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Abstract 

Background:  Ortholog prediction, essential for various genomic research areas, faces 
growing inconsistencies amidst the expanding array of ortholog databases. The com-
mon strategy of computing consensus orthologs introduces additional arbitrariness, 
emphasizing the need to examine the causes of such inconsistencies and identify 
proteins susceptible to prediction errors.

Results:  We introduce the Signal Jaccard Index (SJI), a novel metric rooted in unsuper-
vised genome context clustering, designed to assess protein similarity. Leveraging SJI, 
we construct a protein network and reveal that peripheral proteins within the network 
are the primary contributors to inconsistencies in orthology predictions. Furthermore, 
we show that a protein’s degree centrality in the network serves as a strong predictor 
of its reliability in consensus sets.

Conclusions:  We present an objective, unsupervised SJI-based network encom-
passing all proteins, in which its topological features elucidate ortholog prediction 
inconsistencies. The degree centrality (DC) effectively identifies error-prone orthology 
assignments without relying on arbitrary parameters. Notably, DC is stable, unaf-
fected by species selection, and well-suited for ortholog benchmarking. This approach 
transcends the limitations of universal thresholds, offering a robust and quantitative 
framework to explore protein evolution and functional relationships.

Keywords:  Signal Jaccard index (SJI), SJI network, Orthology, Discontinuity in 
macroevolution

Background
Our biological understanding, confirmed through laboratory experiments, is derived 
mainly from a few model organisms. To illustrate, recent statistics from UniProtKB/
TrEMBL show that proteins verified ’at the protein level’ comprise less than 1‰ of the 
total 250 million proteins (Release 2023_02, https://​www.​unipr​ot.​org/). Given its vital 
role in transferring knowledge from model organisms to many other species [1, 2], 
orthology is arguably one of the cornerstones of biological studies. Over recent decades, 
biologists and data scientists have devoted significant effort to identifying orthologs, 
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leading to various computational methods and databases that advance biological 
research [3]. Nevertheless, consistency issues among these ortholog databases have sur-
faced [4–6], casting doubt on the accuracy of some studies. For instance, pan-genome 
studies heavily depend on the differentiation between core and accessory genes, a dis-
tinction that forms the basis for subsequent analyses [7].

A recent report shows a mean consistency of around 0.52 [6] among renowned 
ortholog databases such as eggNOG [8, 9], OrthoFinder [10], and Broccoli [11]. This 
inconsistency prompts an examination of its origins: are they technical or biological? 
On the technical side, we could investigate the impact of species selection and arbitrary 
parameters, such as the e-value or the number of top similar proteins used in the ini-
tial ortholog prediction steps. Since these parameters differ across algorithms, they may 
contribute to the observed inconsistency. Additionally, given the diverse selection pres-
sures on proteins, we should assess the suitability of using uniform parameters for all 
proteins. Moreover, many algorithms are heuristic [10], raising the question: could the 
inconsistencies stem from the orthology prediction algorithms themselves? On the bio-
logical side, we need to identify which proteins are susceptible to inconsistent ortholog 
predictions and investigate if they possess common evolutionary traits leading to this 
inconsistency.

Until these concerns are fully addressed, the common practice is to derive consen-
sus from multiple ortholog predictions [3, 4]. However, generating consensus orthologs 
introduces subjective elements at several stages. First, the choice of algorithms and data-
bases to compute consensus orthologs is largely discretionary, often dependent on the 
researcher’s preferences or available resources. Second, the consensus threshold—the 
percentage of algorithms returning the same ortholog predictions—also adds an ele-
ment of arbitrariness. Finally, because the comparison primarily involves sets of proteins 
rather than individual pairs, determining whether these sets are "similar enough" to be 
consolidated into a consensus set involves yet another subjective decision.

Thus, efforts to improve consensus orthologs are gaining significant attention in the 
biological sciences community. The Quest for Orthologs (QfO) consortium has created 
the Orthology Benchmark Service, widely viewed as the "gold standard" for orthology 
prediction [3]. This benchmark includes expertly curated ortholog pairs from sources 
like SwissTree and TreeFam-A, species phylogenetic trees derived from these orthologs, 
and functional annotations such as those from Gene Ontology [3]. The establishment 
of QfO has revolutionized ortholog prediction practices, with all new algorithms now 
benchmarked against this gold standard, allowing for refined parameter tuning [11]. 
While QfO signifies a considerable advancement in the quality of ortholog predictions, 
theoretically, its lack of "true negative" sets [12] might limit its ability to reduce incon-
sistency as the quantity of ortholog predictions expands [6].

Consequently, we propose a shift from the existing one-class classification methodol-
ogy to a ranking or scoring framework for benchmarking ortholog predictions. A scoring 
approach offers two advantages: first, as every ortholog prediction inherently involves 
a degree of uncertainty, scoring represents a well-established strategy to manage this 
challenge [12]. Several existing models exemplify this, such as the ratio R in the recently 
developed Broccoli prediction [11], the duplication consistency score from Ensembl 
Compara [13], and the InParanoidDB confidence value for inparalogs and seed orthologs 
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[14]. Implementing a scoring system in the gold standard removes exclusive reliance on 
a single positive label; instead, scores can guide the optimization of parameters, align-
ing them more closely with the intended purpose. Second, and more importantly, scor-
ing can highlight orthologs with low confidence, which may produce inconsistent results 
across different algorithms, prompting more detailed analysis.

