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Abstract 

Background: High-dimensional datasets with low sample sizes (HDLSS) are pivotal 
in the fields of biology and bioinformatics. One of core objective of HDLSS is to select 
most informative features and discarding redundant or irrelevant features. This is par-
ticularly crucial in bioinformatics, where accurate feature (gene) selection can lead 
to breakthroughs in drug development and provide insights into disease diagnostics. 
Despite its importance, identifying optimal features is still a significant challenge 
in HDLSS.

Results: To address this challenge, we propose an effective feature selection method 
that combines gradual permutation filtering with a heuristic tribrid search strategy, 
specifically tailored for HDLSS contexts. The proposed method considers inter-feature 
interactions and leverages feature rankings during the search process. In addition, 
a new performance metric for the HDLSS that evaluates both the number and quality 
of selected features is suggested. Through the comparison of the benchmark dataset 
with existing methods, the proposed method reduced the average number of selected 
features from 37.8 to 5.5 and improved the performance of the prediction model, 
based on the selected features, from 0.855 to 0.927.

Conclusions: The proposed method effectively selects a small number of important 
features and achieves high prediction performance.

Keywords: HDLSS, Feature selection, Machine learning, Filter method, Wrapper 
method

Background
In the current data era, information is recorded intricately across various dimensions. 
Consequently, the dimensionality of the data increases rapidly. High-dimensional data-
sets refer to data where the number of features (p) is considerably larger than the sample 
size (n). High-dimensional datasets have driven significant scientific discoveries in fields 
such as biology and bioinformatics by revealing previously unknown complex patterns. 
However, analyzing and utilizing high dimensional and low sample size (HDLSS) data-
sets remain a challenge for researchers [1–6].
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Microarray data are prime examples of HDLSS datasets. With the capacity to cap-
ture the expression of tens of thousands of genes, the core aim is to identify genetic 
variations in specific cancers or other genetically-related diseases [3]. However, a 
notable proportion of these genes either lacks direct relevance to the disease or exhib-
its substantial overlap in feature information, leading to redundancy [7]. Furthermore, 
owing to the patient-centric nature of these data, sample size was inherently limited. 
These aspects amplify risks such as overfitting and the curse of dimensionality [3, 4]. 
Consequently, developing cancer classification models and analyzing HDLSS datasets 
such as microarrays, pose intricate challenges for computer science researchers [7].

A fundamental approach for addressing these challenges in machine learning is 
dimensionality reduction via feature selection. The primary objective of feature 
selection is to filter out irrelevant and redundant features, thereby honing the most 
pertinent features relevant to the subject of interest. This enhances the clarity, gen-
eralizability, and predictive accuracy of classification models, concurrently reducing 
computational demands and boosting efficiency [1]. In bioinformatics, specifically, 
feature selection plays a critical role in uncovering potential avenues for drug devel-
opment and offering insights into disease diagnostics and causation [1–3, 8].

Identifying the optimal features is an NP-hard problem [3, 6, 8, 9]. Numerous fea-
ture-selection methods have been proposed to address this challenge. These meth-
ods are typically classified into three categories based on their interactions with the 
classification model: filter, wrapper, and embedded methods [3, 4]. The filter method 
takes a model-independent stance, assigns rankings to features based on metrics such 
as statistical or information-theoretic properties, and subsequently selects those that 
exceed a predetermined threshold. In contrast, the wrapper method incorporates a 
model-dependent approach, by selecting feature subsets based on the performance 
of a specific model. The embedded method differs from the wrapper method by inte-
grating feature selection directly into the model-training process.

Recent advancements in feature selection include methods based on graphs and 
deep learning frameworks. These methods aim to capture the intricate relationships 
among features. In the graph-based approach, features are visualized as nodes and 
their interrelationships as edges. This method determines the importance of features 
by analyzing the structural properties of a graph [6, 10–12]. Deep learning techniques 
for feature selection utilize neural networks with features as inputs [6–9, 12–14]. The 
significance of each feature is gauged by the magnitude of the gradients during net-
work training.

