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Abstract 

The process of new drug development is complex, whereas drug-disease associa-
tion (DDA) prediction aims to identify new therapeutic uses for existing medications. 
However, existing graph contrastive learning approaches typically rely on single-view 
contrastive learning, which struggle to fully capture drug-disease relationships. Sub-
sequently, we introduce a novel multi-view contrastive learning framework, named 
CDPMF-DDA, which enhances the model’s ability to capture drug-disease associa-
tions by incorporating diverse information representations from different views. First, 
we decompose the original drug-disease association matrix into drug and disease 
feature matrices, which are then used to reconstruct the drug-disease association 
network, as well as the drug-drug and disease-disease similarity networks. This process 
effectively reduces noise in the data, establishing a reliable foundation for the net-
works produced. Next, we generate multiple contrastive views from both the original 
and generated networks. These views effectively capture hidden feature associations, 
significantly enhancing the model’s ability to represent complex relationships. Exten-
sive cross-validation experiments on three standard datasets show that CDPMF-DDA 
achieves an average AUC of 0.9475 and an AUPR of 0.5009, outperforming existing 
models. Additionally, case studies on Alzheimer’s disease and epilepsy further validate 
the model’s effectiveness, demonstrating its high accuracy and robustness in drug-
disease association prediction. Based on a multi-view contrastive learning framework, 
CDPMF-DDA is capable of integrating multi-source information and effectively captur-
ing complex drug-disease associations, making it a powerful tool for drug reposition-
ing and the discovery of new therapeutic strategies.

Keywords: Drug-disease association prediction, Contrastive learning, Matrix 
factorization, Multiple contrastive views

Introduction
The conventional method of drug discovery is costly and laborious [1–3]. Many drug 
candidates that appear promising in early trials often fail in later stages due to toxicity or 
inefficacy [4]. In the period from 2015 to 2020, a total of only 245 drugs secured approval 
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from the US FDA’s Center for Drug Evaluation and Research [5]. By contrast, DDA pre-
diction leverages advancements in sequencing technology to repurpose approved drugs 
for new therapeutic applications beyond their original indications [6, 7]. This strategy 
not only mitigates risks but also significantly reduces development costs and time [8, 9]. 
Consequently, DDA prediction holds substantial potential and offers numerous benefits, 
making it an invaluable approach in drug discovery.

Matrix factorization methods have been extensively utilized in bioinformatics research 
[10–13]. In particular, Zhang et  al. described a method for matrix factorization that 
includes manifold regularization, combining manifold regularization with drug feature 
similarity to predict drug associations [14]. Sadeghi et al. developed NMFDR, which is 
a complex drug-disease interaction network that integrates drug-disease associations 
along with disease and drug similarities, predicting the scores for unidentified drug-dis-
ease pairs was made possible by an advanced non-negative matrix factorization method 
[15]. Wang et  al. created WNMFDDA, which uses collaborative non-negative matrix 
factorization with weighted graph regularization to predict interactions pertaining to 
drugs and diseases [16]. Yang et al. offered the MSBMF method, where the matrix repre-
senting drug-disease associations is divided into separate feature matrices for drugs and 
diseases using multi-similarity bilinear matrix factorization, and these matrices subse-
quently help in predicting potential drug-disease associations [17]. These methods map 
various object features to a low-dimensional space through matrix factorization, extract-
ing latent features from complex data to predict interactions between different entities. 
Matrix factorization excels at extracting latent features from intricate data, revealing the 
structural relationships within the data [18]. However, when facing high-dimensional 
data or lower data quality, matrix-based methods may encounter performance issues 
[19].

