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Introduction
In cell line perturbation experiments, a collection of cells is perturbed with gene knock-
downs, overexpression, or pharmaceutical drugs and responses such as cell survival 
and gene and protein expression are measured. The results of these experiments play 
an important role in our understanding of cellular biology and in development of treat-
ments for complex diseases such as cancer [2–5].

There are a huge number of possible perturbations that can be applied to a cell line. 
For example, in human cell lines there are ∼ 20, 000 genes that could be perturbed (e.g. 
knocked out). Thus there are ∼ 200 million perturbations of gene pairs (double knock-
outs). Further each perturbation may be applied across hundreds of cell lines (e.g. cells 
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of different types of cancer). Thus in practice even large-scale experiments can only test 
a small fraction of all possible perturbations.

This limitation has led to the development of in silico perturbation response predic-
tion models [1, 4, 6–10]. Models are typically trained on a set of perturbations that are 
experimentally tested in a laboratory and where cellular responses to the perturbation 
are known (up to technical replicate variability). These in silico models can then be used 
to make response predictions for untested perturbations. Predicted responses of biologi-
cal interest, e.g. a perturbation which is predicted to suppress growth in a tumor cell 
line, can then be experimentally validated in vitro.

[1] proposed Cellbox, a perturbation prediction model based on a system of Ordinary 
Differential Equations (ODEs). Cellbox was benchmarked against several competitors 
on a Melanoma cell line in which cells were perturbed with 12 drugs, given at varying 
concentrations in each experiment. Cellbox achieved the best performance both on pre-
dicting cellular responses to drugs used in the training set and on predicting responses 
to drugs not used in the training set. This latter form of prediction, termed Leave One 
Drug Out (LODO) validation, is both challenging and scientifically impactful because it 
implies that the model can extrapolate to predict the effect of new drugs. In this work, 
we make the following contributions: 

1. We propose a causal Structural Equation Model (SEM) for modeling the effect of 
drug perturbation on cell lines. From this model, we derive two estimators, Lin-
ear Regression (LR) and Causal Structural Regression (CSR), for predicting cellular 
responses to perturbations. These results show that CSR, which explicitly estimates 
the coefficients in a causal graph, can extrapolate to predict cellular responses to 
untested (in training set) drugs.

2. We derive analytic results which show that the linear version of Cellbox is equivalent 
to CSR. This provides a formal causal interpretation for the Cellbox model which was 
not discussed in [1].

3. We compare LR and CSR/Cellbox in simulations. These simulations demonstrated 
the strengths/weaknesses of the two approaches, including sensitivity of CSR/Cell-
box to misspecification of the direct effect of interventions.

4. We show that LR has comparable or superior performance to Cellbox on the Mela-
noma benchmark data set. Our results reinforce the finding in other works that sim-
ple benchmark models may obtain equal or better performance than complex mod-
els in cell line perturbation response prediction [11].

 All code and data for reproducing the results in this work is publicly available.1

Overview of data, prediction problem, and connections to existing work
In this work we consider perturbation experiments on a RAFi-resistant melanoma cell 
line SkMel-133 originally collected in [4]. The data structure is depicted in Fig. 1a. The 
cell line was treated with 89 drug perturbations (rows). Perturbations are defined by the 
concentrations of 12 drugs (12 columns of blue matrix). Drugs were applied as a single 

1 https:// github. com/ longjp/ causal- pred- drug- code

https://github.com/longjp/causal-pred-drug-code
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agent and in combinations of two drugs. Since at most two drugs were used in any 
experiment, each row of the blue matrix contains either 1 (if perturbation uses single 
drug) or 2 (if perturbation uses two drugs) non-zero values. In each perturbation experi-
ment, the expression of 82 proteins was measured 24 h after perturbation using Reverse 
Phase Protein Arrays [12]. In addition, five cell phenotypes were measured, quantifying 
cell-cycle progression and cell viability (orange columns). For this work, we use the data 
as supplied by [1].2

In perturbation prediction, drug concentrations (blue columns) are used to predict 
protein and phenotype responses (orange columns). Data is divided into training and 
test sets. Using only the training data, a model is constructed which can predict protein/
phenotypes from the drug concentrations. The performance of the model is then evalu-
ated using the test set drug concentrations and protein/phenotypes. When the test set is 
a simple random sample of all perturbations, this setup matches the standard approach 
to fitting and validating predictive models. Models such as linear regression of response 
variables on the drug concentrations can be used.