For HDLSS data, several studies on feature selection have adopted a hybrid 
approach involving two stages, filtering and searching, as illustrated on the upper 
side of Fig. 1 [7]. This approach seeks to harness the computational efficiency of filter 
methods and the high performance of wrapper methods. The filter method can be 
viewed as a preprocessing step that significantly reduces the search scope by eliminat-
ing unnecessary features. By contrast, the wrapper method refines the search within 
this narrow scope, aiming to identify the most optimal features more precisely [3, 7].

From the collective insights of previous studies on feature selection, we can draw 
the following conclusions:
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1. Understanding intricate relationships, such as the interactions between features, is 
pivotal. Previous methods often overlooked this aspect. For example, filter methods 
assume that each feature is independent and does not interact with any other feature.

2. Finding the optimal features for HDLSS is realistically difficult. An alternative is to 
find a better solution among several suboptimal features. Therefore, avoiding local 
optima is essential, as wrapper methods are particularly prone to this issue.

3. These two objectivess can be achieved by balancing the diversity and focus in the fea-
ture search space, introducing randomness during the search process, and employing 
a hybrid method that leverages both filter and wrapper techniques.

In this study, we propose a new metaheuristic method [15–19] to improve upon previ-
ous feature selection approaches for HDLSS datasets, aiming to achieve near-optimal 
performance with minimal features. By integrating gradual permutation filtering with 
a diverse search strategy, we designed our approach based on core principles. The key 
highlights of our method are as follows:

1. Filtering: Leveraging permutation importance, filtering accounts for feature interac-
tions and establishes a correct threshold.

2. Search: Through “consolation matches,” the nesting effect can be overcome, wherein 
a once-selected (or excluded) feature remains unaltered. Additionally, by varying 
“first-choice features,” the search range is expanded to approach a more global opti-
mum.

3. Runtime optimization: Using ranked features, the method efficiently reduces the 
search space.

4. Assessing the fitness of the selected features: We crafted a unique performance met-
ric for the HDLSS, providing a holistic perspective on feature quantity and quality.

The details are outlined in the next section.

Methods
Overall procedure

The proposed method also follows the general procedure of feature selection for HDLSS 
datasets. As illustrated on the lower side of Fig.  1 and elaborated in Algorithm  1, the 
proposed method comprises two primary phases: filtering and searching.

1. Gradual Permutation Filtering (GPF): This phase ingests all the HDLSS data features. 
It ranks features based on their permutation importance and subsequently eliminates 
irrelevant features (Algorithm 2).

2. Heuristic Tribrid Search (HTS): By leveraging the features ranked by the GPF, HTS 
employs a heuristic blend of forward search, consolation match, and backward elimi-
nation. This approach aims to identify the near-optimal feature set by considering 
both the number of features and classification performance using the features (see 
Algorithms 3–6).

The subsequent sections will delve into the specifics of each phase.
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Gradual permutation filtering

The GPF stage prioritizes features based on their permutation importance and elimi-
nates unimportant features. This method chooses features with an importance value 
greater than zero because values below this threshold often indicate redundancy or sug-
gest potential noise.

This method offers a refined approach for evaluating feature importance by adopting 
a gradual process of eliminating noise and recalculating the importance, thereby mini-
mizing the potential biases associated with single-step elimination. Considering that 
the permutation importance is evaluated within the evaluation group (features), the 
approach emphasizes filtering out irrelevant features and reevaluating the importance 
of enhancing purity, which is defined solely based on performance-impacting features. 
Notably, a gradual feature filtering method, as opposed to filtering all at once, provides a 
more precise selection of features with importance on the verge of 0.

To ensure robust feature selection, the GPF measures the permutation importance 
of each feature multiple times; i.e., 50 times in our case. In Algorithm 2, the constant 
variable M refers to the number of permutation test trials used for feature evaluation. 
Because permutation involves randomness, performing the test only once does not allow 
for an accurate assessment of feature importance. Based on our experiments, we deter-
mined that setting M to approximately 50 trials is appropriate. From these measure-
ments, the features that exceed the importance of zero for a specific threshold number 
were selected. For the selected features, the permutation importance was recalculated 
by applying a progressively higher threshold each time. This iterative process, detailed 
in Algorithm 2, refines the ranking of significant features. The final ranking of the fea-
tures was determined by averaging the last measured importance values of the features 
selected until the end.