A scoring system for ortholog confidence should factor in two key dimensions, as in 
the QfO benchmarking service: phylogeny and functional conservation [3]. Numerous 
existing scoring systems [11, 13, 15] prioritize phylogeny, offering promising metrics 
and suggesting potential for their integrated use in a comprehensive scoring system. 
However, developing an objective metric for the other dimension, protein functional 
conservation, remains a challenge. Current methods, which rely primarily on Gene 
Ontology or Enzyme Commission conservation tests, essentially depend on experi-
mental results from a few selected model organisms and protein sequence alignment. A 
common practice of using sequence conservation to gauge function has inherent short-
comings: different proteins are subjected to varying selection pressures, which renders 
sequence similarities an ineffective measure for evaluating ortholog functional conserva-
tion across protein families. Given the routine use of orthologs for genome annotation 
and functional comparative genomics, protein function conservation has been integral 
to ortholog prediction since the advent of the BBH (Bidirectional Best Hit) and COG 
algorithms [16]. BBH, as the first algorithm to incorporate genome context in ortholog 
prediction, posits that the mutually most similar protein pairs in different organisms 
likely share the same function [5, 16]. However, this assumption can be disrupted by 
evolutionary phenomena like sub-functionalization and neo-functionalization [5], sug-
gesting that the most similar genes may not necessarily perform identical functions. 
Furthermore, gene duplication can compromise the integrity of BBH ortholog groups 
[5]. Although mitigation strategies exist, such as PANTHER’s ’least diverged orthologs 
(LDO)’ approach [17] and the OMA Group’s methodology [18], they often overlook 
inparalogs, which play a crucial role in projecting biological function across species [19, 
20]. In response, we propose a protein network-based scoring system that facilitates 
cross-family evaluations of protein sequence and functional conservation, and, crucially, 
incorporates inparalogs into the scoring metric.

We constructed our protein network based on a metric inspired by studies on protein 
fitness. Protein fitness represents a protein’s functional performance that is not solely a 
product of its sequence but is also influenced by the overall genomic context and envi-
ronmental factors [21]. Recent studies highlight that the evolution of amino acids within 
protein sequences is not an independent process, especially when considering protein 
fitness [22, 23]. This concept of interconnectedness in amino acid mutations inspired 
our hypothesis of ’discontinuous’ evolution in protein sequences: within an ortholog 
group (OG), amino acid substitutions can accumulate without altering the OG’s func-
tion, implying continuous evolution toward a common fitness peak; conversely, the 
emergence of new OGs, driven by substantial amino acid mutations, fosters functional 
divergence, which might be represented as separate peaks on a fitness landscape. This 
prompts the question: Can discontinuous evolutionary patterns between proteins be 
detected solely through comparisons of protein repertoires and sequence data across 
species? Our hypothesis suggests that these discontinuities, analogous to valleys 
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between fitness peaks, can be identified by analyzing protein repertoire and sequence 
data, without direct fitness measurements.

Accordingly, we test this hypothesis of discontinuous protein evolution and propose 
a network-based method to include inparalogs in high-confidence ortholog groups 
(OGs), comparable to PANTHER’s LDO [17] and OMA Groups [18]. In our approach, 
we first apply an unsupervised spectral clustering algorithm to identify ortholog candi-
dates, named "signals," which can accommodate varying selection pressures on different 
proteins. Subsequently, we devise a Signal Jaccard Index (SJI) metric to gauge protein 
similarity, independent of predetermined arbitrary parameters. Utilizing SJI allows us 
to quantify the similarity between each pair of proteins, laying the foundation for con-
structing our derived protein network. In this network, each protein’s degree centrality 
(DC), representing the sum of all connected edge weights measured by SJI, becomes a 
pivotal component of our proposed scoring system. Our method can discern the selec-
tion pressures influencing varying protein sequence similarity and highlight the main 
inconsistencies in existing ortholog databases: fast-evolving large ortholog groups and 
proteins that are part of small ortholog groups. These proteins that challenge ortholog 
predictions typically appear in peripheral regions of our derived protein network, signi-
fied by low DC values.

Lastly, we show that DC serves as a very efficient score for refining consensus 
orthologs, the intersections of predictions from various algorithms or databases. And 
using DC to score protein fitness bypasses the need for complex operations to identify 
intersections from multiple ortholog databases. It also eliminates potential arbitrari-
ness introduced by the choice of parameters in calculating database intersections. Fur-
thermore, we elaborate on inferences drawn from the topology of the derived network. 
By introducing protein DC, we aim to stimulate discussions on the creation of a more 
objective orthology scoring system.

Methods
Eukaryotic proteomes and selection of bacterial proteomes

The Quest for Orthologs (QfO) Benchmarking service, a community-driven web service, 
was our primary source for eukaryotic proteomes. This platform is dedicated to facilitat-
ing the benchmarking of ortholog prediction methods. From QfO, we procured the 2021 
version of 48 eukaryotic reference proteomes [24].

We recognized that QfO does not include an extensive collection of bacterial genomes, 
so we sought additional resources. We turned to the EMBL-EBI to download a broad 
range of bacterial genomes. However, we noticed a pronounced bias in the bacterial 
species that had been fully sequenced, with a preponderance of pathogens and model 
organisms represented.