In practice one would like to construct a model which can accurately predict the effect 
of untested drugs and in doing so identify perturbations with interesting responses for 
further follow up. Random Fold (RF) cross validation, in which the test conditions are 
a simple random sample of all conditions, does not represent this use case well because 
all drugs are used in training. A more challenging form of validation, leave-one-drug-
out (LODO), more closely aligns with the intended scientific uses of the perturbation 
prediction model. Figure 1a depicts a LODO training-test set split. Here drug 12 is left 
out of the training set i.e. the concentration of drug 12 in the training data is always 0 
because drug 12 was never used in training perturbations. The test perturbations all use 
drug 12 so column 12 of the drug matrix is never 0 in test. LODO prediction is challeng-
ing for regression models because there is no way for the model to determine the effect 
of drug 12 on the response variables. For example, coefficients in a linear regression of 
response on drugs will not be defined because the gram matrix is not invertible.

Fig. 1 a Overview of perturbation data with a leave‑one‑drug‑out (LODO) training / test set split. Drug 
12 is never used in training. b Causal graphical model for subset of drugs and responses (proteins and 
phenotypes). Drugs are exogenous variables with known targets, e.g. it is assumed known that drug 12 
directly effects protein X3 . Black dashed lines represent hidden confounding. For example unmeasured cell 
cycle may effect responses X10 and X8

2 Available at https:// github. com/ sande rlab/ CellB ox.

https://github.com/sanderlab/CellBox
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The direct targets of drugs are often known a priori. For example, a mitogen-acti-
vated protein kinase (MEK) inhibitor drug should directly reduce the expression of the 
MEK protein. Other changes in the system, could then be assumed to be a downstream 
effect of MEK inhibition. Using this information about drug targets, a causal model, 
which infers causal relations among the protein and phenotype response variables, can 
be used to predict responses in LODO validation. The approach is graphically summa-
rized in Fig. 1b. For clarity only a small number of the drug and response variables are 
shown. Drugs (blue nodes) are known to target (blue arrows) particular proteins (orange 
nodes). For example drug D12 targets protein X3 . The causal relations among proteins is 
unknown a priori (grey arrows). Training set perturbations can be used to identify and 
estimate causal effects among the proteins. Then the effect of an untested perturbation, 
e.g. drug 12, can be determined by first assuming that the direct effect of drug 12 will be 
on protein 3, and then propagating this effect through the inferred protein network.

Related work and innovation

[1] developed an ordinary differential equation (ODE) model termed Cellbox and tested 
it on the Melanoma cell line data, both using RF and LODO validation. Cellbox out-
performed all competing algorithms in both forms of model validation. In the following 
sections, we derive analytic results relating Cellbox to causal structure learning models, 
providing a new causal interpretation of Cellbox.

Several works have developed models for predicting responses to previously tested 
perturbations in new settings. For example, [7, 8], and [13] developed deep-learning 
autoencoder models to predict responses to previously untested perturbation-cell type 
combinations. [6] considered a similar problem and developed prediction model, SI-A, 
derived from the synthetic control literature in causal inference. [10] developed GEARS 
to predict the effect of double knockouts/knockdowns using in vitro responses to single 
knockouts/knockdowns.

In these works, test perturbations were applied to training conditions in different cell 
types or cell lines. These prediction problems are less challenging than the LODO Mela-
noma prediction because in LODO the held-out treatment has not been applied in the 
training set. These methods cannot be directly applied to the LODO setting. There is a 
large literature on inferring causal relations among genes, termed gene regulatory net-
works [14–18]. However these methods generally do not use interventional data to esti-
mate the network. More importantly, these works view the regulatory network (graph) 
as the target for inference while in this work we are primarily interested in using the 
inferred network to make predictions about how interventions (drugs) will affect the 
system.