Table 1 Comparison of two measures, LRR and LCM

Number of selected features Performance (AUC) LRR LCM

5 0.852 0.811 0.850

10 0.858 0.730 0.851

25 0.859 0.622 0.845

50 0.860 0.541 0.842
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Heuristic tribrid search

While the GPF is designed to filter out unimportant features, HTS focuses on identify-
ing the most informative features from a pool refined by the GPF. HTS operates in three 
distinct stages, forward search, consolation match, and backward elimination, as out-
lined in Algorithm 3.

We slightly modified the original forward search technique. The original technique 
began with an empty feature set and determined its first feature. In contrast, the pro-
posed method uses “first-choice feature” that is chosen from ranked feature list of GPF. 
This procedure incrementally adds to the feature set, guided by the performance incre-
ments detailed in Algorithm  4. The performance was measured using a classification 
metric based on the selected features.

When the performance increase caused by the selected features stops during the for-
ward search, the process shifts to “consolation match.” This stage aims to enhance the 
performance by swapping a single feature between selected and unselected feature 
pools, as depicted in Algorithm  5. This strategy offers an escape route from potential 
local optima. Notably, the duration of this stage depends on the volume of features ini-
tially filtered by the GPF. Techniques for expediting this stage are explored in subsequent 
sections.

If the consolation match yields improved performance, the forward search resumes 
further enhancements. However, if no such gains are evident, HTS transitions to a back-
ward elimination phase. This final stage discards any remaining unimportant features, 
thereby ensuring the relevance of the end feature set.

Importantly, at each stage of the HTS (Algorithms 4–6), the performance is gauged 
using a novel metric introduced in this study. This metric considers both the classifica-
tion performance of the model and feature count. An elaboration of this metric is pre-
sented in the following section.
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Algorithm 4 Forward_search (FILTERED, CL, SELECTED, max_fit, N)

Input: 
FILTERED - selected features sorted by ranking 

CL - class label vector 

SELECTED - selected feature list 

max_fit - maximum fit value 

N - Number of columns in original dataset 

Output: 
SELECTED - selected feature list 

max_update - max fit update status 

max_fit - maximum fit value

DO 
max_update • FALSE 

CANDIDATE • {columns of FILTERED } – SELECTED 

FOR each feature F IN CANDIDATE DO

TEMP • SELECTED  {F} 

        current_fit • fitness(CL, TEMP, N) 

IF current_fit > max_fit THEN
            max_fs • TEMP 

            max_fit • current_fit 

            max_update • TRUE     

        END IF   
END FOR 
IF max_update THEN 

SELECTED • max_fs 

END IF 
WHILE max_update 

RETURN SELECTED, max_update, max_fit 



Page 11 of 25Shin and Oh  BMC Bioinformatics          (2024) 25:390  

Algorithm 5 Consolation_match (FILTERED, CL, SELECTED, max_fit, N)

Input: 
FILTERED - selected features sorted by ranking 

CL - class label vector 

SELECTED - selected feature list 

max_fit - maximum fit value 

N - Number of columns in original dataset 

Output: 
max_fs - selected feature list with max fit value 

max_update - max fit update status 

max_fit - maximum fit value 

max_update • FALSE 

CANDIDATE • {columns of FILTERED } – SELECTED 

// Iterate over each feature in SELECTED and CANDIDATE to find an optimal swap 

FOR X IN SELECTED DO
  FOR Y IN CANDIDATE DO
       TEMP • (SELECTED - {X}) U {Y} 

       current_fit • fitness(CL, TEMP, N) 

IF current_fit > max_fit THEN
        max_fs • TEMP 

        max_fit • current_fit 

        max_update • TRUE 

   END IF     
  END FOR
END FOR 

RETURN max_fs, max_update, max_fit
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Log comprehensive metric for HDLSS datasets

Balancing the number of selected features with the classification performance is impera-
tive when working with HDLSS datasets. Therefore, this study proposes log-compre-
hensive metric (LCM). This metric, which is a refined iteration of the conventional 
fitness function, was meticulously designed for the HDLSS datasets, as elaborated in 
Algorithm 6.