Graph neural networks have achieved significant progress in recent years, establishing 
themselves as a robust approach for graph representation learning with applications in 
social networks, chemistry, and biology [20, 21]. Within the domain of DDA prediction, 
Yu et al. brought forward LAGCN, which combines known drug-disease associations and 
similarities between drugs and diseases, resulting in heterogeneous networks. LAGCN 
uses graph convolution operations to create embeddings, then combines these from mul-
tiple convolutional layers into a final representation via an attention mechanism [22]. Simi-
larly, Zhao et al. unveiled DDAGDL, a geometric deep learning scheme that was founded 
on heterogeneous information networks (HINs). This framework forms a heterogeneous 
network by integrating complex biological information, utilizes geometric prior knowledge 
to comprehend smooth characteristics related to drugs and diseases, employing an atten-
tion mechanism to gather crucial neighborhood information for representation learning 
[23]. Sun et  al. developed an adaptive GCN to generate a k-nearest neighbor graph that 
combines feature similarity and topological structure, extracting embeddings of drug and 
disease features, and optimizing the embedding weights using consistency constraints and 
attention mechanisms. They identified both general and specific representations of drug 
and disease nodes, utilizing attention mechanisms and integration modules to adaptively 
merge these representations for the final prediction of associations [24]. He et al. presented 
EDEN, a framework that merges drug-disease associations into the disease information 
network. By optimizing mutual information between local semantics and global structures, 
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this system predicts drug-disease associations [25]. Although these methods have demon-
strated effectiveness in DDA prediction, they often face challenges related to their reliance 
on incomplete information, particularly when drug-disease associations and similarity data 
are incomplete or noisy, which can lead to performance degradation and limit their appli-
cability in complex biological networks. Graph-based contrastive learning, as an emerging 
approach, aims to enhance the robustness and generalization ability of GNNs by generating 
different views [26, 27]. However, most existing contrastive learning methods are primar-
ily based on single-view contrast, overlooking the potential of multimodal or multi-view 
information [28, 29]. Therefore, these methods may struggle to fully capture semantic dif-
ferences and structural information in graphs, particularly when dealing with highly het-
erogeneous biological networks, limiting their performance.

Based on this, we propose an innovative framework named CDPMF-DDA, which uti-
lizes probabilistic matrix factorization to construct multi-view contrastive learning, deeply 
exploring potential drug-disease associations. By conducting contrastive learning across 
different views, the method effectively captures the multi-layered information of drug-
disease relationships. At the same time, the probabilistic matrix factorization is employed 
to reconstruct the networks, effectively filtering out noisy information and enhancing the 
robustness of graph structure representation learning. The framework can be summarized 
as follows: (1) We first construct the drug-disease association, drug similarity, and disease 
similarity networks. (2) By introducing probabilistic matrix factorization with Gaussian 
noise, these networks are reconstructed into new drug-disease association, drug similarity, 
and disease similarity networks. (3) Multiple contrastive views of drug-disease, drug-drug, 
and disease-disease are then constructed upon these networks to better capture potential 
feature associations. (4) CDPMF-DDA incorporates only the target node neighborhood 
aggregation part in the graph convolution operation, improving computational efficiency. 
Furthermore, CDPMF-DDA integrates contrastive loss and binary cross-entropy to com-
pute the overall loss between view pairs, enhancing its generalization capability. We evalu-
ate the prediction performance of CDPMF-DDA against five other baseline methods across 
three public datasets. In overall performance, CDPMF-DDA demonstrates superior perfor-
mance compared to the other methods, as indicated by the experimental results.

Methods
Methods overview

The structure of CDPMF-DDA is demonstrated in Fig. 1 and is primarily divided into three 
steps: (1) Using probabilistic matrix factorization, reconstruct networks of drug similarity, 
disease similarity, and drug-disease associations. (2) Generate comparative views for the 
drug-disease association network, drug similarity network, and disease similarity network. 
(3) Utilize the unified model to train and optimize these comparative views.

