub proteins derived from PPI themselves, without any other information, cannot 
be used for drug repositioning for cancer. This was clear from the fact that proteins 
selected by TD-based unsupervised FE were hub proteins. Without TD-based unsu-
pervised FE, we could not identify hub proteins derived only from PPI that could be 
used for drug repositioning for cancer. Secondly, the hub proteins for DIP failed to 
identify hits in DrugMatrix. DrugMatrix is an in vivo specific database. Thus, the hub 
proteins for DIP do not have the ability to identify drugs that may be useful in in vivo 
experiments. Thus, even if hub proteins can achieve a performance similar to that of 
the in vitro experiments, TD-based unsupervised FE is still useful, at least for DIP. 
Third, using hub proteins, we cannot target diseases other than cancers because hub 
proteins are enriched mainly in cancers. For the top 200 hub proteins for BioGRID, 
seven cancers were identified (“stomach cancer,” “adenoma,” “cancer,” “immune system 
cancer,” “esophageal carcinoma,” “intestinal benign neoplasm,” and “lymphoid leuke-
mia”) within the top ranked diseases in the “Jensen Diseases” category and as many 
as five cancers (“ovarian cancer,” “breast cancer,” “colorectal cancer,” “thyroid carci-
noma,” and “prostate cancer”) within the top ranked diseases in the “OMIM Diseases” 
category (Table  S20 and S21). For the top 200 hub proteins for DIP, as many as six 
cancers were identified (“cancer,” “lymphoid leukemia,” “intestinal benign neoplasm,” 
“immune system cancer,” “biliary tract cancer,” and “stomach cancer”) within the top 
ranked diseases in the “Jensen Diseases” category and as many as seven (“colorectal 
cancer,” “ovarian cancer,” “breast cancer,” “leukemia,” “lung cancer,” “melanoma,” and 
“pancreatic cancer”) within the top ranked diseases in the “OMIM Diseases” category 
(Table  S27 and S28). For the top 50 hub proteins for DIP, as many as five cancers 
(“cancer,” “DOID:9917” (pleural cancer), “thyroid cancer”, “esophageal carcinoma”, and 
“intestinal benign neoplasms”) were identified within the top ranked diseases in the 
“Jensen Diseases” category and as many as five (“colorectal cancer,” “ovarian cancer,” 
“breast cancer,” “lung cancer,” and “pancreatic cancer”) within the top ranked diseases 
in the “OMIM Diseases” category (Table  S34 and S35). Nevertheless, because TD-
based unsupervised FE has the freedom to select uℓ1i , it can provide a set of proteins 
enriched in diseases other than cancer. Tables S41 and S42, and Figs. 21 and 22 list 
the diseases enriched in proteins selected by u3i for BioGRID, while Tables S43 and 
S44, and Figs. 23 and 24 list the diseases enriched in proteins selected by u6i for DIP 
(see Supplementary Information for the list of proteins and gene names); the dis-
eases are mainly distinct from cancers since only one cancer (“stomach cancer”) for 
BioGRID and only one cancer (“cancer”) for DIP within the top 10 diseases in the 
“Jensen Diseases” category (Tables S41 and S43 and Figs. 21 and 23) and three can-
cers (“thyroid carcinoma,” “gastric cancer,” and “ovarian cancer “) for BioGRID and 
three cancers (“pancreatic cancer,” “melanoma,” and “lung cancer”) for DIP within the 
top 10 diseases in the “OMIM Diseases” category (Tables S42 and S44 and Figs.  22 
and 24)  were identified. Also  for these diseases other than  cancers, sufficient drugs 
exist (for detailed drug names, see Table  S22-S31). Thus, the results of TD-based 
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unsupervised FE are useful to find drugs effective toward the diseases other than can-
cers, even if hub proteins can be used to identify drugs for cancers.

It is worth considering the differences between hub proteins and the proteins selected 
by TD-based unsupervised FE if they are not identical. To determine this, the mean cor-
relation coefficients between proteins

where r(nii′1, nii′′1) is Pearson’s correlation coefficient between {nii′1|1 ≤ i ≤ N } and 
{nii′′1|1 ≤ i ≤ N } , were computed with human PPI.