Table 2 List of benchmark datasets

*  Dimensionality index = log(Numberoffeatures)/log(Numberofinstances ). It is a measure of how high-dimensional a given 
dataset is
** Balanced ratio: the proportion of the samples in lower class of the entire dataset. A value 0.5 is ideal for a binary class 
dataset

No Dataset Disease Instances Features Dimensionality 
Index*

Balance Ratio**

1 ALLAML Leukemia 72 7129 2.07 0.347

2 alon Colon Cancer 62 2000 1.84 0.355

3 borovecki Huntington 31 22,283 2.92 0.452

4 chiaretti Leukemia 128 12,625 1.95 0.422

5 chin Breast Cancer 118 22,215 2.1 0.364

6 chowdary Breast Cancer 104 22,283 2.16 0.404

7 GLI_85 Gliomas 85 22,283 2.25 0.306

8 gordon Lung Cancer 181 12,533 1.82 0.171

9 gravier Breast Cancer 168 2905 1.56 0.339

10 pomeroy CNS Tumor 60 7128 2.17 0.35

11 Prostate_GE Prostate Cancer 102 5966 1.88 0.49

12 shipp Lymphoma 77 7129 2.04 0.247

13 singh Prostate Cancer 102 12,600 2.04 0.49

14 SMK_CAN_187 Lung cancer 187 19,993 1.89 0.481

15 subramanian N/A 50 10,100 2.36 0.34

16 tian Myeloma 173 12,625 1.83 0.208

17 west Breast Cancer 49 7129 2.28 0.49

18 arcene 200 10,000 1.74 0.44

19 gisette 7000 5000 0.96 0.5

20 Hill_valley 1212 100 0.65 0.495

21 ionosphere 351 33 0.6 0.359

22 madelon 2600 500 0.79 0.5

23 sonar 208 60 0.77 0.466

24 wdbc 569 30 0.54 0.373
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Algorithm 6 Log_comprehensive_metric (CL, SELECTED, N)

Input: 
CL - class label vector 

SELECTED - selected feature list 

N - Number of columns in original dataset 

Output: 
LCM - log comprehensive metric value 

// Calculate the LCR metric using a weighted average of the LRR (Log Reduction Rate) derived 

from performance and selected feature count.  

CONST C • 0.005 // C is trade-off constant for feature count and performance. 

X • length of SELECTED// Number of selected features 

Y • log(2)/log(N) 

THETA • Y/(C+Y) 

PERFORMANCE • the average performance obtained with 5-fold and XGBoost on SELECTED 

and CL 

LRR • 1-log(X)/log(N) 

LCM • THETA*PERFORMANCE + (1-THETA)*LRR 

RETURN LCM 
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The widely used fitness function is described by Eq. (1). It constitutes a weighted sum 
of the model error and the ratio of the selected features to the total. The aim is to mini-
mize the following function:

By contrast, the LCM, expressed in Eq. (2), fuses the model’s classification success with 
the log reduction rate (LRR) using weighted factors. The objective is to maximize.

The parameter performance in Eq.  (2) denotes the evaluation metric for the model 
used in the HTS stage, which is a variation of the wrapper method. In this study, AUC 
is used as the performance metric; however, it is not restricted to AUC. Other metrics, 
such as accuracy or sensitivity—both ranging between 0 and 1—can also be applied. Fur-
thermore, the model for evaluating performance is not limited to XGBoost, offering flex-
ibility in the choice of algorithms. In Algorithm 6, performance values are computed as 
the average metric obtained from fivefold cross-validation.

LRR is further explained by Eq. (3). Its value fluctuates between 0 and 1 and approaches 
1 as the number of selected features decreases.

