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Introduction
Cancer remains a major health concern globally and is a leading cause of mortality. Pros-
tate cancer is the second most prevalent cancer affecting males [1] and is recognized as 
a heterogeneous disease that complicates both its diagnosis and treatment. The survival 
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As a heterogeneous disease, prostate cancer (PCa) exhibits diverse clinical and bio-
logical features, which pose significant challenges for early diagnosis and treatment. 
Metabolomics offers promising new approaches for early diagnosis, treatment, 
and prognosis of PCa. However, metabolomics data are characterized by high dimen-
sionality, noise, variability, and small sample sizes, presenting substantial challenges 
for classification. Despite the wide range of applications of deep learning methods, 
the use of deep learning in metabolomics research has not been extensively explored. 
In this study, we propose a hybrid model, TransConvNet, which combines transformer 
and convolutional neural networks for the classification of prostate cancer metabo-
lomics data. We introduce a 1D convolution layer for the inputs to the dot-product 
attention mechanism, enabling the interaction of both local and global information. 
Additionally, a gating mechanism is incorporated to dynamically adjust the attention 
weights. The features extracted by multi-head attention are further refined through 1D 
convolution, and a residual network is introduced to alleviate the gradient vanish-
ing problem in the convolutional layers. We conducted comparative experiments 
with seven other machine learning algorithms. Through five-fold cross-validation, 
TransConvNet achieved an accuracy of 81.03% and an AUC of 0.89, significantly outper-
forming the other algorithms. Additionally, we validated TransConvNet’s generalization 
ability through experiments on the lung cancer dataset, with the results demonstrating 
its robustness and adaptability to different metabolomics datasets. We also proposed 
the MI-RF (Mutual Information-based random forest) model, which effectively identi-
fied key biomarkers associated with prostate cancer by leveraging comprehensive 
feature weight coefficients. In contrast, traditional methods identified only a limited 
number of biomarkers. In summary, these results highlight the potential of TransCon-
vNet and MI-RF in both classification tasks and biomarker discovery, providing valuable 
insights for the clinical application of prostate cancer diagnosis.
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rates for individuals diagnosed with prostate cancer vary significantly, ranging from 
approximately 33% for cases identified at an advanced stage to nearly 100% for those 
diagnosed at an early stage [2]. Therefore, early detection remains a pivotal challenge in 
cancer care. In recent years, metabolomics has shown great promise in disease diagnosis 
and treatment. Huang et al. developed a pathway-based model that uses metabolomics 
data for disease diagnosis. This approach, when applied to blood-based metabolomics 
data for breast cancer, identified key metabolic pathway signatures, which could be valu-
able for diagnostic tests and therapeutic interventions [3]. Similarly, John et al. proposed 
that metabolomics is a transformative technology, enhancing our ability to predict, 
detect, and understand a range of cardiometabolic diseases while also monitoring thera-
peutic responses [4].

Prostate cancer, a condition closely linked to metabolic changes, serves as an exem-
plary case for the application of metabolomics. As a result, the development of meth-
ods for early detection and diagnosis of prostate cancer has become a central focus of 
research. Metabolomics, a key component of systems biology, allows the identification 
of subtle changes in molecular metabolites during tumor initiation and progression. 
This field seeks to profile small molecules within an organism or cell, capturing dynamic 
metabolic alterations to construct a comprehensive metabolic profile. This approach 
helps elucidate the relationship between metabolic variations and disease progression. 
Unlike genomics, transcriptomics, and proteomics—which focus on upstream biological 
processes—metabolomics offers a downstream reflection of physiological activities by 
detecting a wide array of small molecule end products [5]. In prostate cancer research, 
metabolic profiling is increasingly used to identify predictive, diagnostic, and prognostic 
biomarkers. However, metabolomics data are often characterized by high dimensional-
ity, noise, and variability [6]. High dimensionality arises when the number of metabolites 
significantly exceeds the number of samples, which can lead to model overfitting and 
the curse of dimensionality. Noise is introduced through measurement errors, techni-
cal biases during sample processing, and the complexity of biological background sig-
nals, potentially obscuring critical biological information. Variability reflects substantial 
differences in metabolite expression levels across individuals, groups, or experimental 
conditions. Consequently, extracting meaningful insights from metabolomics data poses 
significant challenges.

Numerous machine learning algorithms have been successfully applied to tackle clas-
sification and regression tasks in metabolomics data [7]. For example, RF, a widely used 
machine learning algorithm based on decision tree theory, effectively addresses chal-
lenges such as data imbalance and missing values inherent in high-dimensional data-
sets [8]. Support vector machines (SVMs) have also emerged as a prominent machine 
learning algorithm for classifying metabolomics data. SVMs construct optimal linear 
classifiers represented as hyperplanes with maximal margins, minimizing classification 
errors while maximizing geometric bounds. Notably, SVMs have been used to classify 
healthy individuals and patients with pneumonia [9]. However, conventional machine 
learning methods often struggle to achieve satisfactory results, particularly when con-
fronted with the dimensionality challenges inherent in high-dimensional and sparse 
datasets. Recently, advances in artificial intelligence have positioned deep learning (DL) 
as a transformative approach in medical research [10]. DL, a machine learning method 
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inspired by the architecture of artificial neural networks [11], has achieved notable suc-
cess in fields such as computer vision and natural language processing [12]. Its success is 
largely attributed to its powerful feature learning capabilities and its ability to efficiently 
capture complex nonlinear relationships. Despite these achievements, the application of 
DL to metabolomics data analysis remains underdeveloped.