To alleviate this bias and ensure an equitable representation of bacterial diversity, we 
employed a phylogenetic tree from Greengenes, based on 16S rRNA data from 2013 
[25]. We partitioned this tree into 400 clades, ensuring that the evolutionary distances 
amongst these clades were approximately equivalent. We selected one genome from 
each of these clades, resulting in a collection of 367 bacterial proteomes. Notably, some 
clades did not include fully sequenced genomes.
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In summary, we carefully selected a diverse range of bacterial and eukaryotic pro-
teomes used in our study to minimize bias and maximize the representation of evolu-
tionary history. All these proteomes are available at our dedicated online repository, 
www.​protdc.​org.

2D plot and spectral clustering to detect signals

In our study, we treated each protein as a seed. Using the OPSCAN tool [26], we identi-
fied the top 10 and 50 most similar proteins from bacterial and eukaryotic proteomes, 
respectively. OPSCAN computes full-length global protein similarity via the NWS algo-
rithm [26], helping to bypass chimeric protein issues associated with local alignment 
similarities. To address the complication of multiple protein domains, we selected top 
similar proteins considering a length difference ratio (longer to shorter protein) of less 
than 1.5.

We then plotted each seed and its similar proteins on a 2D plot (Fig.  1A), with the 
x-axis representing the protein length ratio (ranging from 1 to 1.5), and the y-axis show-
ing protein sequence similarity. In each 2D plot, we utilized a spectral clustering algo-
rithm [27] to distinguish signals from noise. The primary steps of this algorithm are as 
follows:

1.	 Input: Two-dimensional points of size n, where n represents the number of proteins.
2.	 Zero Mean Normalization: Conduct normalization on both dimensions.
3.	 Graph Construction: Develop a similarity graph G by calculating the Euclidean dis-

tance between each point, and generate the adjacency matrix A and degree matrix D.
4.	 Laplacian Matrix: Compute the random walk normalized Laplacian matrix 

Lrw = D−1L = I-D−1A.
5.	 Cluster Determination: Ascertain the number of clusters k that maximizes the eigen-

gap.
6.	 Eigenvalue and Eigenvectors: Identify the smallest k eigenvalues and corresponding 

eigenvectors x1, …, xk of Lrw.
7.	 Matrix Creation: Denote U as a matrix containing eigenvectors x1, …, xk as columns, 

its size is n x k, and n represents the number of points.
8.	 K-Means Partition: Implement the K-Means algorithm on matrix U to segregate the 

data points into k clusters C1, …, Ck.
9.	 Output: Clusters C1, …, Ck.

Our setup ensures that the largest cluster, characterized by the highest density, repre-
sents noise. Occasionally, a few smaller clusters emerge to the right of the largest cluster. 
These clusters, owing to their excessive protein length difference, are also classified as 
noise. In contrast, all other clusters that are noticeably separated from these noise clus-
ters are considered signals.

To evaluate the performance of our clustering, we outlined a convex hull around the 
noise. We defined signal Positive Predictive Value (PPV) as the proportion of signal 
proteins that lie above this noise hull (Fig. 2E). The convex hull was designed using the 
qhull algorithm from the SciPy Python package [28, 29]. Additionally, we scrutinized the 
BLAST E-values between seed-signal and seed-noise pairs.

http://www.protdc.org
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Derived protein similarity network

To distinguish signals from noise, we considered the biological information encom-
passed within the entire proteome. Each protein serves as a seed, and seeds belonging 
to the same fitness landscape peak should have a better signal overlap. As such, we uti-
lized the Jaccard similarity coefficient as an indicator to measure the functional similar-
ity between seeds. As depicted in Fig. 1B, we calculated the Signal Jaccard Index (SJI), 
defined as the intersection of two signal sets divided by their union. The SJI measures 

Fig. 2  Discontinuous protein sequence evolution across OGs. A Density plot illustrating the density of 
signals and noises for the human olfactory receptor OR52K1. Density is computed based on kernel estimation 
using the kde2d R package [52]. B Another density plot example featuring ugpE, a transmembrane 
component of the E. coli ABC transporter. C Convex hull outlining the noises of OR52K1, drawn using the 
qhull algorithm from the SciPy package. D Convex hull outlining the noise associated with ugpE. E Schematic 
figure illustrating the definitions of True Positive (TP), False Positive (FP), and Positive Predictive Value (PPV). F 
Evaluation of signal precision rate. This diagram summarizes the signal PPV for all 2 million seeds. The signal 
PPV on each 2D plot is defined as the percentage of signals appearing above the noise-convex hull. The 
x-axis represents the PPV critical values, and the y-axis represents the percentage of 2D plots meeting each 
PPV criterion
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functional similarity and serves as the edge weight between all pairs of seeds, thereby 
enabling the automatic construction of a function-oriented network that connects all 
proteins (Fig. 1C). 

Ortholog group detection

We identified ortholog groups as communities in the network using the Louvain algo-
rithm [30], designed to maximize community modularity [31]. Due to inevitable low-
weight edges, our initial network was extensive, which necessitated multiple applications 
of the Louvain algorithm. To address this, we employed a stepwise zoom-in strategy 
until communities reached a density threshold. The density "D" of a community consid-
ers the edge weights and is defined by the following formula:
D =

2·�u∈N ,v∈N ,u�=vW (u,v)

|N |·|N−1|
.

Here, N represents the number of nodes in a community, and W represents the weight 
between nodes u and v. Our ortholog group detection procedure is as follows:

1.	 Input: A weighted protein similarity network.
2.	 Compute the network density D using the formula above. If D exceeds a certain 

threshold, halt the network cutting process and designate the current network as an 
Ortholog Group (OG). If not, proceed to step 3.