In contrast to the reduction rate (RR), which is formulated as RR = 1—(Number of 
selected features / Total number of features), the advantage of LRR lies in its enhanced 
sensitivity, especially when the number of selected features is small.

Table 1 demonstrates the effectiveness of the LCM measure. While the Performance 
(AUC) values are hypothetical, the LRR values are actual calculations based on the num-
ber of features, and the LCM values are derived from the Performance (AUC) and LRR. 
By focusing solely on the AUC performance, one might opt for the set with 50 features 
that presents the highest AUC. However, when evaluating based on the LCM, the most 
optimal feature set is that with only 10 features. This LCM-based selection results in a 

(1)

fitness = θ ∗ Error + (1− θ) ∗

(

Number of selected features

Total number of features

)

,where 0 ≤ θ ≤ 1

(2)LCM = θ ∗ Performance + (1− θ) ∗ LRR,where0 ≤ θ ≤ 1

LRR = 1− logab = 1− logb/loga,

where : 0 ≤ LRR ≤ 1,

(3)a = Total number of features, b = Number of selected features

Table 3 List of benchmark feature selection methods

No Feature selection method Description

1 F-statistic Filter method that measures the correlation between a feature 
and the class label using the F-test [23]

2 mRMR Filter method that incorporates redundancy measurement [24]

3 Permutation importance Filter method that considers feature interactions [25]

4 Infinite feature selection (INF) Graph-based filtering method [10]

5 GRACES Graph convolutional network-based feature selection [6]
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minor AUC performance drop of 0.002, but with the benefit of reducing the selected 
feature count by 40.

Experimental procedure
Benchmark datasets

To evaluate the previous and proposed feature selection methods, we utilized 24 publicly 
available datasets designed for binary classification, as presented in Table  2. Of these, 
No. 1 to 17 are cancer-related microarray datasets. The features within these microarray 
datasets represent gene expression profiles, which are often referred to as probes. These 
datasets were acquired from a widely-used R package, “datamicroarray” [20]. We also 
included additional datasets (No. 18 to 24) obtained from public databases [21, 22] to 
demonstrate that the proposed method is effective for non-microarray or non- HDLSS 
data. No. 1 to 18 are HDLSS datasets, while No. 19 to 24 are not.

Compared feature selection methods and experimental environment

To assess the efficacy of the proposed method, we compared it with various established 
feature selection methods, as presented in Table 3.

Among these, the first four adopted a filter-based approach. For each technique, 
feature rankings were computed and the top 100 features were selected. In the case 
of GRACES, a fixed number of features were produced. Hence, to maintain par-
ity with the number of features selected by the other methods, we set this count to 
100 and used the resulting rankings. The rankings for both INF and GRACES were 
determined after parameter optimization using fivefold cross validation.

Direct comparisons between any filter method and the proposed approach are 
challenging because filter methods do not explicitly indicate a subset of features that 
yield optimal performance. Consequently, it is imperative to identify the optimal 
feature subsets for benchmarking methods. For this purpose, we employed two dis-
tinct strategies: ‘simple sequential search’ and ‘forward search.’ In simple sequential 
search, the performance of the classification model was evaluated at each step while 
increasing the number of features from 1 to 100 based on the ranking of each fea-
ture, and the subset of features with the highest performance was selected. Forward 
search is similar to simple sequential search, but it continues selecting good features 
until no further improvement in performance is observed.

To evaluate the quality of the selected features, we applied the eXtreme Gradient 
Boosting (XGB) classifier, equipped with specific parameters, nrounds = 5, objec-
tive = ”multi:softmax”, while retaining default configurations for the remaining 
parameters. Owing to its established potency and computational efficiency, XGB is 
an appropriate choice for evaluating feature selection methods.