Feedforward networks have demonstrated their ability to classify breast cancer metab-
olomics data with high precision [13]. Yuyang Sha et al. noted that the high dimensional-
ity and complex interrelationships of metabolomics data present significant challenges 
for classical machine learning algorithms. To address these challenges, they developed 
a deep convolutional neural network-based method, MetDIT, which effectively resolves 
issues such as high dimensionality, small sample size, and category imbalance in clini-
cal metabolomics data analysis [14]. Similarly, Taeho Jo et  al. introduced the circular-
sliding window association test (C-SWAT), which integrates inherent biological data 
correlations into the learning process. C-SWAT was applied to serum metabolomics 
data from 997 participants of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
and achieved a classification accuracy of 80.8% with an AUC of 0.81 in distinguishing 
Alzheimer’s disease (AD) cases from cognitively normal older adults [15]. Date and 
Kikuchi proposed an improved deep neural network (DNN)-based analytical approach, 
DNN-MDA, which incorporates variable importance estimation using mean decrease 
accuracy (MDA). This method was evaluated on a dataset of metabolic profiles from 
yellowfin gobies living in various rivers across Japan. The DNN-MDA approach outper-
formed conventional multivariate and machine learning methods, achieving the high-
est classification accuracy (97.8%) among the examined approaches [16]. Furthermore, 
Alakwaa et al. highlighted the potential of metabolomics as a novel technique for diag-
nosing highly heterogeneous diseases. However, despite the growing popularity of deep 
neural networks, their suitability for classifying metabolomics data remains uncertain 
[13].

The primary challenge in metabolomics data analysis lies in its unique complexities 
compared to other data types. First, metabolomics data are characterized by extremely 
high dimensionality yet are often constrained by limited sample sizes, making traditional 
DL models highly susceptible to overfitting. Second, the intricate relationships between 
metabolites, often nonlinear and multi-level, present significant challenges to a model’s 
ability to effectively capture and represent these complexities [6]. Existing DL methods 
often struggle to overcome these issues, resulting in difficulties in achieving accurate and 
robust feature extraction. To address this, we propose a hybrid model, TransConvNet, 
which integrates transformer [17] and Convolutional Neural Networks (CNN) [18]. 
TransConvNet is designed to fully leverage the strengths of the transformer for global 
feature extraction while utilizing CNNs to capture local features. This hybrid approach 
effectively handles the complex relationships inherent in metabolomics data, thereby 
improving the classification of prostate cancer metabolomics data and providing robust 
support for biomarker identification.

In the context of prostate cancer diagnosis, biomarker identification is as crucial as 
the classification of metabolomics data [19]. Traditional feature selection methods often 
fail to account for the complex interdependencies among features, making it difficult to 
identify biomarkers with true diagnostic value. To address this, we propose the MI-RF 
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method, which combines mutual information metrics with the feature importance 
scores from random forest. This approach enables a more accurate identification of key 
features associated with prostate cancer.

To evaluate the performance of the TransConvNet model, we conducted compara-
tive experiments against traditional methods, including transformer, Long Short-Term 
Memory (LSTM), CNN, Extreme Gradient Boosting (XGBoost), SVM, RF, and decision 
tree (DT). Through five-fold cross-validation experiments, the results demonstrated 
that the TransConvNet model outperformed the other algorithms in key evaluation 
metrics, including accuracy and AUC, for classifying prostate cancer metabolomics 
data. Additionally, we constructed five datasets of varying sizes and conducted classi-
fication experiments across these different sample scales. The results reveal that Trans-
ConvNet exhibits strong robustness in handling datasets of varying sizes, consistently 
outperforming other classification algorithms. Furthermore, we validated the generaliz-
ability of TransConvNet on a lung cancer dataset, further demonstrating its adaptability 
and robustness in handling diverse data sources. Additionally, we employed the MI-RF 
algorithm to identify four key biomarkers—serotonin, sphinganine, sarcosine, and cit-
rate—closely associated with the development of prostate cancer from high-dimensional 
metabolomics data. The experimental results show that TransConvNet outperforms tra-
ditional methods in classification tasks. Moreover, the integration of mutual information 
with random forest-based feature selection provides valuable insights for biomarker dis-
covery, highlighting its potential in prostate cancer diagnosis.