Environment-based causal estimators such as Invariant Causal Prediction (ICP) and 
the Causal Dantzig (CD) have been used to predict the effect of untested gene-knock-
downs in yeast cell lines [19–21]. These methods assume the existence of different data 
collection environments, such as an observational environment where samples are col-
lected without any perturbation and an interventional environment where samples are 
perturbed. Causal effects among the response variables are estimated based on the prin-
ciple of invariance. These methods do not leverage information on the direct targets of 
interventions, which is used by CSR and Cellbox considered in this work.
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Causal perturbation model and estimators
Let X ∈ R

p be a vector of protein and phenotype responses (row of orange matrix 
in Fig.  1a) and D ∈ R

q be a vector of drug concentrations (row of blue matrix in 
Fig. 1a). There are n training observations {(Di,Xi)}

n
i=1 . The objective is to predict a 

test response Xte ∈ R
p when drugs Dte ∈ R

q are applied for an observation not in the 
training data. Subscripts j and k will be used to denote specific elements of X and D.

We propose a causal Structural Equation Model (SEM) for how drugs effect 
response variables and then derive two estimators using the model. Figure  1b con-
tains a graphical representation of the model. Formally:

The distribution fD models selection of drug concentrations to apply to cells. As indi-
cated by black dashed lines in the figure, concentrations may be dependent. The term 
ǫ ∈ R

p is a vector of errors with E[ǫ] = 0 . Elements of ǫ may be correlated, representing 
hidden confounding among response variables X. Confounding may be caused by fac-
tors such as temperature, cell cycle, and variations in laboratory conditions. Figure 1b 
represents this hidden (latent) confounding with dashed lines connecting orange nodes. 
We assume ǫ ⊥⊥ D which is generally well justified because the choice of drug concentra-
tions D is independent of the unmeasured factors modeled by ǫ . A ∈ R

p×p is a matrix of 
coefficients where Ajk represents the causal effect of a one-unit change of Xk on Xj . The 
term g(D) ∈ R

p represents the direct effects of drug concentrations D on the response 
variables (protein concentrations).

In this work, we assume that (I − A) ≻ 0 (positive definite). By Sylvester’s criteria, 
I − A ≻ 0 whenever A represents an directed acyclic graph (DAG). Since I − A ≻ 0 
implies I − A is invertible, Equation (1) may be rewritten as

The prediction target is the mean response when drug concentrations D ∈ R
q are 

applied to the system:

The equality between E[X |do(D)] and E[X |D] is justified by the fact that there are no 
backdoor paths from D to X [22, 23]. Note that this is only true for the vector D ∈ R

q . 
For any individual drug concentration, e.g. D12 , latent confounding between drugs may 
induce backdoor paths. We now discuss two approaches to estimating f  and their rela-
tive strengths and weaknesses.

Regression

One can assume f  belongs to a class of functions F  and then select an f which mini-
mizes loss. For example consider

(1)
D ← fD

ǫ ← fǫ

X = AX + g(D)+ ǫ.

(2)
X = (I − A)−1g(D)+ (I − A)−1ǫ︸ ︷︷ ︸

≡δ

.

(3)f (D) ≡ E[X |do(D)] = E[X |D] = (I − A)−1g(D).
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where γ is a penalty function and � controls the degree of penalization with γ (f , 0) = 0 . 
The predicted response for the test observation is f̂ (Dte) . In the case where the direct 
effect of drugs on phenotypes is linear, i.e. g(D) = BD for some B ∈ R

p×q , then the class 
of functions F  is linear because f (D) = (I − A)−1BD and can be parameterized by 
R = (I − A)−1B . In this case, the objective function may be written as

with predicted response

We term X̂LR the Linear Regression (LR) prediction.
For LODO validation with drug j held out, recall that Dij = 0 for all i ∈ {1, . . . , n} (the 

training data), but Dte
j  = 0 . In this case, the regression estimators will not be consist-

ent. For LR (Equation (5)), without regularization ( � = 0 ), the minimizer of the objective 
function is unique if and only if

is full rank. This will not be the case with LODO validation because every element of the 
jth column is 0. If sparsity inducing regularization is used, e.g. γ (R, �) = �

∑
|Rjk | , then 

the jth column of R̂ will be 0. In this case, the effect of drug j on all response variables is 
estimated to be 0 and hence inconsistent. Qualitatively, regression is unsuitable because 
LODO requires an extreme form of extrapolation where feature j (drug concentration j) 
is always 0 in training but non-zero in the test set.

Causal structure regression (CSR)

Suppose g (the direct targets and strength of effects of the drugs) is known. In this case, 
it is possible to estimate A (or equivalently (I − A)−1 ). One possible estimator of A is 
obtained by regressing X on g(D) . Specifically

Consistency of this estimator does not require non-gaussianity, equal variance, or no 
hidden confounding assumptions common in the causal discovery literature [24–26]. 
Instead, the interventions (drug concentrations D) act as exogeneous variables which 
identify the causal structure matrix A. The predicted response to drug concentrations 
Dte is

(4)f̂ = argmin
f ∈F

n∑

i=1

||Xi − f (Di)||
2
2 + γ (f , �)

(5)R̂ = argmin
R

n∑

i=1

||Xi − RDi||
2
2 + γ (R, �)

X̂LR = R̂Dte.



DT
1
...

DT
n




(6)Â = argmin
{A:I−A≻0}

n∑

i=1

||Xi − (I − A)−1g(Di)||
2
2 + γ (A, �).
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We term X̂CSR the Causal Structure Regression (CSR) prediction because the prediction 
is based on a regression estimate of the causal structure A. The j, k element of matrix 
(I − A)−1 is the total effect of response Xk on Xj . In practice, it may be simpler to directly 
estimate T = (I − A)−1 , check whether the resulting T̂  is positive definite, and then use 
the estimate T̂  to predict E[X |D] . When implementing this approach without regulariza-
tion we have

and

Now consider CSR for estimating f (Dte) with LODO validation with drug j held out. 
The estimator T̂  (Equation (7)) will be uniquely defined if and only if

is full column rank. This rank condition may be satisfied even in the LODO setting. In 
particular, the rank condition for CSR requires that the training drugs directly target 
every response variable, not that every drug is used in the training set.

The relative merits of the Regression and CSR predictions are summarized as follows:

• LODO Validation: As discussed, regression is inconsistent for LODO validation.
• p versus q: CSR estimates A, which consists of p2 parameters corresponding to 

direct effects of all response variables on each other. LR estimates R, which consists 
of qp parameters corresponding to the total effect of each of the q drugs on the p 
response variables. Thus when q < p , regression requires estimating fewer param-
eters.

• g  Assumption: CSR requires knowledge of g, the direct effects of interventions on 
response variables. If g is unknown or contains a large amount of uncertainty, the 
regression estimator may be preferred.

• Interpretability: CSR is more interpretable because it estimates matrix A which 
encodes how response variables causally effect each other, providing biological 
insight on how cells function.

Causal structure regression and cellbox
We now discuss Cellbox, an ODE model introduced in [1], which obtained state-of-
the-art prediction performance on the Melanoma cell line perturbation experiments. 
First we summarize the Cellbox modeling and fitting procedure, modifying notation in 

X̂CSR = (I − Â)−1g(Dte).

(7)T̂ = argmin
T∈Rp×p

n∑

i=1

||Xi − Tg(Di)||
2
2

(8)X̃CSR = T̂ g(Dte).



g(D1)

T

...

g(Dn)
T
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certain instances for clarity.3 We then derive results which demonstrate a close connec-
tion between Cellbox and CSR.