For the performance evaluation, we incorporated two metrics: Area Under the 
Curve (AUC) and LCM. AUC is a useful measure for comparing the performance 
of prediction models, especially when the classes of the dataset are imbalanced. As 
explained previously, LCM is suitable for evaluating both the classification perfor-
mance and the number of selected features in the HDLSS dataset. For our analy-
sis, a θ value of 0.8 was adopted as the reference point. The choice of θ = 0.8 was 
informed by a performance comparison between the proposed method and existing 
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methods across 24 datasets. Our method consistently outperformed Simple Sequen-
tial Search and Forward Search for θ values ranging from 0.7 to 0.9, with the optimal 
balance observed at 0.8. Figure  2 illustrates the overall process of the comparative 
experiments.

To orchestrate the efficacious experiments, we created two computational envi-
ronments, R and Python, as shown in Table  4. Although the rankings for GRACE 
and INF were procured within a Python framework, the search and evaluation 
phases for all the techniques were uniformly executed in the R environment. The 
associated experimental code is available at https:// bitld ku. github. io/ home/ sw/ heuri 
stic_ search. html.

Results
Number of selected features through GPF and HTS

The number of selected features is an important criterion for feature selection in the 
HDLSS datasets. The proposed method comprised two procedures for feature selection: 
GPF and HTS. The GPF filters useless features, and the HTS chooses informative fea-
tures from GPF results. Table 5 summarizes the results of the GPF and HTS analyses. 
Details are provided in Supplementary Table S1. During the GPF process, approximately 
98.2% of the total features were eliminated from the 18 HDLSS datasets. Conversely, in 
the six non-HDLSS datasets, the average feature reduction rate was 61.2%, indicating 
considerable variability among the datasets. Notably, datasets with fewer than 100 fea-
tures were not filtered. In the HTS phase, an additional 97.6% of the previously reduced 
features in the HDLSS dataset were excluded. The non-HDLSS datasets also exhibited a 
significant elimination rate, with an average of 98.3%. In conclusion, after the integrated 
application of both the GPF and HTS methodologies, the HDLSS datasets consistently 
selected 12 or fewer features, representing an average of merely 0.07% of the initial fea-
ture set.

Performance comparison based on simple sequential search

In this section, we compare the classification performance the previous and pro-
posed methods using the selected features. To determine the performance of the filter 
method, a simple sequential search was performed as described in the “Compared 
feature selection methods” section. AUC and LCM were used as performance criteria. 
A summary of the comparison results is presented in Table 6 and Fig. 3. Details are 
provided in Supplementary Table S2 and S3.

When compared using the AUC performance metric, the proposed method exhib-
ited equivalent or superior performance in 16 out of 24 datasets, while maintaining 
the lowest performance variability among all methods, as detailed in Supplementary 
Table S2 and S3. The AUC of our method exceeded that of comparative approaches, 
with margins ranging from 2.2 to 13.1%. However, the number of selected features 
was markedly reduced, averaging only 5.5 features, which is between 1/4 and 1/10 
that of the other methods selected.

Utilizing the LCM performance metric with a θ value of 0.8, our method displayed 
enhanced performance in 20 out of 24 datasets, representing 83.3%. This indicates 

https://bitldku.github.io/home/sw/heuristic_search.html
https://bitldku.github.io/home/sw/heuristic_search.html
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that when considering both the performance and influence of the number of selected 
features, the proposed method excels, highlighting its ability to achieve comparable 
or better results with fewer features.

Among the traditional methods, permutation exhibits the best performance, followed 
by F-statistics, mRMR, GRACES, and INF. Notably, GRACES and INF exhibited a ten-
dency to select a greater number of features than the other methods. Furthermore, INF 
was unable to produce results for datasets exceeding 20,000 features, and GRACES also 
encountered difficulties in generating results for specific datasets.

Performance comparison based on forward search

In this section, we compare the classification performances of previous methods and 
the proposed method. To determine the performance of the filter method, a forward 
and a simple sequential search was used as described in the “Compared feature selec-
tion methods” section. A summary of the results is presented in Table 7 and Fig. 4, 
and the complete experimental results are detailed in Supplementary Table S4 and S5.