(2)�r� =
2

N (N − 1)

∑

i′′ �=i′

r(nii′1, nii′′1)

Fig. 21  Top 10 diseases in the “Jensen Diseases” category of Enrichr for 502 gene names selected by u3i for 
BioGrid. Blue: P < 0.05 , *: adjusted P < 0.05

Fig. 22  Top 10 diseases in the “OMIM Diseases” category of Enrichr for 502 gene names selected by u3i for 
BioGrid. Blue: P < 0.05 , *: adjusted P < 0.05
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Fig. 23  Top 10 diseases in the “Jensen Diseases” category of Enrichr for 41 gene names selected by u6i for DIP. 
Blue: P < 0.05 , *: adjusted P < 0.05

Fig. 24  Top 10 diseases in the “OMIM Diseases” category of Enrichr for 41 gene names selected by u6i for DIP. 
Blue: P < 0.05 , *: adjusted P < 0.05

Table 5  〈r〉 s and P-values computed using a one way t test

〈r〉 P-values

BioGRID

Proteins selected using u2i 1.97× 10
−1 0

Proteins selected using u3i 1.60× 10
−1 0

Top 200 proteins 2.02× 10
−1 0

DIP

Proteins selected using u2i 3.29× 10
−1 0

Proteins selected using u3i 9.64× 10
−2

7.70× 10
−211

Proteins selected using u6i 8.14× 10
−2

5.84× 10
−70

Top 200 proteins 7.49× 10
−3

3.97× 10
−128

Top 50 proteins 1.19× 10
−3

6.84× 10
−18
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Table 5 lists the values of 〈r〉 . Because proteins selected by TD-based unsupervised FE 
for DIP had a substantially larger 〈r〉 , the distinctions between the proteins selected by 
TD-based unsupervised FE and the hub proteins were that between  correlations. The 
fact that a larger 〈r〉 means that proteins share the proteins with which they interact sug-
gests that proteins that share interactions may be the key to identifying effective drugs 
in in vivo experiments. In reality, the top 200 hub proteins for BioGRID have a larger 
〈r〉 and many enrichments in the “DrugMatrix” category (Table S12 and Fig. 13). Thus, 
we can guarantee a high correlation for hub proteins without consulting TD-based 
unsupervised FE, which allows us to identify genes that can be used to identify effective 
drugs, even in in vivo experiments.

Because we employed a gene-centric strategy, the drugs and diseases identified were 
associated with common genes. Nevertheless, one might wonder whether this always 
guarantees the effectiveness of the identified drugs against the diseases. The so-called 
docking simulation is not a good idea for validation because Enrichr is used to relate 
genes to drugs or diseases in order to identify relationships based on gene expression. 
Thus, this does not always mean that the selected genes are direct targets of drugs, but 
simply those whose expression is altered by drug treatment, since the genes are in the 
downstream pathway. However, to the best of our knowledge, search engines specifi-
cally for studies on drug-disease pairs within the proposed list of drugs and diseases do 
not exist. Alternatively, to achieve this, we employed a large language model (LLM). We 
sought to identify pairs of drugs and diseases for which research has been reported. To 
avoid the wrong relationships being reported by LLM due to hallucinations, we verified 
whether other papers existed in support of the relationship reported by LLM.

Table 6 lists the reported and validated combination of drugs and diseases between the 
“Jensen Diseases” category by u3i for BioGRID (Table S41 and Fig. 21) and the “DSigDB” 
category or “DrugMatrix” category by u3i for BioGRID (Table  S23 or S24). The rea-
son why we employ this is simply because it is difficult to validate the correspondence 
between diseases and drugs if diseases are mostly composed of cancers because many 
cancers share effective drugs. Therefore, it is preferable to use a set of diseases other 
than cancer.

It is evident that the combinations of drugs and diseases reported by TD-based unsu-
pervised FE are associated with previously published studies, despite the diverse types of 

Table 6  Diseases and drugs whose relation is reported by LLM. Their corresponding ranks in 
categories appear in parentheses

DSigDB Jensen disease References

Verteporfin (1st) Stomach Cancer (6th) [21]

Clindamycin (2nd) Paronychia (5th) [22]

Captopril (3rd) Frontotemporal Dementia (4th) [23]

Glibenclamide (7th) Spinal Muscular Atrophy (9th) [24]

Puromycin (8th) Spinocerebellar Ataxia Type 2 (10th) [25]

DrugMatrix
Mitomycin C (8th) Stomach Cancer (6th) [26]

Pravastatin (7th) Frontotemporal Dementia (4h) [27]

Miconazole (2nd) Paronychia (6th) [28]

NN-Dimethylformamide (1st) Various Cancers (6th) [29]
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diseases. Thus, we concluded that the pairs of diseases and drugs identified in this study 
are likely to include promising pairs.