3.	 Apply the Louvain algorithm to dissect the current network into sub-networks.
4.	 For each resulting sub-network, update the edge weights considering only the nodes 

(seeds) included in that sub-network.
5.	 Repeat steps 2–4 for each sub-network.

Benchmark orthology databases

To assess our OGs, we submitted our ortholog pairs to the QfO Benchmarking service. 
We first built phylogenetic trees following the eggnog41 workflow suggested by eggNOG 
[3] using the ETE toolkit v3 [32] for our OGs (including the set with density ≥ 0.25), and 
then obtained ortholog pairs via the species overlap algorithm [33]. We limited our com-
parison to eukaryotic OGs due to differences in bacterial proteomes, and submitted our 
results to benchmark against QfO’s TreeFam-A ortholog pairs.

In addition, as our method’s metric and network emphasize biological constraints in 
the genome context, we also compared our OGs to those from TreeFam, eggNOG, Broc-
coli, OrthoFinder, OrthoDB, and SonicParanoid using the Adjusted Rand Index (ARI) 
and Adjusted Mutual Information (AMI), two standard measures for clustering compar-
ison. While ARI gauges consistency based on pair counts, AMI utilizes Shannon infor-
mation [34].

Results
Delineating signal from noise: an unsupervised method for 2D protein similarity plot 

analysis

Previous studies on the protein fitness landscape and sequence evolution [22, 23, 35] 
inspired our current work. One study suggested that proteins could elevate fitness 
by undergoing extensive amino acid mutations [35]. Another study demonstrated 
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strong correlations between mutations at different amino acid sites, limiting the num-
ber of independent evolutionary paths from a given protein sequence [22]. Addition-
ally, a machine learning model developed a low-dimensional space, elucidating the 
relationship between protein sequence evolution and fitness stability [23]. This low-
dimensional space suggests that amino acid mutations are interdependent [23]. The 
significance of these correlations was also evident in protein sequence diversity [36]. 
These findings suggest a discontinuous protein sequence evolution hypothesis: if we 
view Ortholog Groups (OGs) from a protein functional adaptation standpoint, OGs 
should appear as distinct "peaks" on the protein fitness landscape. Each peak encap-
sulates critical, mutually constrained amino acid positions essential to protein func-
tion. When adapting to new functions, proteins undergo significant mutations, thus 
creating another peak with a distinct set of mutually constrained positions. Other 
positions, subject to less restrictive, independent mutations, result in continuous 
sequence variation within the OG.

Drawing upon these insights, we devised a simple two-dimensional (2D) plot as an 
economical means to test this hypothesis. This plot’s axes are protein sequence simi-
larity and protein length difference. We utilized a bacterial protein A as a "seed" for 
illustration in Fig. 1A. We selected the top 10 proteins most similar to seed A from 
each of the 367 chosen bacterial genomes (Methods), resulting in a total of 3670 pro-
teins. We chose the top 10 to encompass both ortholog candidates ("signal") and a 
"sufficient excess" of distant homologs ("noise") of seed A in one plot, given the rarity 
of finding 10 or more inparalogs from the same species for a bacterial ortholog group 
(according to the data from InParanoid 8, the average count of inparalogs per spe-
cies is 1.41 [37]). Considering that the entire genome context or protein repertoire 
encodes all functions within a species, our focus was on the top 10 most similar pro-
teins from each prokaryotic species. This selection is based on the premise that func-
tionally consistent orthologs, if present, are assured to be among these top proteins. 
The number 10 is considered sufficiently large for bacterial genomes to ensure that 
the majority of these proteins—totaling 3670 across various species in this demon-
stration—have undergone significant functional evolutionary events. Consequently, 
these proteins are likely to belong to distinct fitness peaks, thus forming separate 
OGs. This design allows us to examine whether there is a "valley" that separates "sig-
nal" from "noise" on our 2D plot. The discontinuous hypothesis posits the "valley" as 
evidence of distinct evolutionary paths. We separately applied this test to prokary-
otic and eukaryotic proteins. Due to the complexity and high gene duplication rate 
of eukaryotic genomes [38], we expanded our selection to the top 50 for eukaryotic 
proteins (Methods). Given the dose imbalance effect in eukaryotes [39] and based on 
a survey of existing ortholog databases, the top 50 ensures that eukaryotic 2D plots 
contain sufficient noise.

To illustrate the distinction between signal and noise, we spotlight two particularly 
challenging proteins in Fig. 2AB: the E. coli ugpE and the human olfactory receptor 
52K1. Each represents one of the most expansive and rapidly evolving protein families 
in their respective domains, prokaryotes and eukaryotes [40, 41]. We have generated 
2D plots for all 1,231,088 bacterial and 889,930 eukaryotic seed proteins, demonstrat-
ing this demarcation. In most plots, signal and noise regions do not share a border, 
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presenting a "gap" rather than a "valley," indicating a clear distinction. Additional 
illustrations of this gap are shown in Supp. Figure 1. All these 2 million plots are pub-
licly available at www.​protdc.​org.

Beyond example observations, we conducted statistical validation. We applied a 
spectral clustering algorithm (Methods), successfully identifying the valleys that 
separate signals from noise for the two challenging seed proteins discussed earlier 
(Fig. 2CD). This spectral clustering approach is unsupervised, focusing solely on the 
data’s inherent structure without reliance on preset parameters. It generates clusters 
based on the density of data points on the 2D plot. Importantly, a protein’s relative 
proximity to the seed on this plot does not influence the clustering (Methods). As 
a result, the noise proteins congregate in an irregular area at the lower part of the 
2D plot (Fig. 2C–E). To assess signal reliability, we draw a convex hull enclosing this 
irregular noise area; signals falling within this hull are considered "false positives" due 
to their lower sequence similarity or greater protein length difference relative to cer-
tain noise proteins (Fig. 2E).