Compared to the results in previous section, most filter methods showed an 
improvement in the AUC and significantly reduced the number of selected features. 
This trend suggests that the top 100 features chosen using traditional filtering meth-
ods exhibit high redundancy. A forward search helped remove many overlapping fea-
tures. In specific datasets subh as Alon, both the feature count and AUC decreased, 
which might indicate a fall into local optima.

Table 4 Experimental environment

Task Hardware OS Language Package (Library)

- F-statistics - mRMR 
-Permutation Importance 
- Proposed Performance 
evaluation

Processor:AMD 
Ryzen 9 5900X 
12-Core RAM:16GB, 
GPU:RTX3090

Windows 11 R 4.3.1 mlr 2.19.1
ranger 0.15.1
mRMRe 2.1.2.1
Parallel (base)
xgboost 1.7.5.1
caret 6.0–94

-GRACES
-INF

Processor:Intel 
i7=10700 16-Core 
RAM:32.0GB 
GPU:RTX3080

Ubuntu 20.04.6 LTS Python 3.8.10 pytorch 2.0.1
torch_geometric 2.3
sklearn 1.2.2
xgboost 1.7.6
numpy 1.24.3
pandas 2.0.2
scipy 1.10.1
INF(https:// pypi. org/ 
proje ct/ PyIFS/)
GRACES(https:// github. 
com/ canc1 993/ graces)

Table 5 Average number of features determined by proposed GPF and HTS procedures

Dataset Original(A) GPF(B) HTS(C) Reduction rate 
(1-B/A)

Selection 
rate (C/A)

HDLSS (1–18) 12,163.6 222.6 5.3 0.982 0.0004

Non-HDLSS (19–24) 954.8 370.8 6.3 0.612 0.0066

https://pypi.org/project/PyIFS/
https://pypi.org/project/PyIFS/
https://github.com/canc1993/graces
https://github.com/canc1993/graces
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Using the AUC metric, the proposed method matched or exceeded the performance of 
the other methods on 20 of the 24 datasets (83.3%). It also exhibited the lowest variabil-
ity in performance. The AUC of the proposed method was between 2.2 and 11.1% higher 
than those of the other methods. Although the comparative methods selected fewer fea-
tures on average than the sequence results, the proposed method consistently selected 
the least number of features. Furthermore, when using the LCM with θ at 0.8, the pro-
posed method outperformed other methods in 21 of the 24 datasets (87.5%).

Execution time of the proposed method

Supplementary Table  S6 lists the average runtimes of our method over 30 iterations 
for the HDLSS datasets. The Arcene dataset required approximately 12 min, the long-
est duration, whereas 16 out of the 18 datasets completed the feature selection within 
5 min. Notably, the HTS phase constituted 77% of the total duration, with 94% spiking 
in some cases. The execution times for both GPF and HTS increased proportionally with 
instance size. Conversely, apart from SMK_CAN_187, the GPF duration remained rela-
tively consistent irrespective of the feature count, whereas HTS showed a pronounced 
rise as the features increased. In essence, the duration of the HTS phase significantly 
shapes the total runtime, with the efficiency of the GPF in transmitting a reduced feature 
set being pivotal to the HTS timeframe. In conclusion, the average execution time of the 
proposed method is 169 s (2.8 min), which is reasonable.

Discussion and conclusions
The essence of feature selection lies in effectively finding a subset that is close to the 
global optimum, where the relevance to the class is high and the redundancy between 
features is low. We proposed two methods, GPF for filtering and HTS for searching and 
verified their superior performance compared to those of other methods. Particularly, 
for microarray datasets with HDLSS properties, we selected a minimal subset of core 
features within a reasonable time. The advantages of the proposed method are summa-
rized as follows:

Incorporating feature interactions for relevance measurement in the filtering stage: 
Oh [26] experimentally and theoretically proved that the importance of a feature can 
be decomposed into its intrinsic predictive power (feature power) and the effect aris-
ing when combined with other features (interaction). The importance of a feature not 
only lies in its intrinsic power but also varies depending on the surrounding features. 