The limitation of our present methods is that we cannot always get enough number 
of PPI information for most species. As can be seen above, when we considered rat, we 
could not get any good results because of the lack of enough PPI information. We expect 
that more advanced methods for PPI identification will be developed.

Methods
Protein‑protein interactions (PPI)

 BioGRID

The PPI data were downloaded from BioGRID [30]. PPI classified by species, BIOGRID-
ORGANISM−4.4.236.tab3.zip, were downloaded. Three species-specific files, BIOGRID-
ORGANISM-Homo_sapiens−4.4.236.tab3.txt, BIOGRID-ORGANISM-Mus_musculus−
4.4.236.tab3.txt, and BIOGRID-ORGANISM-Rattus_norvegicus−4.4.236.tab3.txt were 
extracted for analysis.

 DIP

The PPI data were also downloaded from DIP [31]. The datasets used were species-spe-
cific sets for Homo Sapiens, Hsapi20170205, and Mus musculus, Mmusc20170205. “full 
[.gz]” were downloaded as tab-limited files.

Tensor format

The PPI files were further loaded into R using the read_csv command as nk
ii′
∈ R

Nk×Nk 
( k = 1 : human, k = 2 : mouse, and k = 3 : rat (only for BioGRID)), which takes 1 when 
the ith and i′ th proteins interact with each other; otherwise, 0. As these matrices were 
sparse, they were stored in a sparse matrix format using the Matrix [32] package.

Principal component analysis (PCA)‑based unsupervised feature extraction (FE)

Singular value decomposition was applied to the irlba function in the irlba package 
[33] for human PPI n1

ii′
 . As a result, we obtained

where �ℓ is a singular value, and uℓi ∈ R
N×N is the singular value vector and orthogonal 

vector.
P-values are attributed to ith protein as

(3)n
1
ii′
=

L
∑

ℓ=1

�ℓuℓiuℓi′

(4)�uℓi� =
1

N

N
∑

i=1

uℓi

(5)σℓ =

√

√

√

√

1

N

N
∑

i=1

(uℓi − �uℓi�)
2
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where Pχ2 [> x] is the cumulative χ2 distribution, the argument is larger than x and 〈uℓi〉 , 
and σℓ are the mean and standard deviation, respectively. Thus, we assumed the follow-
ing null hypothesis: uℓi follows a Gaussian distribution. P-values were corrected using 
the BH criterion, and proteins associated with adjusted P-values less than 0.01 were 
selected.

Tensor decomposition (TD)‑based unsupervised FE

To apply TD-based unsupervised FE to PPI, an integrated tensor that stores multi-
ple PPIs must be constructed. Suppose we have two PPI matrices, n1

ii′
∈ R

N1×N1 and 
n
2
ii′
∈ R

N2×N2 . It is also assumed that there are N common common proteins and N ortho 
orthogonal proteins between the two datasets. Then, we merge these datasets into one 
tensor, nii′2 ∈ R

N×N×2 where N = N1 + N2 − N common − N otrho as shown in (Fig. 25).
n
k

ii′
, (1 ≤ i, i′ ≤ N common + N ortho ) are placed in nii′k as is (yellow and red regions 

in Fig.  25). n1
ii′
, (N common + N ortho < i, i′ ≤ N1) are placed in nii′1 (the blue region in 

Fig. 25). n2
ii′
, (N common + N ortho < i, i′ ≤ N2) are placed in nii′2 in a fragmented manner 

(green region in Fig. 25). As a result, the blue region of nii′2 and green region of nii′1 are 
blank. The shaded region is blank in nii′k.

HOSVD was applied to nii′k , resulting in

where G is a core tensor representing the weight (contribution) of uℓ1iuℓ2i′uℓ3k to nii′2 
and uℓ1i = uℓ2i′ ∈ R

N×N and uℓ3k ∈ R
2×2 are singular value and orthogonal matrices, 

respectively. The attribution of Pi s to is and the selection of proteins were performed by 
replacing uℓi where uℓ1i in eq. (6).