Cellbox uses a system of ODEs to model how proteins and phenotypes influence each 
other across time. Let xi(t, θ) ∈ R

p be the log-normalized change at time t (relative 
to time 0) of a set of p proteins and phenotypes under perturbation condition i. The 
unknown parameters θ control how proteins influence each other. For observation i, 
drug concentrations Di ∈ R

q are applied. Define ui = g(Di) , the direct effect of applying 
drug concentrations Di to the system. Since Di and g are assumed known, ui is known as 
well.

Response j (protein or phenotype) under condition i is modeled by

The unknown model parameter is θ = (W , τ ) with wjk for j  = k representing the inter-
action between xj and xk , wjj characterizes the effect of decay (the tendency of protein j 
to return to the original level before perturbation), and τj controls the saturation effect 
of the protein. Cellbox can be fit with several envelope functions φ including identity, 
clipped linear, and sigmoid.

In [1] Cellbox was fit with response variables measured at a single time point 24 h after 
perturbation initiation. It was assumed that by this time, the system has reached steady 
state. The steady state (equilibrium) changes implied by the model is

To estimate parameters θ , discrepancy between model predicted responses ( xij(θ) ) and 
experimental responses ( Xij ) was computed with a L1 (lasso) penalty term to induce 
sparsity on the off-diagonal elements of W. Specifically

where diag(W ) ∈ R
p×p is the diagonal component of W. Given a candidate θ , an ODE 

solver can be used to approximate xij(θ) . Subsequently, θ are updated using gradient 
descent with automatic differentiation to determine

To predict the response Xte for some combination of drugs Dte , first the direct effects of 
the drug are determined ( ui = g(Dte) ), followed by an ODE solver to approximate steady 
state expression levels (Equation (10)) using parameters Ŵ  and τ̂ .

We now show that using a linear envelope function φ and setting τ = 1 , Cellbox is 
equivalent to the linear CSR model.

(9)
∂xij(t, θ)

∂t
= τjφ



�

k �=j

wjkxik(t, θ)+ uij


+ wjjxij(t, θ).

(10)xij(θ) ≡ lim
t→∞

xij(t, θ).

L(θ) =

p∑

j=1

n∑

i=1

|Xij − xij(θ)|
2 + �||W − diag(W )||1

(11)Ŵ , τ̂ = argmin
θ=(W ,τ)

L(θ).

3 See Model Configuration section of METHOD DETAILS in Star Methods of [1] for original exposition of model.



Page 9 of 17Long et al. BMC Bioinformatics            (2025) 26:4  

Theorem 1 Suppose φ is a linear envelope function, τ = 1 , and W ≺ 0 . We have the fol-
lowing results 

1. The equilibrium state of the Cellbox model (Equation (10)) has closed form 

 and the Cellbox predicted response for test drugs Dte is 

2. The Cellbox parameter optimization (Equation (11)) may be expressed as 

3. If the penalty function γ (A, �) = �||A− diag(A)||1 is used in CSR in Equation (6), 
then 

 and X̂CSR = X̂C.
See Section A.1 for a proof. Equations (12) and (14) show that for the linear version of 

Cellbox ( φ identity and τ = 1 ), ODE solvers are not necessary for estimating parameters Ŵ  
and making predictions. Equation (15) shows that linear Cellbox is a reparameterized ver-
sion of CSR and test predictions X̂C and X̂CSR are identical. This provides a causal interpre-
tation for Cellbox in terms of structural equations. The general principal of this result, that 
causal structural equation models are steady state limits of dynamical systems, has been 
derived in several previous works [27, 28]. The assumption that W ≺ 0 is weak because 0 or 
positive eigenvalues in W imply the system is not converging to any steady state.

We note that the implementation of Cellbox in [1] set elements of W to 0 which repre-
sent phenotype to protein causal effects. This is accomplished by restricting the domain 
of the parameter optimization in Equation (11). This enforces the domain knowledge 
that proteins may influence phenotypes but not vice versa. For clarity of exposition, we 
do not impose the conditions here or in the simulations since they are not directly rel-
evant for understanding the relationship between regression and causal predictive mod-
els. However in the application to the Melanoma cell line, we follow [1] and impose the 
restriction.