Model architecture

Probabilistic matrix factorization

Given n drugs R =
{

r1, r2, r3, . . . , rn
}

 and m diseases D =
{

d1, d2, d3, . . . , dm
}

 , we pre-
sent the known drug-disease associations using a binary matrix Y ∈ R

n∗m.The ele-
ments in the matrix Yij ∈ {0, 1} indicate the association of a given drug ri with a disease 
dj . In cases where experimental evidence confirms the association between drug ri and 
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disease dj , Yij = 1 ; otherwise, Yij = 0 . Matrix factorization techniques typically project 
the drug-disease association matrix into latent feature matrices for drugs and diseases 
and reconstruct the drug-disease association matrix through their product. Let the drug 
latent feature matrix be expressed as W ∈ R

t∗n and the disease latent feature matrix be 
H ∈ R

t∗m . Then, the reconstructed drug-disease association matrix is Y = WTH . Here, 
our objective is to find W  and H to accurately reconstruct the drug-disease association 
matrix. From a probabilistic perspective, the conditional distribution of the drug-disease 
interaction matrix Y ∈ R

n*m is:

where N
(

χ |µ, σ 2
)

 represents the Gaussian normal distribution’s probability density 
function, and Iij is an indicator function. When the drug ri and the disease dj are linked, 
Iij = 1 ; otherwise, Iij = 0 . Formula (1) serves as the generative model for the latent fea-
ture matrices of drug and disease. To further refine this model, we incorporate a zero-
mean spherical Gaussian prior into the feature vectors of both drug and disease, as 
illustrated below:

where I is a k-dimensional unit diagonal matrix. By taking the logarithm of the pos-
terior distribution of drug and disease characteristics and transforming it while keep-
ing the hyperparameters unchanged, the maximization problem can be converted into 

(1)P
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Fig. 1 The general architecture of CDPMF-DDA. (1) Matrix factorization module (2) Contrastive learning 
module (3) Optimization module
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a minimization problem. This minimization procedure involves the objective function 
that sum of squared errors, combined with a quadratic regularization term:

where � · �F refers to the Frobenius norm. Considering both drug and disease similarity 
constraints, we minimize the following loss function to ultimately learn W and H:

among these, Sr and Sd are the matrices representing drug similarity and disease simi-
larity, respectively. To achieve minimization of this loss function, we apply the gradient 
descent method, updating W and H according to the following rule:

among them, I is a binary matrix indicating the positions of non-zero elements in the 
drug-disease association matrix Y  . Concurrently, µ1 , µ2 , µ3 , and µ4 are crucial hyperpa-
rameters that regulate model complexity and the impact of similarity measures. These 
update rules will be applied iteratively until a predefined number of iterations is reached. 
The final W  and H matrices represent the latent feature matrices of the drug and disease 
that we aim to find. Subsequently, the iterated drug latent feature matrix W  and disease 
latent feature matrix H are multiplied by their transposes to reconstruct the drug simi-
larity matrix Sr and disease similarity matrix Sd:

Eventually, we adopt the reconstructed drug-disease association matrix Y  , the 
drug similarity matrix Sr , and the disease similarity matrix Sd to construct the 
drug-disease similarity network G , the drug similarity network Gr , and the disease 
similarity network Gd . These networks integrate the relationships and similarities 
pertaining to drugs and diseases, providing a solid foundation for further analysis 
and prediction. A more profound analysis of these networks will help us to better 
understand the complexities inherent in drugs and diseases. This method effectively 
captures the complex associations linking drugs and diseases and reveals their inter-
nal similarity structures, providing new perspectives and a scientific basis for DDA 
prediction and disease treatment.
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Multi‑view contrastive learning

The GCN method aggregates the neighboring node information for each node in each 
layer, then updates its representation and uses it as the input for the next layer. Based 
on the research of Xia et al. [30], a two-layer GCN is used to aggregate the information 
from neighboring nodes for each node in this study. The first layer’s aggregation process 
proceeds as follows:

where z(r)il  and z(d)jl  denote the first-layer embeddings of drugs ri and diseases dj , �() rep-
resents the identity activation function. p() signifies the edge removal in the drug-dis-
ease association matrix Y  to alleviate the overfitting problem. The sum of the 
aggregations over all layers forms the final representation of each node:

where Z(r)
i  and Z(d)

j  represent the aggregated embeddings of drugs ri and diseases dj 
across all layers, respectively. Similarly, at each layer, we propagate messages on the 
reconstructed drug-disease association graph G , and the specific expression is:

here, g (r)il  and g (d)jl  represent the first-level embedding of drugs ri and diseases dj on the 
reconstructed G , respectively. In a similar way, the final embeddings of drugs and dis-
eases in the G are:

In the end, the drug and disease representations are fused for optimal predictions in 
the following manner:

where Qr and Qd represent the final embeddings of drug ri and disease dj , respectively. 
�1 and �2 are hyperparameters that regulate the importance of the embeddings from the 
two views. Hence, the final prediction score for disease dj associated with drug ri is:

To obtain a deeper insight into the sophisticated associations relevant to drugs and 
diseases, we systematically analyzed the original drug similarity network Gr and its 
reconstructed network Gr through matrix factorization, as well as the disease similar-
ity network Gd and its reconstructed network Gd using the same graph contrastive 
learning method. Initially, we process these networks using the k-nearest neighbor 
algorithm. Specifically, for each drug node, we identify the top k drug nodes with the 
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highest similarity in Gr and Gr . The same method applies to the similarity analysis of 
disease nodes in Gd and Gd . After extracting these key nodes, we utilize the afore-
mentioned message propagation rules to further extract features and learn from this 
information.

In summary, the multi-view contrastive learning method effectively identifies and 
compares changes and stability within the network, uncovering key informational 
markers and potential therapeutic targets. The k-nearest neighbor algorithm captures 
direct neighbor relationships of drug or disease nodes, reflecting broader relational 
patterns through the network’s topology. Meanwhile, node representations in the 
graph convolutional layer are updated by aggregating neighboring information, cap-
turing local connection patterns and dynamic changes. By integrating these strategies, 
our framework extracts deep features from static data and captures dynamic network 
changes, enabling more accurate and comprehensive predictions of drug-disease 
associations. These insights enhance our understanding of drug-disease interactions, 
providing a robust foundation for novel drug discovery and therapeutic strategies.

Optimization

We denote the final embeddings of the row vectors in the drug similarity network Gr , 
the disease similarity network Gd , and the drug-disease association network G as Z(r) . 
The final embeddings of the column vectors are denoted as Z(C) . G(r) and G(C) indicate 
the final embeddings of row and column vectors in the reconstructed drug similarity 
network Gr , the reconstructed disease similarity network Gd , and the reconstructed 
drug-disease association network G.

CDPMF-DDA uses consistent optimization scheme to calculate the overall loss 
across the three contrastive views. Contrastive learning aims to align node embed-
dings across contrasting views. We consider perspectives of the same node as positive 
examples, whereas perspectives of different nodes are considered negative exam-
ples. Positive samples are derived from known high-confidence interaction pairs, 
while negative samples are generated by randomly sampling pairs that have not been 
verified as interactions, with careful consideration to avoid inadvertently introduc-
ing potential positive samples during the sampling process. This sampling strategy 
ensures the validity and rationale of the positive-to-negative sample comparison, 
maintaining a robust and reliable dataset for further analysis. Therefore, we apply the 
InfoNCE contrastive loss to enhance the alignment of positive pairs while reducing 
the influence of negative pairs, thereby obtaining the contrastive loss of row embed-
dings in the three contrastive views:

where s() stands for the cosine similarity function, τ denotes the temperature coefficient. 
In a similar manner, we have the ability to obtain the contrastive loss of the column 
embeddings:
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The final total contrastive loss is:

where β1 and β2 are hyperparameters. In an effort to strengthen the model’s generaliza-
tion ability, we incorporate binary cross-entropy loss to optimize our model jointly:

For the drug-disease comparative view, let 
(

i, j
)

 represent a drug-disease pair, θ+rc 
represents the collection of all known drug-disease association pairs, while θ−rc denotes 
the collection of unknown drug-disease association pairs. In the drug comparative 
view, 