By delineating a convex boundary for the noise data points, we can estimate the 
Positive Predictive Value (PPV) of the predicted signals. As depicted in Fig. 2E, true 
positives (TP) are signals located above the noise convex hull, while false positives 
(FP) are signals found within this hull. We define the signal’s PPV as TP/(TP + FP) 
(Fig. 2E). Remarkably, more than 90% of these 2 million plots achieved a PPV of 100% 
(Fig. 2F), with no signal data points falling within the noise convex hull. Furthermore, 
an impressive 98.5% of 2D plots from eukaryotes and 97.7% from prokaryotes main-
tained a PPV exceeding 95% (Fig. 2F).

We additionally assessed the BLAST E-value of seed-signal pairs. The E-values for 
these pairs were strikingly significant, with over 97% (comprising 208 million prokary-
otic and 47 million eukaryotic pairs) exhibiting E-values less than 10^-6. Interestingly, 
there were also 150 million prokaryotic and 46 million eukaryotic seed-noise pairs 
presenting strong E-values less than 10^-6. Given the evident distinction between sig-
nals and noise (Supp. Figure 1), these compelling E-values beneath the valleys suggest 
caution against the exclusive reliance on E-values or arbitrary similarity cutoffs in 
the selection of candidate orthologs. This is especially pertinent as these "significant" 
noise data points are intertwined with and inseparable from other "less-significant" 
noise data points. It’s important to note that the Y-axis on our 2D plots is based on 
the score of protein full-length global alignment (Methods), while the BLAST E-value 
is determined by local alignment.

In conclusion, our results substantiate the hypothesis that protein sequence evolu-
tion is discontinuous as Ortholog Groups (OGs) diversify and new functions arise. 
The discernible demarcation between signal and noise, coupled with high signal 
PPV, evident across all 2D plots (Fig. 2F), underscores this notion. It’s worth noting 
that this hypothesis pertains to protein evolution across species—a macroevolution-
ary context. Instances where single point mutations lead to substantial functional 
changes, such as sickle cell anemia, fall within a microevolutionary context, operat-
ing on a different evolutionary scale. While this hypothesis presents a general trend 
applicable to most protein evolution, rare exceptional cases may exist where proteins 
share the same function despite low similarity.

http://www.protdc.org
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Introduction of the SJI metric and its application in building a protein network

By discerning signals from noise, we could evaluate the overlap of signals originating 
from different seed proteins. If two seeds belong to the same OG, their respective signal 
sets are expected to overlap significantly. This high degree of overlap also indicates a 
high level of functional similarity between the seed proteins. We quantified this over-
lap using the Signal Jaccard Index (SJI), as illustrated in Fig.  1B. SJI evaluates protein 
similarity using the Jaccard index, which is calculated by dividing the intersection by the 
union of the ’signals’ for each pair of proteins. The calculated SJIs for prokaryotic and 
eukaryotic seeds are summarized in Supp. Figure 2AB. Notably, for 208 million pairs of 
prokaryotic seeds, the median SJI was 0.70, while for 48 million eukaryotic seed pairs, 
the median SJI was 0.63.

We view SJI as an enhancement of the BBH approach. While BBH identifies protein 
pairs based on a 1:1 mutual best match, it overlooks proteins resulting from recent 
duplication that have the same function or proteins that underwent sub-/neo-func-
tionalization and now belong to different OGs. In contrast, SJI can account for these 
nuances. A distinct boundary between signals and noise emerges when sufficient noise 
is incorporated into the 2D plot. Proteins derived from recent duplication that retain 
the same fitness will likely fall within the signal set. Conversely, sub-/neo-functionalized 
proteins—provided that they’re not evolutionary transients and their functional diversi-
fication events occurred long ago—should be found within the noise group.

Having computed the SJI values for all seed proteins, we proceeded to construct a net-
work linking all proteins. Networks are potent tools for integrating and refining biologi-
cal information, often filtering out spurious low-SJI connections, thus yielding reliable 
biological insights from their topology [42]. Proteins under strong evolutionary pres-
sure, consistently exhibiting high SJI values, are categorized into communities. In con-
trast, unique proteins with multifunctionality due to domain variation may demonstrate 
high betweenness centrality. Supp. Figure  2C–H offers an overview of the initial net-
work, presenting all proteins as nodes and SJIs as weighted edges.

Predicting ortholog groups

Low SJI between some proteins is unavoidable, leading to an extensive initial network 
encompassing nearly all proteins. However, the evident community structure within the 
network enables us to apply a stepwise clustering strategy to delineate OGs (Methods). 
We utilized a weighted community density as the cluster convergence threshold (Meth-
ods), the only parameter users need to decide on in this work, which influences the 
OG size. We present two sets of OGs based on two thresholds: density ≥ 0.25 and den-
sity ≥ 0.1, in our online database (www.​protdc.​org). The higher threshold (density ≥ 0.25) 
implies that, on average, > 50% of nodes within an OG are connected, with edge weights 
(SJIs) > 0.5. This stringent threshold yielded 73,503 eukaryotic OGs and 72,541 prokary-
otic OGs. Lowering this threshold permits the inclusion of more distant orthologs into 
the OG. The lower threshold (density ≥ 0.1) resulted in 53,418 eukaryotic OGs and 
50,939 prokaryotic OGs.