(6)Pi =Pχ2

[

>

(

uℓi − �uℓi�

σℓ

)2
]

(7)nii′k =

N
∑

ℓ1=1

N
∑

ℓ2=1

2
∑

ℓ3=1

G(ℓ1ℓ2ℓ3)uℓ1iuℓ2i′uℓ3k

Fig. 25  How to merge two PPI matrices into one tensor
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HOSVD was performed using the +irlba+ function by applying SVD to unfolded 
matrices because the usual R function that can perform HOSVD does not accept a 
sparse matrix as input.

Identification of orthogonal proteins

Orthologs between human and mouse were retrieved by querying “((organism_
id:10090) OR ((organism_id:9606) AND (reviewed:true))) AND (database:orthodb)” 
in uniport search (https://www.uniprot.org/). Human Uniprot accessions were con-
verted to gene name as “XXX_HUMAN” using the above retrieved information. 
Then, after seeking “XXX_MOUSE” in the above retrieved information (using the first 
hit if multiple hits are found), “XXX_MOUSE” was converted into the corresponding 
mouse Uniprot accession numbers in the information retrieved above. This results in 
the corresponding table of Uniprot ortholog (the above retrieved information is pro-
vided as Supplementary Material).

Gene ID conversion

The obtained Uniprot accession numbers attributed to proteins were converted to 
gene names using Uniprot ID mapping (https://www.uniprot.org/id-mapping).

Relating genes to drugs and diseases through enrichment analysis

Enrichr [13] enables the validation of overlaps between two sets of genes using sta-
tistical tests that measure the probability that the observed overlap occurs by chance 
(the so-called P-value). If P-values are sufficiently small, the two sets of genes are sig-
nificantly related. In Enrichr, one set of genes was provided by the researchers, and 
its overlap with the prepared sets of genes was evaluated. If the uploaded set of genes 
significantly overlaps with one of the prepared sets of genes, the uploaded set of genes 
can be said to be associated with the properties of the overlapping set of genes. In 
this analysis, we considered two sets of genes, diseases and drugs. For the disease 
gene sets, the uploaded set of genes was evaluated if it overlapped with a set of genes 
known to be related to diseases. The “Jensen Diseases” and “OMIM disease” are inde-
pendent categories that collect the genes related to diseases. Thus, if the uploaded 
gene sets have significant overlap with sets of genes in either “Jensen Diseases” or 
“OMIM disease,” we can regard the uploaded gene sets as being related to diseases. 
For drug gene sets, the uploaded set of genes was evaluated if it overlapped with a set 
of genes whose expression was altered by drug treatment. If the uploaded set of genes 
has a significant overlap with the gene sets whose expression is known to be altered 
by some drugs, we can consider that the expression of the uploaded gene set is also 
altered by drug treatment. Thus, if the uploaded gene set significantly overlaps with 
the drug and disease gene sets simultaneously, we can expect that drug treatment can 
significantly alter the expression of genes whose expression is known to be altered by 
drug treatment. Consequently, drugs related to diseases through genes are potential 
drug compounds, although they are not always effective against specific diseases.
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Query of drug‑disease relation by LLM

The actual queries were performed using Microsoft Copilot. The basic structure of 
the prompt is provided in Supplementary Information.

The actual query prompts and LLMs replies are accessible through the following 
two URLs: https://copilot.microsoft.com/sl/dCHesf9R01c and https://copilot.micro-
soft.com/sl/jCQxrKJzZoO.

Conclusions
In this study, we demonstrated the usefulness of drug repositioning TD-based unsuper-
vised FE applied to PPI. Although it is unlikely that only the information retrieved from 
PPI will be useful for disease-specific drug repositioning, our findings indicate that it 
works in a practical sense. Thus, TD-based unsupervised FE applied to PPI is likely to be 
useful for drug repositioning. Further studies will be needed to understand the extent to 
which this strategy is effective.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​024-​06009-9.

Supplementary file 1 (zip 11054 KB)

Author Contributions
Y.-H.T. planned the study and performed the analyses. Y.-H.T. and T.T. evaluated the results, discussions, and outcomes 
and wrote and reviewed the manuscript. All the authors have read and agreed to the published version of this 
manuscript.