(

i, j
)

 indicates a drug pair, θ+rc signifies the entirety of known drug association 
pairs, with θ−rc comprises those drug association pairs that remain unknown; in the 
disease comparative view, the letters have the same meaning as above. The number of 
association pairs in the sets θ+rc and θ−rc are represented by 

∣

∣θ+rc

∣

∣ and 
∣
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∣

∣ , respectively, α 
is the balance factor, and its value is the ratio of 

∣

∣θ+rc

∣

∣ to 
∣
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∣

∣ . The overall optimization 
method is as follows:

where η act as a hyperparameter used to balance the two loss values.

Experimental

Datasets

To assess the performance of CDPMF-DDA, we utilize three distinct datasets: Fdata-
set, Cdataset, and LRSSL [31]. As per Gottlieb et  al. Fdataset is broadly considered 
the gold standard dataset for drug-disease associations [32]. Fdataset contains 593 
drugs sourced from DrugBank [33], 313 diseases gathered from OMIM [34], and 1933 
verified drug-disease associations. Cdataset includes 663 drugs from DrugBank, 409 
diseases from OMIM, and 2532 drug-disease association [35]. LRSSL consists of 3051 
drug-disease associations, involving 763 drug from DrugBank and 681 diseases cata-
loged in MeSH [36].

Evaluation metrics

To thoroughly assess the performance of CDPMF-DDA, we employ a tenfold cross-
validation, repeated 10 times, with the average result serving as the final outcome. In 
this process, known drug-disease pairs serve as positive samples, whereas unknown 
pairs are considered negative samples. The model’s performance is assessed utilizing 
standard bioinformatics evaluation metrics, including AUROC and AUPR.
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Baseline methods

For the intent of evaluating our model’s performance, we conduct comparisons between 
CDPMF-DDA and a set of five state-of-the-art association prediction methods:
LBMFF [37]: This method combines literature information and feature fusion for the 

prediction of drug-disease associations. LBMFF constructs drug similarity and disease 
similarity matrices building on multiple features from public databases and PubMed 
sources. Next, an attention-based GCN is utilized to extract structural characteristics 
from the combined similarity matrix along with the existing drug-disease associations.
SCMFDD [38]: This similarity-constrained matrix factorization approach predicts 

drug-disease associations by transforming their relationships into two reduced-rank 
spaces, incorporating drug feature similarities and disease semantic similarities to con-
strain them.
SCPMF [39]: This similarity-constrained probabilistic matrix factorization model 

function on the adjacency matrix of a complex drug-disease network, integrating drug-
virus interactions, chemical structures, and viral genomic data. It maps the drug-virus 
interaction matrix into a pair of latent feature matrices, one corresponding to drugs and 
the other to viruses, and integrates a weighted similarity interaction matrix to constrain 
both.
MNGACDA [40]: This approach predicts circRNA-drug sensitivity by leveraging a 

multimodal network with a graph encoder and an attention mechanism. It constructs 
integrated networks for circRNA similarity, drug similarity, and circRNA-drug sensitiv-
ity. By embedding an attention layer at the node level into a deep graph neural network, 
the method extracts intrinsic node information. These representations of circRNA and 
drugs are then used in an internal decoder to predict sensitivity associations.
MKGCN [41]: By using GCN, this method extracts multi-layer features from a hetero-

geneous network comprising microorganisms and drugs. It calculates the kernel matrix 
at every layer and merges the various kernel matrices by employing a weighted aver-
age technique. These kernels are integrated within the microorganism and drug space by 
employing the dual Laplace regularized least squares approach to deduce new associa-
tions between microorganisms and drugs.

Parameters SETTING

CDPMF-DDA utilizes a two-layer of GCN for iteration processing. The configuration 
includes a learning rate of 0.001, an embedding size of 64, and a batch size of 5120. In 
the Fdataset and Cdataset, the number of epochs for the CDPMF-DDA model is set to 
200, while for the LRSSL dataset, it is set to 128. The hyperparameters of LBMFF, SCM-
FDD, SCPMF, MNGACDA, and MKJCN are all set to their original optimum values.