Simulation
We conduct a simulation to compare the performance of the regression estimator ( ̂XLR ) 
and CSR/Cellbox ( ̃XCSR ). We simulate from Causal SEM (1)

using p = 5 response variables ( X ∈ R
5 ) and q = 15 drugs ( D ∈ R

15 ). Drugs are assumed 
to have a linear effect on response variables so g(D) = BD . The structure of B and A 
are specified in Equation (16). Five drugs target a single response variable and 10 drugs 

(12)xi(θ) = (xi1(θ), . . . , xip(θ))
T = −W−1g(Di)

(13)X̂C = −Ŵ−1g(Dte).

(14)Ŵ = argmin
W :W≺0

n∑

i=1

||Xi − (−W−1)g(Di)||
2
2 + �||W − diag(W )||1.

(15)Â = Ŵ + I

X = AX + g(D)+ ǫ
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target two of the response variables. Drugs with a single target have a strength of 1 while 
drugs with 2 targets have a strength of 0.5 for each target. All possible combinations of 
2 drugs are applied to the system, thus there are a total of n =

(15
2

)
= 105 observations 

with each Di having exactly two non-zero entries equal to 1. The variable X1 has a causal 
effect of 1.6 on X2 and 1.2 on X3 . The variable X3 has a causal effect of 2 on X4 . All other 
causal effects among the response variables are 0. The exogenous error ǫ is distributed 
N (0, 0.12).

Since q > p (number of drugs is greater than number of response variables), regulariza-
tion is not necessary ( � is set to 0 in all the simulations). We fit the LR and CSR estima-
tors under three settings:

• Random Fold (RF): The data is divided randomly into 2/3 training and 1/3 test. 
Since the training-test set split is random, every drug is used in training.

• RF with B Misspecified: The training-test set split is identical to RF. However the 
B matrix (direct effect of drugs) is misspecified. Instead of using the correct B, the 
10 drugs with 2 targets are assumed to influence their targets with a strength of 1 
(rather than the correct value of 0.5).

• Leave-one-drug-out (LODO): For each condition in the test set, one (of the two) 
drugs used in the condition is selected at random. The 2/3 of the training data 
is subset to only use conditions where the selected drug is not used. For LR, the 
coefficient on the held out drug is set to 0.

Results are summarized in Fig. 2. The true response values are plotted on the x-axis 
and the predicted response values are plotted on the y-axis. High correlations imply 
that the estimator is performing well in the respective setting. For Random Fold (RF) 
cross validation, both LR and CSR perform well. In the RF with B Misspecified setting, 
LR performs well and in fact makes identical predictions to RF validation because the 
LR estimator does not depend on B. In contrast, CSR performs poorly because it uses 
an incorrectly specified B. Finally in LODO, LR performs poorly because it incor-
rectly infers that the effect of the left out drug on all response variables 0. In contrast, 
CSR performs well because it models the causal relations among the response vari-
ables which enables it to generalize predictions to untested drugs.

The true A and the estimated Â for each setting (RF, RF with B Misspecified, LODO) 
are displayed graphically in Fig. 3. Note that CSR in LODO estimates A for each test 
observation. We plot only one of them here. Edge widths are proportional to size of 
the coefficient estimate. For visual clarity, small effects (coefficients less than 0.2 in 
absolute size) are not displayed. The Random Fold Â in Fig. 3b and the LODO Â in 
Fig. 3d closely resemble the true A in Fig. 3a. In contrast, Fig. 3c shows that when B is 
misspecified the resulting Â is a poor estimate.