Methods
Overall architecture

We propose a novel hybrid model, TransConvNet, based on the integration of a trans-
former and CNN, where the transformer handles global information modeling, and the 
CNN is responsible for local feature extraction. The transformer leverages a self-atten-
tion mechanism to capture global relationships within the data [20], which facilitates a 
more comprehensive understanding of the overall data structure. The transformer model 
offers high flexibility, allowing for the adjustment of the network structure and param-
eters based on task-specific requirements. This adaptability enables the transformer 
to efficiently accommodate various types of metabolomics data and tasks, thereby 
improving classification performance. Metabolomics data are inherently complex, with 
intricate interrelationships among metabolites, the incorporation of CNNs within the 
transformer architecture enables the efficient extraction of local features through con-
volutional operations, allowing the model to capture correlations between metabolites 
more effectively, leading to a more holistic understanding of the data. TransConvNet 
is a hybrid architecture that combines a standard transformer encoder (spatial trans-
former encoder (STE)) with a 1D convolution (CONV1D). Figure 1 shows the structure 
of TransConvNet. TransConvNet consists of two sublayers. The first sublayer includes 
a local–global interaction module, a multi-head attention layer, a CNN module, and a 
normalization layer. The second sublayer consists of a feedforward neural network and a 
normalization layer. Specifically, the local–global interaction module first captures local 
features within the metabolomic data and then enhances the representation of global 
features through information fusion. The multi-head attention mechanism allows for the 
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parallel computation of multiple attention weights, enabling the model to focus on dif-
ferent aspects of the input features. Each attention head learns distinct feature relation-
ships, which allows the model to integrate and consider the multidimensional nature of 
metabolomic data. In the CNN module, convolutional layers process the features in the 
input data through local receptive fields, performing weighted summation on metabolite 
features to capture interactions between each feature and its neighboring features. The 
CNN layer’s role is to extract locally discriminative information from the high-dimen-
sional features output by the transformer model. Finally, the normalization layer ensures 
that the importance of each feature is balanced during training, promoting stability and 
convergence throughout the learning process. To address the vanishing gradient prob-
lem encountered during model training, we incorporate residual networks (ResNet) 
[21]. This architecture facilitates information flow across layers, enabling the network to 
learn effectively at greater depths and extract more complex feature representations. We 
implement shortcut connections for residual learning in both sublayers and the CNN 
module. All layers produce 400-dimensional outputs to facilitate residual connections. 
The details of these modules are described below.

Gated scaled dot product attention

The transformer is a DL model based on an attention mechanism. This mechanism 
allows the model to automatically focus on the most critical aspects of the input data, 

Fig. 1 TransConvNet architecture
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thereby enhancing its ability to capture key features and complex relationships between 
data points. The attention weight calculation process uses a scaled dot product attention 
mechanism, which is known for its efficiency. Dot product attention enables the model 
to "automatically focus" on the most relevant parts of the data during processing. By cal-
culating the relationships between different features, it helps the model identify which 
features are most important for the prediction task. The dot product attention, imple-
mented using highly optimized matrix multiplication code, ensures faster processing 
and greater space efficiency [17]. In Fig. 2, the input consists of the query matrix Q, the 
key matrix K, and the value matrix V. First, the dot products of Q and K are computed, 
and then each dot product is multiplied by 1√

dk
 , where dk is the dimension of the key 

vector. Finally, the attention weights are obtained after the softmax operation, which is 
computed as follows.

We introduce a gating mechanism to dynamically adjust the attention distribution, 
allowing finer control over the retention and output of global information. This adjust-
ment leads to more intricate and information-rich data representations, thereby enhanc-
ing the performance of downstream tasks [22]. The gating mechanism functions as a 
filter, enabling the model to adjust attention weights dynamically based on the complex 
relationships and significance of the data. It "selects" the relevant information to process 
while filtering out less important data, thereby better capturing the correlations and key 

A = softmax

(

QkT
√

dk

)

· v

Fig. 2 Scaled dot product attention
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features within the data. This mechanism is particularly effective in identifying critical 
features for metabolomics data analysis and modeling. As shown in Fig.  3, the gating 
vector G is added after computing the dot product of Q and K, denoted as follows.

Here, X is the dk-dimensional input, W and b are the learnable parameters, and σ is the 
sigmoid activation function that compresses the linear combination of gating weights 
and input vectors to a value between 0 and 1.

Local‑global interaction unit

In the conventional application of a standard transformer, Q, K, and V are derived 
through linear mappings of the input data. The attentional weights for the weighted sum 
of the value vectors are computed by taking the dot product of the Q and K vectors and 
then employing a softmax operation. However, linear mapping may not sufficiently cap-
ture the intricate nonlinear relationships present in metabolomics data. Simultaneously, 
the transformer ignores local relationships and structural information within the data. 
To address these limitations, we propose a local–global interaction (LGI) unit. Figure 1 
illustrates a representation of K and V with local information and a representation of 
Q with global information. The global and local information interact in such a way that 

G = σ(X ·W + b)

Agate =

[

G · softmax

(

QkT
√

dk

)]

· ν

Fig. 3 Gated scaled dot product attention
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global and local correlations can be modeled, thereby improving the model’s ability to 
capture nonlinear relationships. This is mathematically defined as follows:

Here, X represents the input data; Conv1d is a 1D convolution with a 3 × 3 convolution 
kernel; Tanh is the activation function; BN is BatchNorm1d, which is used to accelerate 
the neural network training and improve the stability of the model; and FC represents a 
fully connected (linear) transformation of X.

Attention feature refinement

The attention mechanism typically improves the accuracy and performance of trans-
former models for prediction and classification tasks. However, these mechanisms often 
incur additional computational costs and may introduce redundancies in the feature 
representation within the encoder. We added a 1D convolution after the multi-head 
attention layer to extract the most relevant or representative features. By incorporating 
a 1D convolutional layer, the model can "refine" its outputs, focusing on specific, perti-
nent information. The 1D convolution operates by sliding over the outputs of the multi-
head attention mechanism, extracting critical local features while compressing irrelevant 
information. This approach helps reduce noise, enhance feature clarity, and enables the 
model to focus more effectively on patterns that are most beneficial for classification or 
recognition tasks.