Data and availability
All the data used in this study can be downloaded from BioGRID [30] and DIP [31]. Sample code for data processing is in 
https://github.com/tagtag/TDbasedUFEPPI.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Conflict of interest
The authors declare no Conflict of interest.

Received: 1 June 2024   Accepted: 5 December 2024

References
	1.	 Zickenrott S, Angarica VE, Upadhyaya BB, Del Sol A. Prediction of disease-gene-drug relationships following a dif-

ferential network analysis. Cell Death Disease. 2016;7(1):2040–2040. https://​doi.​org/​10.​1038/​cddis.​2015.​393.
	2.	 Wong M, Previde P, Cole J, Thomas B, Laxmeshwar N, Mallory E, Lever J, Petkovic D, Altman RB, Kulkarni A. Search 

and visualization of gene-drug-disease interactions for pharmacogenomics and precision medicine research using 
genedive. J Biomed Inform. 2021;117: 103732. https://​doi.​org/​10.​1016/j.​jbi.​2021.​103732.

	3.	 Yu H, Choo S, Park J, Jung J, Kang Y, Lee D. Prediction of drugs having opposite effects on disease genes in a directed 
network. BMC Syst Biol. 2016;10(Suppl 1):2. https://​doi.​org/​10.​1186/​s12918-​015-​0243-2.

	4.	 Sun PG. The human drug-disease-gene network. Inf Sci. 2015;306:70–80. https://​doi.​org/​10.​1016/j.​ins.​2015.​01.​036.
	5.	 Qahwaji R, Ashankyty I, Sannan NS, Hazzazi MS, Basabrain AA, Mobashir M. Pharmacogenomics: A genetic approach 

to drug development and therapy. Pharmaceuticals. 2024. https://​doi.​org/​10.​3390/​ph170​70940.
	6.	 Iida M, Iwata M, Yamanishi Y. Network-based characterization of disease-disease relationships in terms of drugs and 

therapeutic targets. Bioinformatics. 2020;36:516–24. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btaa4​39.
	7.	 Quan Y, Luo Z-H, Yang Q-Y, Li J, Zhu Q, Liu Y-M, Lv B-M, Cui Z-J, Qin X, Xu Y-H, Zhu L-D, Zhang H-Y. Systems chemical 

genetics-based drug discovery: Prioritizing agents targeting multiple/reliable disease-associated genes as drug 
candidates. Front Genetics. 2019. https://​doi.​org/​10.​3389/​fgene.​2019.​00474.

https://doi.org/10.1186/s12859-024-06009-9
https://doi.org/10.1038/cddis.2015.393
https://doi.org/10.1016/j.jbi.2021.103732
https://doi.org/10.1186/s12918-015-0243-2
https://doi.org/10.1016/j.ins.2015.01.036
https://doi.org/10.3390/ph17070940
https://doi.org/10.1093/bioinformatics/btaa439
https://doi.org/10.3389/fgene.2019.00474


Page 24 of 24Taguchi and Turki ﻿BMC Bioinformatics          (2024) 25:377 

	8.	 Wang L, Wang Y, Hu Q, Li S. Systematic analysis of new drug indications by drug-gene-disease coherent subnet-
works. CPT Pharmacometrics Syst Pharmacol. 2014;3(11):146. https://​doi.​org/​10.​1038/​psp.​2014.​44.

	9.	 Kim Y, Cho Y-R. Predicting drug-gene-disease associations by tensor decomposition for network-based computa-
tional drug repositioning. Biomedicines. 2023. https://​doi.​org/​10.​3390/​biome​dicin​es110​71998.

	10.	 Taguchi Y-h. Unsupervised Feature Extraction Applied to Bioinformatics: A PCA Based and TD Based Approach. 1st 
ed. Berlin: Springer; 2020. https://​doi.​org/​10.​1007/​978-3-​030-​22456-1.

	11.	 Taguchi Y-h. Unsupervised Feature Extraction Applied to Bioinformatics: A PCA Based and TD Based Approach. 2nd 
ed. Berlin: Springer; 2024. https://​doi.​org/​10.​1007/​978-3-​031-​60982-4

	12.	 Taguchi Y-H, Turki T. Integrated analysis of gene expression and protein-protein interaction with tensor decomposi-
tion. Mathematics. 2023. https://​doi.​org/​10.​3390/​math1​11736​55.