Since our OGs stem from network communities, we assigned a degree centrality (DC) 
to each protein. DC, normalized by OG size, reflects the extent of overlap between a 
protein’s signal set and its neighboring proteins. We performed a bootstrap analysis to 

http://www.protdc.org
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assess the network structure’s stability and the reliability of protein DCs. In this process, 
we randomly removed 10% of proteins, followed the same procedure and threshold to 
ascertain OGs and protein DC, and repeated this process 1,000 times. Comparing the 
bootstrap OG with the original results using the Adjusted Rand Index (ARI) (Methods) 
yielded an average ARI of 0.93; moreover, the average correlation coefficient between the 
bootstrap DC and the original DC was 0.85. These results demonstrate a stable network 
structure and protein degree centrality, with Supp. Figure 3 providing detailed insights 
into the bootstrap analysis.

All OGs are readily available for download at www.​protdc.​org.

Benchmarking predicted ortholog groups against QfO service

The Quest for Orthologs (QfO) Benchmark Service is an orthology prediction quality 
assessment service developed by a consortium of experienced scientists [3]. This service 
is extensively used to measure the agreement between a developer’s ortholog pairs and 
curated QfO references derived from SwissTree and TreeFam-A [3]. To construct our 
eukaryotic OGs, we used the QfO 2021 release comprising 48 eukaryotic proteomes. 
However, QfO does not provide a sufficient number of prokaryotic proteomes. To miti-
gate this, we obtained 367 bacterial species, evenly distributed on the Greengenes phy-
logenetic tree [25], from EMBL-EBI (Methods). As a result, we could only benchmark 
our eukaryotic OGs against TreeFam-A [43]. Detailed benchmark results are presented 
in Supp. Figure 4. We achieved a high Positive Predictive Value (PPV) of 0.952, but only 
a modest True Positive Rate (TPR) of 0.556 for our OGs with density ≥ 0.1 (PPV = 0.956, 
TPR = 0.518 for OGs with density ≥ 0.25). Hereafter, "our" OGs refer to OG sets obtained 
using density ≥ 0.1 unless otherwise specified. For perspective, some other ortholog 
databases in Supp. Figure 4 demonstrated high TPRs, ranging from 0.656 to 0.675. How-
ever, we noted that TreeFam-A does include some seed-noise ortholog pairs, potentially 
explaining our lower recall. This occurrence is despite the visible gaps between signals 
and noises, as showcased in Supp. Figure 1. Regrettably, we could not access the com-
plete TreeFam-A ortholog pairs from QfO. Instead, we downloaded four sets of ortholog 
pairs with the highest TPR (0.656–0.675) from QfO, discovering that 36–56% of these 
ortholog pairs were seed-noise pairs (Supp. Table 1). Interestingly, when examining the 
intersections of these four sets of ortholog pairs, we observe a reduction in seed-noise 
pairs to 21%, which correspondingly increases seed-signal pairs to 79% (Supp. Table 1). 
This significant reduction in seed-noise pairs, along with the high PPV (close to 1) 
returned from the QfO Benchmark Service, suggests a lower reliability in treating seed-
noise pairs as ortholog pairs.

The modest TPR may also stem from the inherent differences between TreeFam-A and 
our OGs. Our algorithm does not incorporate phylogenetic information, which likely 
contributes to the modest TPR observed in comparisons with TreeFam-A. Similar to our 
method, the BBH approach prioritizes functional conservation over phylogenetic rela-
tionships. Algorithms derived from BBH, such as OMA Groups and Panther’s LDO, also 
do not rely on phylogenetic trees. As illustrated in Supp. Figure 4, OMA Groups, Pan-
ther LDO, and our algorithm all exhibit relatively low TPRs. However, our algorithm 
outperforms both OMA Groups and Panther LDO in terms of TPR, primarily due to 
the inclusion of inparalogs. Notably, our algorithm achieved a high TPR of 0.937 using 

http://www.protdc.org
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the VGNC benchmark, which was recently included in the QFO benchmarks [12]; 
moreover, BBH-derived algorithms outperform nearly all other algorithms in the VGNC 
benchmark, as shown in Supp. Figure 4.

Inconsistency in existing ortholog predictions predominantly attributed to small and large 

OGs

Using eukaryotic OGs derived from our protein network, we investigated factors con-
tributing to inconsistent prediction results across different algorithms. We examined the 
size of our OGs. These OGs range from the smallest ones, containing just one protein, 
to the largest ones, comprising over 1,000 proteins. After calculating the modularity of 
the initial protein network, we found a high modularity score of 0.99, suggesting strong 
intra-OG protein connections and weak inter-OG connections in our initially derived 
network. Hence, from a network structure perspective, midsize to large OGs form the 
cores of the network, while small OGs make up its peripheries.

We next examined how OG size influences consistency among several ortholog data-
bases, including TreeFam [43], Broccoli [11], OrthoFinder [10], OrthoDB [44], eggNOG 
[8], and SonicParanoid [45]. These databases employ diverse algorithms for orthology 
prediction. TreeFam, known for its high-quality predictions, serves as the curated refer-
ence in QfO. Broccoli and OrthoFinder use phylogeny-based methods for deriving OGs, 
while eggNOG and OrthoDB are based on clustering algorithms. We also included Son-
icParanoid, given its genealogical relationship with InParanoid [14], an algorithm that 
identifies orthologs by giving more weight to protein functional similarity.