Additionally, residual learning is incorporated into the 1D convolutional network to 
further enhance the model’s expressive power. As shown in Fig. 1, the CNN module is 
expressed as follows:

Here, X is the output of the multi-head attention mechanism, Conv1d() uses the 
GELU() activation function, the kernel width is 3, BN denotes BatchNorm1d, and max-
pooling with a stride of 2 is applied to reduce the dimensionality of the data. This pool-
ing process helps preserve important features while reducing the computational load.

Results and discussion
Data set description and preprocessing

The data used in this study were sourced from the National Metabolomics Data Reposi-
tory (NMDR) website under project number PR001613. The dataset comprises metabo-
lomics data from plasma samples of adult men diagnosed with prostate cancer (n = 267) 
and healthy controls (n = 313). From this dataset, a total of 1169 metabolites were 
screened for analysis.

Raw metabolomics data are often characterized by dimensional disparities among dif-
ferent metabolites, which can pose challenges for subsequent analyses. To address this 

K = BN (Tanh(Conv1d(X)))

V = BN (Tanh(Conv1d(X)))

Q = FC(X)

Out = Maxpool(BN (GELU(Conv1d(X))))+ X
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issue, z-score normalization was applied to standardize the dataset, eliminating the 
effects of quantitative differences between features and rendering the data dimension-
less. Specifically, the z-score standardization was performed for each feature by calculat-
ing the mean and standard deviation of the feature, subtracting the mean, and dividing 
by the standard deviation. This transformation scales the data to a standard normal dis-
tribution, with a mean of 0 and a standard deviation of 1. The formula for the transfor-
mation is as follows:

where x represents the individual value to be standardized, µ is the mean of the dataset, 
and σ denotes the standard deviation of the dataset.

Selecting the most relevant features from high-dimensional data is a critical step for 
model development. To address the challenges of high-dimensional data, effective fea-
ture selection, and dimensionality reduction techniques are essential for improving 
model generalization. In this study, we performed feature selection on the normalized 
data using the support vector machine recursive feature elimination (SVM-RFE) algo-
rithm, as proposed by Huang et al. [23]. This method identified the top 400 most rele-
vant features based on their contribution to the model, which were then used for further 
analysis.

Evaluation metrics

To evaluate the performance of our proposed model, we employed several widely used 
metrics in bioinformatics studies, including accuracy, sensitivity, specificity, and receiver 
operating characteristic (ROC) curves [24]. Accuracy serves as an indicator of the pro-
portion of correct predictions made by the proposed model. Sensitivity (also referred 
to as the true positive rate) represents the probability of correctly identifying individu-
als with prostate cancer. It quantifies the likelihood of a true positive diagnosis. Speci-
ficity, also known as the true negative (TN) rate, indicates the probability of accurately 
diagnosing a healthy individual as negative. In this study, specificity pertains to the 
probability of correctly diagnosing a healthy patient. ROC curves provide a graphical 
representation of a classifier’s performance under various classification thresholds. They 
are based on the trade-off between a true positive rate (sensitivity) and a false positive 
rate (1-specificity). The formulas calculating accuracy, sensitivity, and specificity are as 
follows.

z =
(x − µ)

σ

Accuracy =
TP + TN

TP + FP + TN + FN

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP



Page 10 of 22Sun et al. BMC Bioinformatics          (2024) 25:391 

Here TP, FP, TN, and FN are the values of true positives, false positives, true negatives, 
and false negatives, respectively.

Five‑fold cross‑validation classification experiment

The proposed TransConvNet model for prostate cancer metabolomics classification was 
implemented using the PyTorch DL framework. The primary objective of this experi-
ment was to evaluate the classification performance of the TransConvNet model, which 
aimed to improve the accuracy of prostate cancer diagnosis and treatment.

Given the relatively small sample size of metabolomics datasets, cross-validation is 
an effective technique for model validation, as it helps mitigate overfitting and ensures 
the model generalizes well across different subsets of data [25]. In this study, a five-fold 
cross-validation approach was employed, and the dataset was divided into five equal 
subsets. In each iteration, four subsets were used for training, while the remaining sub-
set served as the validation set. This procedure was repeated five times, each time using a 
different subset as the validation set. This process was repeated until each group of data 
was used as a validation set. Optuna [26], an automated hyperparameter optimization 
framework, was employed to fine-tune the parameters of the TransConvNet architec-
ture and maximize performance efficiency. In our experiments, we utilized the Optuna 
framework to optimize hyperparameters across the model’s layers. Additionally, five-fold 
cross-validation was applied to ensure that the selected hyperparameters consistently 
delivered robust performance across different data partitions. During the hyperparame-
ter tuning process, we focused on several critical parameters, including the learning rate. 
Through extensive experimentation, the optimal learning rate was identified as 0.0001. 
The Regularization parameter (Dropout rate) was adjusted through cross-validation to 
mitigate overfitting. Parameters related to the network architecture and depth, such as 
the number of convolutional layers, nodes per layer, attention heads, and the dimensions 
of the feedforward network, were fine-tuned based on experimental results. Further-
more, the hyperparameters of other comparative algorithms were optimized for a fair 
comparison.