	13.	 Xie Z, Bailey A, Kuleshov MV, Clarke DJB, Evangelista JE, Jenkins SL, Lachmann A, Wojciechowicz ML, Kropiwnicki 
E, Jagodnik KM, Jeon M, Ma’ayan A. Gene set knowledge discovery with enrichr. Current Protocols. 2021;1(3):90. 
https://​doi.​org/​10.​1002/​cpz1.​90.

	14.	 Carr S, Kasi A (2024) Familial Adenomatous Polyposis. StatPearls Publishing, Treasure Island (FL) . Updated 2023 Feb 
25. https://www.ncbi.nlm.nih.gov/books/NBK538233/

	15.	 Aedma SK, Kasi A (2024) Li-Fraumeni Syndrome. StatPearls Publishing, Treasure Island (FL) . PMID: 30335319. https://​
pubmed.​ncbi.​nlm.​nih.​gov/​30335​319/

	16.	 Bhandari J, Thada PK, Puckett Y, Fanconi Anemia. StatPearls Publishing, Treasure Island (FL) (2024). Last Update: 
August 10, 2022. https://​www.​ncbi.​nlm.​nih.​gov/​books/​NBK55​9133/

	17.	 Zhao Q, Zhang Y, Shao S, Sun Y, Lin Z. Identification of hub genes and biological pathways in hepatocellular carci-
noma by integrated bioinformatics analysis. PeerJ. 2021;9:10594. https://​doi.​org/​10.​7717/​peerj.​10594.

	18.	 Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Stat Mech: 
Theory Exp. 2008;2008(10):10008. https://​doi.​org/​10.​1088/​1742-​5468/​2008/​10/​P10008.

	19.	 Raghavan UN, Albert R, Kumara S. Near linear time algorithm to detect community structures in large-scale net-
works. Phys Rev E. 2007;76: 036106. https://​doi.​org/​10.​1103/​PhysR​evE.​76.​036106.

	20.	 Newman MEJ, Girvan M. Finding and evaluating community structure in networks. Phys Rev E. 2004;69: 026113. 
https://​doi.​org/​10.​1103/​PhysR​evE.​69.​026113.

	21.	 Kang M-H, Seok Jeong G, Smoot DT, Ashktorab H, Mo Hwang C, Sik Kim B, Sung Kim H, Park Y-Y. Verteporfin inhibits 
gastric cancer cell growth by suppressing adhesion molecule fat1. Oncotarget. 2017;8(58):98887–97. https://​doi.​
org/​10.​18632/​oncot​arget.​21946.

	22.	 Rigopoulos D, Larios G, Gregoriou S, Alevizos A. Acute and chronic paronychia. Am Fam Physician. 
2008;77(3):339–46.

	23.	 Arjmand Abbassi Y, Mohammadi MT, Sarami Foroshani M, Raouf Sarshoori J. Captopril and valsartan may improve 
cognitive function through potentiation of the brain antioxidant defense system and attenuation of oxidative/nitro-
sative damage in stz-induced dementia in rat. Adv Pharm Bull. 2016;6(4):531–9. https://​doi.​org/​10.​15171/​apb.​2016.​
067.

	24.	 Michela C, Antonietta M, Domenico T. Effects of the antidiabetic drugs on the age-related atrophy and sarcopenia 
associated with diabetes type ii. Curr Diabetes Rev. 2014;10(4):231–7. https://​doi.​org/​10.​2174/​15733​99810​66614​
09181​21022.

	25.	 Ohno T, Nakane T, Akase T, Kurasawa H, Aizawa Y. Development of an isogenic human cell trio that models polyglu-
tamine disease. Genes Genetic Syst. 2023;98(4):179–89. https://​doi.​org/​10.​1266/​ggs.​22-​00030.

	26.	 Giuliani F, Molica S, Maiello E, Battaglia C, Gebbia V, Bisceglie MD, Vinciarelli G, Gebbia N, Colucci G (2005) Irinotecan 
(cpt-11) and mitomycin-c (mmc) as second-line therapy in advanced gastric cancer: A phase ii study of the gruppo 
oncologico dell’ italia meridionale (prot. 2106). American Journal of Clinical Oncology. 28(6), 581–585 https://​doi.​
org/​10.​1097/​01.​coc.​00001​90398.​52142.​7f

	27.	 Zhu X-C, Dai W-Z, Ma T. Overview the effect of statin therapy on dementia risk, cognitive changes and its pathologic 
change: a systematic review and meta-analysis. Ann Transl Med. 2018;6(22):435.