To evaluate the effect of OG size on algorithm consistency, we grouped proteins into 
seven bins according to their OG sizes (Fig. 3), with each bin containing approximately 
100 K proteins. We then assessed pairwise consistency among the six algorithms using 
both ARI and AMI (Methods). As shown in Fig. 3, there is an increasing trend in ARI 
and AMI values from the first bin to the fifth as the OG size increases from 1 to 85. The 
first bin shows the poorest consistency, containing proteins from the network’s periph-
eries. This indicates that gleaning biological insights from peripheral network structures 
may challenge various algorithms. Researchers should thus acknowledge that different 
databases may produce unique gene sets, especially when studying rare, species-specific, 
or pan-genomic accessory genes.

In contrast, consistency in ortholog predictions for proteins in mid-sized OGs seems 
higher across various algorithms, likely because these OGs are supported by a group 
of proteins with significant SJI. Notably, Fig. 3 also shows a decrease in the consistency 
of proteins in the largest OGs (size > 160). This suggests that rapidly evolving proteins 
might cause inconsistencies, potentially due to their increased likelihood of diverg-
ing significantly in structure or function, leading to differing predictions by various 
algorithms.

Degree centrality: a scoring system to refine high confidence orthologs

Our study demonstrates that the largest OGs also contribute to the inconsistency 
observed in ortholog predictions. To counter this issue, we investigated the utility of 
Degree Centrality (DC) as a scoring metric to refine the selection of consensus, or "high-
quality", orthologs.
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We initiated this process by assembling proteins from OGs with a size greater than 
9, thereby excluding the first bin depicted in Fig. 3 due to its contribution to inconsist-
ency. This selection process yielded a dataset of 656 K eukaryotic proteins. Following a 
DC-based sorting of these proteins, we categorized them into ten overlapping groups 
as shown on the x-axis of Fig. 4. Starting with the first group, which contained all 656 K 
proteins, each subsequent group excluded the lowest 10% of proteins based on their DC 
scores from the previous group. This process culminated in the rightmost group, which 
included the top 10% of proteins featuring the highest DC scores.

In Fig. 4, we also incorporated control groups consisting of PANTHER’s Least Diverged 
Orthologs (LDO) and the OMA Groups for comparative purposes. Compared to the 
LDO (595  K proteins) and OMA Groups (406  K proteins), our OGs—encompassing 
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656  K proteins—exhibit a 10% to 35% greater protein inclusion, attributed predomi-
nantly to the incorporation of inparalogs. Over 92% of our OGs portrayed in Fig. 4 con-
tain at least one inparalog. While both LDO and OMA Groups are regarded as "highly 
reliable" ortholog controls [17, 18], they do not accommodate inparalogs, a characteristic 

Fig. 4  Refining consensus orthologs using Degree Centrality (DC) as a scoring metric. This figure presents an 
analysis of 656 K eukaryotic proteins derived from all OGs with a size greater than nine. These proteins were 
divided into ten bins. Each bin, moving from left to right, progressively excludes the 10% of proteins with the 
lowest DC values. For instance, the first bin includes all 656 K proteins, the subsequent one contains 590 K, 
and the rightmost bin holds 65.6 K proteins with the highest DC scores. As control groups, we incorporated 
406 K proteins from the OMA Groups and 595 K Least Diverged Orthologs (LDO) from PANTHER. All of 
these proteins come from the 48 eukaryotic reference proteomes. The OMA Groups and PANTHER’s LDO 
orthologs are considered as “highly reliable orthologs”, and they establish a baseline for the subsequent 
Adjusted Rand Index (ARI) and Adjusted Mutual Information (AMI) comparisons. The concordance among 
ortholog databases within each bin was evaluated using ARI and AMI. We observed a consistent increase 
in concordance between pairwise ortholog databases as we moved across the bins, starting from the two 
control groups
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distinguishing our OGs. This distinction is validated by the QfO benchmarking results 
(Supp. Figure  4), which show that our orthologs exhibit precision comparable to the 
controls.

The curves in Fig. 4 illustrate the trends in ARI and AMI between ortholog databases 
across the ten groups, alongside the two control groups. Consistency between all data-
base pairs, with the exception of OrthoFinder (Supp. Figure 5), increases monotonically 
as protein DC increases. For instance, on the far right of Fig. 4, where 90% of proteins 
with low DC scores have been excluded, the ARI between TreeFam and all other data-
bases, except for eggNOG, rises to between 0.85 and 0.90. A recent study [6] found such 
high ARI values only in 125 human-curated OGs. However, as shown in Fig. 4 and Supp. 
Table 3, these high ARI values are reached with more than 1600 OGs covering between 
20 and 45 K proteins. Supp. Table 3 also provides the detailed values corresponding to 
Fig. 4.

Supp. Figure 6 showcases the intersections between the representative ortholog data-
bases mentioned earlier, emphasizing the modest agreement in their ortholog predic-
tions and highlighting the lack of certainty when relying on intersections for consensus 
orthologs. Notably, we find a slight positive correlation between degree centrality (DC) 
and the degree of ortholog overlap (Supp. Figure 6).

Our findings illustrate that applying degree centrality (DC) as a scoring metric for 
refining ortholog groups derived from different algorithms can yield "high-quality" data-
sets on par with manually curated ortholog groups. This is particularly useful when stud-
ying rapidly evolving large protein families, where assessing each member’s DC scores is 
advisable. Such assessment helps to distinguish between core members, which represent 
high-confidence orthologs, and peripheral members, which necessitate further scrutiny. 
This distinction is crucial as different algorithms may categorize these peripheral mem-
bers into inconsistent ortholog groups. Given that consensus across different ortholog 
databases is often seen as a robust indicator of orthology, the use of DC also helps allevi-
ate the influence of subjective decisions, such as concerns about which ortholog data-
bases to utilize or determining the degree of overlap needed to designate consensus 
orthologs.