We compared the TransConvNet model with seven machine learning methods: trans-
former, CNN, LSTM, XGBoost, SVM, RF, and DT. The average results of the evalua-
tion metrics were computed on the test set using five-fold cross-validation. As shown 
in Table  1, the proposed TransConvNet model outperformed the other algorithms in 

Table 1 Five-fold cross-validation results for eight models

Model Sensitivity (%) Specificity (%) Accuracy (%) AUC 

Transformer 70.26 76.32 74.47 0.82

LSTM 54.21 73.64 65.00 0.67

CNN 61.11 69.78 66.66 0.69

XGBoost 59.39 55.35 57.44 0.58

SVM 64.96 72.33 68.47 0.69

RF 36.43 70.41 54.47 0.54

DT 54.80 58.40 56.89 0.57

TransConvNet 81.67 80.72 81.03 0.89
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terms of diagnostic sensitivity, specificity, and accuracy. The results also revealed that 
the TransConvNet model achieved the highest accuracy and AUC value while main-
taining high sensitivity and specificity. The classification accuracy of the TransConvNet 
model for prostate cancer metabolomics data was 81.03%, surpassing the transformer 
method and demonstrating superior classification performance compared to the other 
seven classification methods.

These results indicate that the TransConvNet model effectively achieves interaction 
and fusion between local and global information, enabling the identification of critical 
variables that contribute to the construction of the model. In contrast, the transformer 
exhibited lower classification accuracy than the TransConvNet model, likely due to its 
neglect of local information during feature extraction. However, it is noteworthy that 
the transformer achieved higher classification accuracy than the other comparative algo-
rithms, apart from TransConvNet. This underscores the transformer’s effectiveness in 
handling high-dimensional, small sample data while highlighting the strong potential of 
the TransConvNet hybrid structure for further improvement.

Algorithms such as XGBoost, RF, and DT displayed the worst accuracy, likely due to 
their sensitivity to overfitting and limitations in addressing nonlinear problems. The 
experimental results demonstrate that the proposed TransConvNet model exhibits high 
diagnostic efficiency and strong potential for clinical applications.

The stability of a model is a critical criterion for assessing its performance and reli-
ability. In the context of metabolomics data, which is characterized by high dimension-
ality, noise, and inherent variability, classification accuracy serves as a key indicator of 
the model’s ability to handle these challenges effectively. Figure 4 presents a line graph 
illustrating the classification accuracy across the five-fold cross-validation for various 

Fig. 4 Line plot of five-fold cross-validation classification accuracy
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datasets. The classification accuracies for TransConvNet ranged from 74.13% to 86.20%, 
with the highest accuracy observed in each fold of the validation experiments, yielding 
an average accuracy of 81.03%. The lowest accuracy was recorded for the third validation 
set. These results suggest that the model’s performance is relatively stable across differ-
ent training and validation sets, demonstrating good generalization ability and adapt-
ability to new data.

In comparison, the transformer model achieved classification accuracies ranging from 
70.68% to 83.62%, exhibiting a larger variation in performance. This variation may be 
attributed to issues such as overfitting. Although the results from the other machine 
learning algorithms were stable, their classification accuracies were not as satisfactory, 
likely due to their inability to effectively capture the complex nonlinear relationships 
within the data. Figure 5 illustrates the accuracy curves for each fold of the TransCon-
vNet and transformer models during the cross-validation experiment, providing a com-
parison of the accuracy trends over time. The accuracy curves for TransConvNet show a 
quick convergence in each fold, with stable, flat curves, indicating that the model effec-
tively learns discriminative features from the training data. In contrast, the accuracy 
curves for the transformer model exhibited greater fluctuations, signaling less stability 
and consistency in learning. Thus, from the perspective of classification accuracy, the 
TransConvNet model demonstrated superior stability, reliability, and suitability for clas-
sifying prostate cancer metabolomics data.

The ROC curve is a widely used tool to assess the sensitivity and specificity of a model, 
offering an intuitive visualization of its classification performance. In this study, the 
vertical axis of the ROC curve represents sensitivity, while the horizontal axis denotes 
specificity. A perfect classifier would reach a point where sensitivity is 1 and specificity 
is 0, meaning there is no misdiagnosis and no leakage in predictions [39]. As shown in 
Fig. 6, the ROC curve for the TransConvNet model consistently stays closer to the upper 
left corner across all folds of the cross-validation process compared to the transformer 
model. This suggests that TransConvNet demonstrates better classification performance 
across various thresholds. Furthermore, the TransConvNet curve remains above the 
transformer curve at most thresholds, signifying its superior performance and robust-
ness in a wide range of scenarios. This enhanced performance is likely due to Trans-
ConvNet’s ability to capture both global and local features, providing a more nuanced 
understanding of the complex, nonlinear relationships inherent in metabolomics data.

In contrast, the transformer model struggles to fully leverage these nonlinear relation-
ships and local features, which may be attributed to its fixed embedding approach and 
the limitations of its model architecture. This demonstrates the advantage of the hybrid 
structure in TransConvNet, allowing it to outperform the transformer model by cap-
turing intricate data features more effectively and exhibiting improved generalization 
ability.