Results and discussions
Performance of CDPMF‑DDA in 10 times of tenfold cross‑validation

In assessing CDPMF-DDA’s effectiveness, we apply tenfold cross-validation, repeated ten 
times, to three public datasets and evaluate the performance against baseline methods. 
In these comparisons, all baseline models are configured using the optimal parameter 
settings reported in the literature to ensure consistency in the optimization conditions. 
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Results in Table 1 show that CDPMF-DDA outperforms all comparative models within 
the datasets, with average AUROC and AUPR of 0.9475 and 0.5009, respectively, sur-
passing the second-best by 5.082% and 9.999%. Figures 2 and 3 show the correspond-
ing ROC and PR curves. These results demonstrate that CDPMF-DDA provides notable 
improvements in accuracy and consistency for DDA prediction.

To evaluate CDPMF-DDA’s performance comprehensively, we employ the same 
metric, Recall@k, as used by Zeng et  al. [42], to further analyze CDPMF-DDA’s 
capacity to identify positive samples. Recall@k is defined as the fraction of positive 
samples in the top K predictions out of the total number of positive samples within 

Table 1 The results of 10 times of tenfold cross-validation

a ± b indicates that a fluctuates within the range of b. bold values represent the second-best results across the three 
datasets

Datasets LBMFF SCPMFDD SCPMF MKGCN MNGACDA CDPMF‑DDA

AUROCs

Fdataset 0.7953 ± 0.035 0.7740 ± 0.001 0.8957 ± 0.001 0.8870 ± 0.001 0.8179 ± 0.005 0.9477 ± 0.003

Cdataset 0.9069 ± 0.001 0.7937 ± 0.001 0.9117 ± 0.002 0.9109 ± 0.001 0.8406 ± 0.005 0.9548 ± 0.005

LRSSL 0.9139 ± 0.002 0.7668 ± 0.001 0.8977 ± 0.001 0.8596 ± 0.001 0.7936 ± 0.002 0.9401 ± 0.005

Avg 0.8720 0.7782 0.9017 0.8858 0.8173 0.9475

AUPRs

Fdataset 0.0266 ± 0.012 0.0056 ± 0.000 0.3451 ± 0.006 0.4471 ± 0.001 0.2494 ± 0.001 0.5540 ± 0.005

Cdataset 0.2176 ± 0.006 0.0055 ± 0.000 0.4140 ± 0.004 0.5647 ± 0.001 0.3396 ± 0.001 0.5967 ± 0.005

LRSSL 0.1740 ± 0.005 0.0038 ± 0.000 0.2710 ± 0.002 0.3518 ± 0.001 0.1799 ± 0.001 0.3520 ± 0.005

Avg 0.1394 0.00498 0.3433 0.4545 0.2563 0.5009

Fig. 2 AUROC with different methods for predicting potential drugs for new diseases. a Fdataset, b Cdataset, 
and c LRSSL

Fig. 3 AUPR with different methods for predicting potential drugs for new diseases. a Fdataset, b Cdataset, 
and c LRSSL
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the dataset. During this analysis, all models are optimized using the same evalua-
tion criteria and hyperparameter tuning strategies to guarantee fairness and consist-
ency across the experiments. As indicated in Fig. 4, for the top 6,000 predictions on 
Fdataset, Cdataset, and LRSSL, the Recall@k value of CDPMF-DDA surpasses that of 
other models. This advantage is attributed to CDPMF-DDA’s effective utilization of 
the probabilistic matrix factorization technique, which thoroughly explores potential 
drug-disease associations, thereby enhancing the identification of positive samples.