Discussion
Our work here primarily deals with the challenges posed by the inconsistencies in 
ortholog predictions. We attributed these inconsistencies to peripheral nodes in the 
derived protein network, marked by small ortholog groups (OGs) and proteins with 
low degree centrality (DC) from midsize to large OGs. However, from a technical per-
spective, these inconsistencies can also stem from the prevalent use of fixed thresh-
old settings in many algorithms. For example, when selecting candidate orthologs for 
clustering or tree building, a threshold in protein sequence similarity or a statistically 
significant cutoff value is often applied. Given the diverse evolutionary histories and var-
ying selection pressures on proteins, a one-size-fits-all approach using predetermined 
parameters may not be suitable. Therefore, there is a call for a strategy that circumvents 
fixed parameters and accounts for differences in protein selection pressures, which is of 
utmost importance.
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Our solution to this challenge is illustrated in Fig.  2, which clearly differentiates 
orthologs/inparalogs from distant homologs. Figure  2F, in particular, encapsulates the 
results of our spectral clustering algorithm applied to 2 million seed proteins. This unsu-
pervised algorithm uniquely uses the distribution of over-represented proteins on a 2D 
plot, taking the relative distance between proteins as input. Instead of relying on the raw 
amino acid similarity between the seed and orthologs, it identifies clusters based on the 
density of protein spots in irregular regions of the plot.

Based on the results in Fig. 2F, we propose a discontinuous protein evolution hypoth-
esis and introduce the Signal Jaccard index (SJI) metric to measure the functional simi-
larity of proteins. The SJI is a departure from traditional methods that use arbitrary 
thresholds based on sequence similarity or significance values. SJI depends on informa-
tion from the entire gene repertoire across species, like the bidirectional best hit (BBH) 
method. However, instead of directly identifying 1:1 gene pairs, we split the process into 
two steps. First, we distinguish signal from noise, establishing a 1:n relationship between 
a seed protein and its ortholog candidates. Then, we use SJI to measure the overlap of 
"n" signals between two seeds to indicate their similarity. This two-step process yields 
a network that integrates the biological information of single proteins into a broader 
context, with the network’s topology reflecting the proteins’ evolutionary and functional 
information.

Networks are common tools in orthology prediction, as exemplified by resources such 
as eggNOG [9] and OrthoMCL [46]. However, the edges in these networks either rely on 
species choices or fail to account for the variable selection pressures exerted on different 
proteins, as reflected by high or low sequence similarity within different protein families 
on the same network. In contrast, the SJI metric offers a more objective approach since 
it is unaffected by the selection pressures on different protein families and the species 
chosen for comparison.

Building on the SJI metric, we also propose the use of DC as a scoring system to assess 
the reliability of protein orthologs. This approach helps predict protein functions by 
considering both protein sequence similarity and the broader genomic context of the 
protein. The biological functions of proteins can often be diverse, exhibiting character-
istics such as promiscuity [47], moonlighting [48], or fuzziness [49], which present chal-
lenges to the conventional use of ortholog databases. We suggest that these "unusual" 
functional behaviors can be further explored using different centrality measures within 
our network.

We also found that many proteins with low DC or from small OGs, often located at the 
network periphery, are less well annotated, falling into the category known as the "dark 
matter" of the proteome [50, 51]. Our estimates suggest that approximately 40–50% of 
all proteins are low DC proteins (OG size < 20 or DC < 0.2). As we incorporate more 
genomes into our analyses, we anticipate that the core structures identified in this study 
will remain stable, but the number of peripheral proteins may increase.

Conclusions
In summary, this work presents several significant conclusions:
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1.	 We propose an unsupervised ortholog prediction algorithm complemented by 
a novel metric, the Signal Jaccard Index (SJI). This innovative tool provides a new 
method to assess protein similarity, eschewing reliance on arbitrarily preset param-
eters. Crucially, it can discern the varied selection pressures exerted on different pro-
teins, reflected by varied average protein sequence similarity within different protein 
families.

2.	 We underscore that the primary sources of inconsistency in extant ortholog data-
bases lie in the peripheral nodes of our network, characterized by proteins from 
small OGs and proteins with low DC scores.

3.	 The application of DC offers two-fold benefits. It first helps identify proteins in 
peripheral structures, which warrant extra scrutiny in their ortholog prediction. Sub-
sequently, DC sidesteps the need for intricate operations to ascertain intersections 
from various ortholog databases. This mitigates the potential arbitrariness arising 
from the choice of parameters used to determine a consensus, thus facilitating the 
derivation of "high-quality" orthologs.

4.	 As a score encapsulating ortholog confidence, we demonstrate that DC maintains a 
high level of stability, remaining impervious to species choices and exhibiting virtu-
ally no arbitrariness. We, therefore, advocate for the incorporation of DC into a scor-
ing system for ortholog prediction benchmarking.

Collectively, our findings present an innovative approach to ortholog prediction. By 
appreciating the unique characteristics and evolutionary trajectories of proteins, we 
progress beyond the limitations of arbitrary, universal thresholds. The network we have 
established offers a quantitative platform for probing diverse aspects of protein evolu-
tion, promising to catalyze further research in this arena.
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