During training, the TransConvNet model parameters were tuned over several itera-
tions to minimize the loss function. The accuracy of the model increased rapidly and 
then stabilized. Although the loss function of the transformer gradually decreased dur-
ing training, its curve showed a slower rate of decrease, requiring more training itera-
tions to achieve comparable results. Figure 7 shows a plot of the losses recorded by the 
TransConvNet and transformer models for the training data for each iteration. Figure 7a 
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demonstrates that the TransConvNet model’s loss value gradually decreased during each 
fold of training, eventually reaching a steady state. This indicates that the model con-
verged quickly to the optimal solution, fitting the data effectively and enabling it to accu-
rately classify metabolomics data. In contrast, the transformer model struggled to fit the 
data effectively, likely due to its inability to capture local features, which prevented the 
loss value from converging to 0.

Classification experiments with samples of different sizes

The complexity of classifying high-dimensional, noisy, and small sample metabolomics 
data is significantly increased by the inherent challenges these data present. To further 
evaluate the classification performance of different models for metabolomics data and 

Fig. 5 a Accuracy curves of the TransConvNet model. b Accuracy curves of the transformer model
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the robustness of the proposed TransConvNet model, we divided the training and test 
sets of the metabolomics data into five groups for classification experiments with differ-
ent sample sizes.

Fig. 6 a ROC curves of five-fold cross-validation for the TransConvNet. b ROC curves of five-fold 
cross-validation for the transformer
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Fig. 7 a Loss curves of the TransConvNet. b Loss curves of the transformer

Table 2 Classification accuracies of the different training and test sets (%)

Train Test Trans former LSTM CNN XGBoost SVM RF DT Trans ConvNet

174 406 60.83 57.60 59.11 53.68 59.95 53.25 53.30 61.87

232 348 62.22 58.85 59.02 52.01 61.26 54.31 52.18 64.82

290 290 68.34 60.06 63.70 52.14 65.25 52.06 52.34 70.82

348 232 69.36 61.98 63.88 53.70 66.78 54.39 50.95 72.70

406 174 74.24 62.87 65.06 52.53 69.65 55.40 51.38 80.36
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Table 2 demonstrates that when the number of samples in the training set is limited, 
all models face difficulties in sufficiently learning the intricate relationships within the 
data, particularly in the high-dimensional feature space. In such cases, models may fail 
to capture potentially useful features, leading to lower classification accuracy across all 
the models. As the training set size increases, the transformer, LSTM, CNN, SVM, and 
TransConvNet models are able to learn more features from the data, thereby improv-
ing their classification accuracy. However, the classification outcomes of XGBoost, RF, 
and DT remain unsatisfactory and exhibit minimal improvement, suggesting that these 
three models may struggle to effectively capture the nonlinear relationships in metab-
olomics data and may lack robustness when confronted with problems characterized 
by small sample sizes. Thus, DL models like the transformer, LSTM, CNN, SVM, and 
TransConvNet are more effective at extracting useful feature representations from lim-
ited samples.

The experimental results show that TransConvNet, which combines CNN and trans-
former-based components, outperforms other classification algorithms when classifying 
metabolomics data of varying sizes. These results suggest that TransConvNet has strong 
robustness and generalization performance, making it well-suited to handle datasets of 
different sizes.

We are committed to continuously improving and updating our models as we iterate 
on our DL algorithms. Subsequent studies will witness the integration of additional pre-
trained models into our DL framework aimed at facilitating the screening of metabolic 
markers. Our goal is to provide clinicians with more precise guidance that will ultimately 
benefit patients.

Five‑fold cross‑validation classification experiment for lung cancer

To validate the generalization capability of the TransConvNet model, we conducted 
experiments using metabolomics data from lung cancer patients. The dataset consists 
of serum and plasma data from 181 named metabolites obtained from the NMDR web-
site under project number ST000369. We compared the plasma dataset from the first 
independent case–control study (ADC1), which includes 51 adenocarcinoma lung can-
cer samples and 32 healthy controls. In this study, we applied the same recursive feature 
elimination (SVM-RFE) algorithm described in Sect. "Data set description and preproc-
essing" for feature selection to optimize the input feature set for the model. Through 
recursive feature elimination, we removed features that contributed minimally to the 
model’s predictive ability and whose exclusion did not significantly affect the model’s 
performance. The top 180 features were retained for subsequent analysis. Additionally, 
due to the small sample size, we employed the SMOTE data augmentation algorithm 
to enhance the dataset. This method doubled the number of both positive and nega-
tive samples, resulting in a final sample size of 166. Similarly, we conducted the same 
comparative experiments as described in Sect.  "Five-fold cross-validation classification 
experiment", recording the average results of the evaluation metrics computed on the 
test set during five-fold cross-validation.

As shown in Table  3,  validation of the lung cancer dataset demonstrated that the 
proposed TransConvNet model exhibited stable performance. Specifically, the model 
achieved favorable results in key performance metrics, such as accuracy and AUC, 
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while also showing strong discriminative ability in terms of sensitivity and specific-
ity. The improvement in the AUC value, in particular, highlights the model’s superior 
ability to distinguish between different classes. These results suggest that the pro-
posed method performs well in classifying lung cancer metabolomics data, effectively 
differentiating between distinct sample categories.