	28.	 Billingsley E, Vidimos A, Paronychia Treatment & Management. Medscape, 2022 ;1106062. https://​emedi​cine.​medsc​
ape.​com/​artic​le/​11060​62-​treat​ment?​form=​fpf

	29.	 Yoon J-H, Yoo C-I, Ahn Y-S. N, n-dimethylformamide: evidence of carcinogenicity from national representative 
cohort study in south korea. Scandinavian J Work Environ Health. 2019;4:396–401. https://​doi.​org/​10.​5271/​sjweh.​
3802.

	30.	 Oughtred R, Rust J, Chang C, Breitkreutz B-J, Stark C, Willems A, Boucher L, Leung G, Kolas N, Zhang F, Dolma S, 
Coulombe-Huntington J, Chatr-aryamontri A, Dolinski K, Tyers M. The BioGRID database: a comprehensive biomedi-
cal resource of curated protein, genetic, and chemical interactions. Protein Sci. 2021;30(1):187–200. https://​doi.​org/​
10.​1002/​pro.​3978.

	31.	 Xenarios I, Rice DW, Salwinski L, Baron MK, Marcotte EM, Eisenberg D. DIP: the Database of Interacting Proteins. 
Nucleic Acids Res. 2000;28(1):289–91. https://​doi.​org/​10.​1093/​nar/​28.1.​289.

	32.	 Bates D, Maechler M, Jagan M (2024) Matrix: Sparse and Dense Matrix Classes and Methods. R package version 1.7-0. 
https://​CRAN.R-​proje​ct.​org/​packa​ge=​Matrix

	33.	 Baglama J, Reichel L, Lewis BW (2022) Irlba: Fast Truncated Singular Value Decomposition and Principal Components 
Analysis for Large Dense and Sparse Matrices. R package version 2.3.5.1. https://​CRAN.R-​proje​ct.​org/​packa​ge=​irlba

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1038/psp.2014.44
https://doi.org/10.3390/biomedicines11071998
https://doi.org/10.1007/978-3-030-22456-1
https://doi.org/10.1007/978-3-031-60982-4
https://doi.org/10.3390/math11173655
https://doi.org/10.1002/cpz1.90
https://pubmed.ncbi.nlm.nih.gov/30335319/
https://pubmed.ncbi.nlm.nih.gov/30335319/
https://www.ncbi.nlm.nih.gov/books/NBK559133/
https://doi.org/10.7717/peerj.10594
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1103/PhysRevE.76.036106
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.18632/onco_target.21946
https://doi.org/10.18632/onco_target.21946
https://doi.org/10.15171/apb.2016.067
https://doi.org/10.15171/apb.2016.067
https://doi.org/10.2174/1573399810666140918121022
https://doi.org/10.2174/1573399810666140918121022
https://doi.org/10.1266/ggs.22-00030
https://doi.org/10.1097/01.coc.0000190398.52142.7f
https://doi.org/10.1097/01.coc.0000190398.52142.7f
https://emedicine.medscape.com/article/1106062-treatment?form=fpf
https://emedicine.medscape.com/article/1106062-treatment?form=fpf
https://doi.org/10.5271/sjweh.3802
https://doi.org/10.5271/sjweh.3802
https://doi.org/10.1002/pro.3978
https://doi.org/10.1002/pro.3978
https://doi.org/10.1093/nar/28.1.289
https://CRAN.R-project.org/package=Matrix
https://CRAN.R-project.org/package=irlba

	Novel artificial intelligence-based identification of drug-gene-disease interaction using protein-protein interaction
	Abstract 
	Introduction
	Results
	TD-based unsupervised FE
	PCA-based unsupervised FE
	Cluster analyses
	Other species

	Discussion
	Methods
	Protein-protein interactions (PPI)
	 BioGRID
	 DIP
	Tensor format

	Principal component analysis (PCA)-based unsupervised feature extraction (FE)
	Tensor decomposition (TD)-based unsupervised FE
	Identification of orthogonal proteins
	Gene ID conversion
	Relating genes to drugs and diseases through enrichment analysis
	Query of drug-disease relation by LLM

	Conclusions
	References