Table 6 Comparison of the number of selected features, AUC, and LCM between the proposed 
method and previous works using simple sequential search

Method Selected features AUC LCM

F-statistics (FS) 32.9 (± 32.7) 0.891 (± 0.092) 0.833 (± 0.103)

mRMR (MR) 27.8 (± 26.9) 0.874 (± 0.116) 0.824 (± 0.122)

Permutation (PE) 21.7 (± 26.4) 0.905 (± 0.089) 0.855 (± 0.095)

INF 55.3 (± 36.3) 0.796 (± 0.125) 0.731 (± 0.097)

GRACES (GE) 51.3 (± 31.1) 0.816 (± 0.122) 0.748 (± 0.105)

Proposed (PRO) 5.5 (± 3.3) 0.927 (± 0.082) 0.900 (± 0.079)
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Therefore, the relevance between the subset and class can be evaluated more accu-
rately by considering feature interactions. As we progressively filtered out features with 
low importance in the filtering stage and then measured their importance within the 
refined subset, we were able to accurately measure the interactions based on this subset. 
Although the permutation importance method we used does not explicitly distinguish 
between feature power and interaction, it is clear that the interaction effect is reflected 
within the importance.

Elimination of redundancy among features during the search stage: While basic per-
mutation importance can account for interactions between features, it does not capture 
redundancy. Thus, there is a possibility that highly redundant features exist within the 
filtered subset. By contrast, the proposed HTS can exclude redundancy among the fea-
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only enhances the computational efficiency during the search phase but also avoids per-
formance degradation.

Expended search space to get better features: Beyond “consolation match”, we incor-
porated a semi-random approach to pinpoint the global optimum. At the start of the 
search, we considered multiple candidate features with high importance to alter the 
first-choice feature and selected the feature subset with the best performance. From our 
observations, the optimal feature set frequently emerged when the first-choice feature 
was not ranked as the top feature.

Selection of a sufficiently good features for microarray datasets: To understand or 
diagnose complex diseases, it is essential to not only achieve high predictive (classifi-
cation) performance but also identify pivotal biomarkers (features) [27]. For example, 
a predictive accuracy of 0.82 with 20 features is more meaningful than an accuracy 
of 0.85 with 120 features. Although the proposed method does not always result in a 
better predictive performance than the other methods, the derived features are very 
compact with a decent prediction performance. Therefore, it would be helpful to 
identify novel genes associated with diseases.

Usefulness of selected features by the proposed method: Microarray-related papers 
typically present a list of important genes derived through simple statistical analy-
sis, without experimental validation. Therefore, it is difficult to demonstrate that the 
features (genes) identified by the proposed method are experimentally useful. In the 
case of chiaretti dataset, the proposed method selected five genes—ITM2A, IGF2R, 
FADS1, CDK14, and PON2—which are related to lymphoblastic leukemia. The origi-
nal paper [29] identified 31 important genes, among which only ITM2A overlaps with 
the proposed method’s results; the other four genes are newly discovered. Through a 
literature analysis, we confirmed that these four genes are also associated with lymph-
oblastic leukemia, as shown in Table 8. These findings indirectly demonstrate that the 
proposed method produces biologically meaningful results.

In our proposed method, during the consolation match, we specifically operated on 
the latter half of the selected features and the former half of the non-selected features. 
Unexpectedly, when we expanded this search range during our experiments, a decline 
in the performance was observed. This phenomenon raises questions that require fur-
ther exploration, particularly concerning feature interactions. This is a topic for fur-
ther research.

Table 8 Studies demonstrating the association of selected genes with lymphoblastic leukemia

Gene Paper title Reference

IGF2R IGF Signaling Predicts Outcomes and Is a Promising Target Therapy for Acute Myeloid 
Leukemia

[30]

FADS1 Fatty acid desaturase 1 (FADS1) is a cancer marker for patient survival and a potential novel 
target for precision cancer treatment

[31]

CDK14 Prediagnostic transcriptomic markers of Chronic lymphocytic leukemia reveal perturba-
tions 10 years before diagnosis

[32]

PON2 PON2 subverts metabolic gatekeeper functions in B cells to promote leukemogenesis [33]
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