(16)

B =




1 0 0 0 0 0.5 0.5 0.5 0.5 0 · · · 0
0 1 0 0 0 0.5 0 0 0 0.5 · · · 0
0 0 1 0 0 0 0.5 0 0 0.5 · · · 0
0 0 0 1 0 0 0 0.5 0 0 · · · 0.5
0 0 0 0 1 0 0 0 0.5 0 · · · 0.5


 ∈ R

5×15 A =




0 0 0 0 0
1.6 0 0 0 0
1.2 0 0 0 0
0 0 2 0 0
0 0 0 0 0
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Melanoma cell line perturbation prediction
We compare Cellbox and LR for prediction of protein and phenotype responses in the 
Melanoma data set introduced in Sect.  . The two validation procedures we describe 
below follow the procedures in [1]. Cellbox is implemented with a sigmoid activa-
tion function. See [1] for details on tuning parameter selection, choice of g, and the 
(causal) graph/network estimated by the model (Figure 5).

Random fold cross validation

The 89 experimental conditions are split into 70% training (62 conditions) and 30% 
testing (27 conditions). Models are fit on the training set and used to predict the 
responses on the test set. This process is repeated 1000 times and the predictions 
averaged across these runs. Predicted responses versus experiment responses are 
plotted for Cellbox in Fig. 4a and LR in Fig. 4b. LR predictions show a stronger cor-
relation with the response than Cellbox (Pearson’s correlation of 0.947 versus 0.926) 
and lower mean absolute error (0.093 versus 0.105). RF cross validation favors regres-
sion models (relative to LODO) because the regression model estimates fewer param-
eters and does not require regularization.

Leave one drug out

We now consider the more challenging Leave One Drug Out (LODO) validation 
where a drug is held out of training. For example, if the drug aMEK is held out, the 
training data is all conditions with aMEK concentration equal to 0 and the test set is 
all conditions where aMEK has been applied, either as monotherapy or in combina-
tion with other drugs. Since there are 12 drugs, there are 12 training-test set pairs.

Fig. 2 Comparison of performance of LR and CSR/Cellbox on simulated data. The x‑axis is the true response 
and the y‑axis is the predicted response. LR and CSR perform similarly for RF validation. For RF with B 
misspecified, CSR, which uses B, performs poorly. LR is unaffected by misspecified B because B is not used in 
the LR estimator. For LODO validation, LR performs poorly because it cannot model the effect of the left out 
drug on the responses
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For LR, we set the coefficient for the left out drug to 0 and fit the unregularized esti-
mator to the remaining columns of D . This approach does not require tuning param-
eter selection. Qualitatively this assumes that the drug held out has no effect on any 

Fig. 3 True network and estimated networks for different simulation settings. For Random Fold b and LODO 
d, the estimated A is quite close to the true DAG A a. For Random Fold with Misspecified B c, the estimated A 
contains many erroneous edges

a) b) c)
Fig. 4 LR outperforms Cellbox in Random Fold (RF) CV while the two methods have similar performance in 
LODO. a Cellbox performance on Random Fold CV b LR performance on Random Fold CV c Comparison of 
performance of Cellbox and LR on LODO validation
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of the response variables. This represents a crude benchmark model rather than an 
empirically motivated model assumption.

For each test set, we compute the correlation between the true responses and the pre-
dicted responses. This results in 12 correlations for Cellbox and Linear Regression. Fig-
ure  4c displays these correlations. LR (mean correlation coefficient 0.784) and Cellbox 
(mean correlation coefficient 0.780) have similar performance.

Discussion
The field of causal inference has historically focused on parameter estimation and hypoth-
esis testing. Recently, several works have explored using causal models for prediction [1, 21, 
29, 30]. Prediction performance is an important metric for measuring the quality of causal 
models in many scientific applications, including cell line perturbation experiments. For 
causal models to provide meaningful scientific insight, it is critical to understand their rela-
tionship with regression estimators and appropriately benchmark models when assessing 
performance.

Here we proposed a causal SEM for modeling responses in cell line perturbation experi-
ments. We derived two estimators based on this model, LR and CSR. We derived analytic 
results demonstrating a close relationship between CSR and a recently proposed prediction 
model, Cellbox. The analytic results and simulations facilitated an improved understanding 
of the strengths and weaknesses of the two approaches to prediction. In brief, regression 
models, such as LR, are simpler to fit but lack an ability to extrapolate to new data settings, 
such as prediction of response to a drug not used in the training set. Causal modeling (CSR/
Cellbox) is sensitive to the assumption of that the direct targets of the perturbations are 
known, making it most suitable for knockdown/knockout interventions with fewer off tar-
get effects than drug interventions.