Screening of key biomarkers for prostate cancer

The screening of biomarkers is also particularly important compared to the classifi-
cation of metabolomics data. In this paper, our proposed TransConvNet model has 
good classification performance for high-dimensional, high-noise, and high-vari-
ability metabolomics data, and through the self-attention mechanism, the model is 
capable of generating the attention weights for each feature, which reflects the impor-
tance of different features in prostate carcinogenesis. We take the feature weights 
obtained by TransConvNet as a research object and introduce a MI-RF algorithm. 
This approach utilizes MI-RF to effectively screen for potential biomarkers in prostate 
cancer metabolomics data.

The MI-RF algorithm for biomarker selection consists of three steps: Firstly, the 
mutual information between the feature weights X and the target variable Y is com-
puted to evaluate the relationship between the features and the target, with a mutual 
information score assigned to each feature. Subsequently, an RF model is trained, and 
the relative importance score for each feature is computed based on the model’s train-
ing results. Finally, by performing a weighted fusion of the mutual information scores 
and the feature importance scores obtained from the RF model, a combined weight 
coefficient for each feature is derived. These features are then ranked, and the top 10 
features with the highest diagnostic potential are selected. The formula is as follows:

Here MI(Xi;Y ) represents the mutual information score between the feature Xi and 
the target variable Y  , quantifying their dependency. RFimportance(Xi) denotes the fea-
ture importance score assigned to Xi by the RF model, reflecting its contribution to 
the predictive task. This formula multiplies the two scores to obtain the comprehen-
sive weight coefficient coefficients(Xi) for each feature.

coefficients(Xi) = MI(Xi;Y ) · RFimportance(Xi)

Table 3 Five-fold cross-validation results for eight models on lung cancer data

Model Sensitivity (%) Specificity (%) Accuracy (%) AUC 

Transformer 78.31 72.95 76.21 0.78

LSTM 79.37 58.84 71.36 0.73

CNN 76.36 66.54 72.57 0.77

XGBoost 59.59 55.77 58.01 0.58

SVM 79.37 55.64 70.11 0.68

RF 72.35 55.26 65.95 0.64

DT 69.27 47.82 61.03 0.59

TransConvNet 82.13 82.69 82.31 0.84
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Mutual information (MI) [27] quantifies the dependency between a feature Xi and the 
target variable Y  . Larger values of mutual information indicate stronger dependence 
between Xi and Y. The formula is as follows:

Here MI(Xi;Y ) is the mutual information between the feature Xi and the target vari-
able Y  , P

(

xi, y
)

 represents the joint probability distribution of the feature Xi   and the tar-
get variable Y  , quantifying the likelihood of their co-occurrence within the given dataset. 
P(xi) and P

(

y
)

 represent the marginal probability distributions of the feature Xi and the 
target variable Y  , respectively, reflecting the individual likelihood of each variable occur-
ring independently.

To evaluate the effectiveness of the MI-RF algorithm in selecting key biomarkers for 
prostate cancer, we compared its performance with traditional feature selection meth-
ods, including RF, SVM, and the Least Absolute Shrinkage and Selection Operator 
(Lasso). The focus was on examining the number and consistency of significant pros-
tate cancer biomarkers selected by each method. The experimental results are shown in 
Table 4.

The experimental results reveal that among the top 10 identified biomarkers, the 
MI-RF method successfully pinpointed four known significant biomarkers associated 
with prostate cancer: serotonin, sphinganine, sarcosine, and citrate. In contrast, the 
Lasso method identified a single biomarker, citrate; RF selected two biomarkers, sphin-
ganine and serotonin, while the SVM recognized one biomarker, sphinganine. Further-
more, the four prostate cancer biomarkers identified by MI-RF have been extensively 
validated in existing literature and are closely associated with the onset and progression 
of prostate cancer [28]. To provide a clearer representation of the MI-RF method’s selec-
tion results, Fig. 8 presents the top 10 key biomarkers identified by the MI-RF method.

MI(Xi;Y ) =
∑

xi∈Xi

∑

y∈Y

P
(

xi, y
)

log
P
(

xi, y
)

P(xi)P
(

y
)

Table 4 Top 10 biomarkers selected by each algorithm

Rank MI‑RF Lasso RF SVM

1 2,3-dihydroxy-2-meth-
ylbutyrate

2,3-diphosphoglyc-
erate

1-(1-enyl-palmit-oyl)-
2-linoleoyl-GPE

Oleoyl-linoleoyl-glycerol

2 Pantothenate Hexadecenedioate 2,3-dihydroxy-2-meth-
ylbutyrate

Dihomo-linoleoylcarnitine

3 Serotonin 2-aminoheptanoate Pantothenate 1-methyl-4-imidazoleac-
etate

4 1-(1-enylpalmitoyl)-
2-linoleoyl-GPE

Hexadecasphingosine Sphinganine Phenyllactate

5 Sphinganine Maleate N-acetylphenyla-lanine 4-acetylcatechol sulfate

6 Sarcosine Octadecadienedioate Serotonin Sphingomyelin

7 1-methyl-4-
Imida-zoleacetate

Caproate N-acetyl-isoputre-anine Sphinganine

8 N-acetylphenylal-anine N-palmitoylserine 1-methyl-4-imidazo-
leacetate

1-oleoyl-GPG

9 Citrate Citrate X–26,109 3-methoxytyramine 
sulfate

10 X–26,109 Heptenedioate 3-hydroxydodec-
anedioate

Stearidonate
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These results demonstrate that the MI-RF method exhibits a clear advantage over tra-
ditional approaches such as Lasso, RF, and SVM in identifying known biomarkers asso-
ciated with prostate cancer. In particular, by combining mutual information metrics with 
the feature importance scores from random forests, the MI-RF method can more com-
prehensively capture the complex relationships between features and the target variable. 
The ensemble learning nature of random forests further enhances the model’s robust-
ness to noise and its ability to discriminate between features, thereby identifying addi-
tional key metabolites closely associated with the occurrence of prostate cancer. Lasso, 
being a feature selection method based on linear regression models, may be limited in 
handling high-dimensional, nonlinear relationships, resulting in the selection of only 
one prostate cancer biomarker. Although RF are capable of capturing nonlinear relation-
ships between features, their feature importance ranking can be influenced by model 
instability, leading to a relatively smaller set of selected biomarkers. SVM are powerful 
classification models, but they typically require extensive feature engineering and data 
preprocessing and are sensitive to hyperparameters, which contributed to their relatively 
weaker performance in this study compared to MI-RF.

In summary, MI-RF, by integrating mutual information metrics with the random forest 
algorithm, demonstrates its superiority in identifying key biomarkers for prostate cancer. 
Compared to other methods, MI-RF can select a greater number of clinically significant 
biomarkers, thereby offering valuable insights for early disease diagnosis and personal-
ized treatment. Future research could further explore the application of MI-RF in other 
cancer types or diseases, expanding its potential to contribute to precision medicine.

Conclusions
Prostate cancer is one of the most prevalent malignancies in men, highlighting the criti-
cal importance of early prediction and diagnosis. In this paper, we propose a hybrid 
model, TransConvNet, to classify prostate cancer metabolomics data. We employed 

Fig. 8 The top 10 biomarkers identified by the MI-RF method
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five-fold cross-validation to assess the model’s accuracy, AUC, and other key metrics. 
When compared with seven other common machine learning methods—transformer, 
CNN, LSTM, XGBoost, SVM, RF, and DT, TransConvNet demonstrated a significant 
advantage across all evaluation metrics. Specifically, TransConvNet achieved an accu-
racy of 81.03%, an AUC of 0.89, and a sensitivity of 81.67%. In contrast, the traditional 
support vector machine model exhibited an accuracy of 68.47%, the DT model had a 
sensitivity of 54.80%, and the XGBoost model recorded an AUC of 0.58. These results 
highlight that TransConvNet, when applied to high-dimensional, noisy metabolomics 
data, significantly enhances classification performance and model stability, making it 
more suitable for metabolomics data classification. To further validate the classification 
performance of the TransConvNet algorithm for metabolomics data and the robust-
ness of the model, we conducted classification experiments using different training and 
test datasets. The experimental results indicate that TransConvNet can discern supe-
rior features from metabolomics data, even with a reduced training dataset. In addition, 
we validated the generalization ability of the TransConvNet model using a lung cancer 
metabolomics dataset. The results demonstrate that the TransConvNet model main-
tains stable performance on the lung cancer metabolomics dataset, with its classification 
accuracy and AUC values significantly outperforming traditional comparison methods. 
This result indicates that TransConvNet can effectively handle metabolomics data with 
different sources and feature distributions. Despite the challenges of high dimension-
ality, noise, and complexity in metabolomics data, TransConvNet is able to maintain 
strong classification performance.

In biomarker selection, the MI-RF algorithm demonstrated excellent performance. By 
combining mutual information scores with feature importance scores from random for-
ests, we successfully identified several key biomarkers closely related to prostate cancer. 
Compared to traditional selection methods, MI-RF is more effective at capturing non-
linear relationships between features, allowing it to identify more potential biomarkers. 
This finding not only confirms the advantages of TransConvNet in metabolomics clas-
sification tasks but also further supports the potential of MI-RF in metabolomics data 
applications.

In summary, the TransConvNet model proposed in this study outperforms traditional 
methods in prostate cancer metabolomics data classification. Comparisons with con-
ventional approaches demonstrate that the TransConvNet model effectively handles 
high-dimensional, high-noise, and high-variability metabolomics data. it exhibits strong 
classification performance and robust generalization capabilities across different data-
sets. Furthermore, the integration of the MI-RF model for biomarker selection success-
fully identified key features associated with prostate cancer, providing valuable insights 
for early clinical diagnosis. This method not only performed excellently in experimental 
data but also holds significant potential for application in clinical practice. TransCon-
vNet has the potential to assist healthcare professionals in extracting meaningful bio-
markers from complex metabolomics data, supporting early detection and personalized 
treatment of prostate cancer. In the future, the TransConvNet model is expected to 
expand its application scope by integrating more clinical data and multi-omics informa-
tion, providing a more intelligent and efficient tool for early warning, precise diagnosis, 
and optimization of treatment strategies for prostate cancer.
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