Cellbox obtained state of the art performance on a Melanoma cell line perturbation data 
set, outperforming a Belief Propagation algorithm, a deep learning Neural Network (NN), 
and a co-expression model. Here we demonstrated that Cellbox, and hence all the competi-
tor methods, failed to outperform LR in either RF or LODO validation. The latter finding 
is particularly surprising because this is a setting which favors causal modeling approaches. 
These results highlight that simple modeling strategies can be the most effective and are 
critically important when benchmarking performance of new models.

The Melanoma perturbation data set used here is relatively small, lacking any informa-
tion on the temporal dynamics of responses to perturbations. Larger perturbation experi-
ments test hundred or thousand of perturbations across dozens of cell lines with responses 
measured at multiple time points [2, 3, 31]. These data sets are likely to be more favora-
ble to a model such as Cellbox, as they may contain sufficient information to identify and 
constrain model parameters. A recent generalization of Cellbox to simulated perturbations 
with responses measured across time showed promising performance [32].

Appendix A Proofs
A.1 Proof of Theorem 1

1. With the identity envelope φ(·) = · and τi = 1 , Equation (9) simplifies to 
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 Now rewrite the ODE to explicitly include drug effects in the system as time con-
stant terms. Define 

 where 

 There is a closed form solution for the system at time t, specifically 

 See [33] (Section 9.5 Theorem 2) for a derivation of this result. Further by Lemma 2, 
if W is invertible then, 

 Thus xi(θ) = −W−1g(Di).
2. We have 

3. Recall that the Cellbox and CSR optimization problems are 

 Note that h1(W ) = h2(I +W ) and W ∈ S1 ⇔ I +W ∈ S2 . Therefore Â = Ŵ + I . 
Finally 

(A1)
∂xi(t, θ)

∂t
= Wxi(t, θ)+ g(Di).

yi(t, θ) =

(
g(Di)

xi(t, θ)

)
∈ R

2p

(A2)
∂yi(t, θ)

∂t
=

(
0 0
I W

)

︸ ︷︷ ︸
≡A∈R2p×2p

yi(t, θ) =

(
0

Wxi(t, θ)+ g(Di)

)
.

yi(t, θ) = eAtyi(0, θ).

yi(θ) ≡ lim
t→∞

yi(t, θ) =

(
g(Di)

−W−1g(Di)

)
.

Ŵ = argmin
W

∑

i

∑

j

|Xij − xij(θ)|
2 + �||W − diag(W )||1

= argmin
W

∑

i

||Xij − xi(θ)||
2
2 + �||W − diag(W )||1

= argmin
W

∑

i

||Xij − (−W−1)g(Di)||
2
2 + �||W − diag(W )||1.

Ŵ = argmin
{W :W≺0}︸ ︷︷ ︸

≡S1

n∑

i=1

||Xi − (−W−1)g(Di)||
2
2 + �||W − diag(W )||1︸ ︷︷ ︸

≡h1(W )

Â = argmin
{A:I−A≻0}︸ ︷︷ ︸

≡S2

n∑

i=1

||Xi − (I − A)−1g(Di)||
2
2 + γ (A, �)

︸ ︷︷ ︸
≡h2(A)

X̂C = −Ŵ−1g(Dte) = (I − Â)−1g(Dte) = X̂CSR.
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A.2 Proof of Lemmas

Lemma 2 

Proof Note that

We now show that limt→∞ eWt = 0 which implies the desired result. Let cj for 
j = 1, . . . , p be an eigenbasis for W such that Wcj = �jcj . Note that since W ≺ 0 , �j < 0 
for all j. Consider any r ∈ R

p with basis decomposition r =
∑

j γjcj . We have

Since this is true for any r, limt→∞ eWt → 0 .   �
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