Ablation analysis

To verify the effectiveness of contrastive learning with matrix factorization, we com-
pare two variants. The model variants are summarized as follows:
CDPMF-DDA-noMF: This variant uses random edge culling to generate contrastive 

views.
CDPMF-DDA-noCL: In this variant, contrastive learning between views is disabled.
Table  2 illustrates the performance comparison between CDPMF-DDA and vari-

ants across the Fdataset compared to CDPMF-DDA, CDPMF-DDA-noMF has a nota-
bly reduced performance, indicating that probabilistic matrix factorization plays a 
crucial role in improving the model’s final performance. By using matrix factoriza-
tion, the model is able to more accurately capture the latent information of the nodes 
while reducing noise interference, which enhances the expressiveness of the embed-
ding representations. Additionally, the performance of CDPMF-DDA is superior to 
that of CDPMF-DDA-noCL, demonstrating the effectiveness of incorporating con-
trastive learning into representation learning between nodes. Contrastive learning 
enhances semantic consistency across different views. This helps the model to extract 
node features from multiple perspectives, improving understanding of the underlying 

Fig. 4 Comparison different methods of Recall@k values for the top k predicted. a Fdataset, b Cdataset, and 
c LRSSL

Table 2 AUROC and AUPR of CDPMF-DDA and variants with tenfold cross validation

Variants Fdataset

AUROC AUPR

CDPMF-DDA -noMF 0.8420 0.4932

CDPMF-DDA -noCL 0.9453 0.5477

CDPMF-DDA 0.9477 0.5540



Page 12 of 18Tang et al. BMC Bioinformatics            (2025) 26:5 

distribution and enhancing the generalization and robustness of node representa-
tions, boosting overall model performance.

Case studies

The practical utility of CDPMF-DDA is validated through case studies on two diseases, 
Alzheimer’s disease and Epilepsy. For predicting candidate drugs for these diseases, 
CDPMF-DDA is trained using all known drug-disease pairs in the Fdataset, with unob-
served pairs considered as candidate sets. Following the prediction, the probabilities 
are ranked from highest to lowest, and the top ten drugs for each disease are selected 
for subsequent investigation Authoritative data sources such as DrugBank [33], Drug-
Central [43], CTD, and ClinicalTrials.gov are used to validate the accuracy of CDPMF-
DDA’s prediction results.

Alzheimer’s disease ranks as the predominant progressive neurocognitive condition 
in senior citizens and is a type of neurodegenerative disorder [44]. Table 3 lists the 10 
drugs predicted by CDPMF-DDA to potentially treat Alzheimer’s disease. CDPMF-DDA 
predicts Memantine as the top potential drug for the treatment of Alzheimer’s disease. 
Memantine is an excitatory amino acid receptor antagonist used to treat Alzheimer’s 
disease [45], and this prediction is confirmed by ClinicalTrials.gov, CTD, alongside 
DrugCentral. Vitamin E, known for its antioxidant and neuroprotective effects, helps 
reduce inflammation and lower cholesterol levels, which are essential for maintaining 
brain health [46]. CDPMF-DDA’s prediction of Vitamin E’s relevance to Alzheimer’s 
disease is supported by ClinicalTrials.gov and CTD. Additionally, the candidate drugs 
Rivastigmine and Pramipexole predicted by CDPMF-DDA are also validated by Clini-
calTrials.gov and CTD, as well as DrugCentral. In summary, among the top 10 candidate 
drugs, 8 (achieving an 80% success ratio) are validated through reliable public datasets 
and clinical evidence.

Epilepsy is a brain disorder characterized by long-term recurrent seizures, occurring 
when brain cells malfunction and send electrical signals uncontrollably. We analyze the 
leading ten drug options predicted by CDPMF-DDA as possible treatments for Epilepsy. 
According to Table 4, 9 out of the 10 candidates (90% success rate) are proven effective 
with reliable evidence. CDPMF-DDA identifies Gabapentin as an effective treatment for 
Epilepsy, a discovery confirmed by data available from sources including DrugCentral 

Table 3 The top ten potential drugs for Alzheimer’s disease

Rank DrugBank IDs Candidate drugs Evidences

1 DB01043 Memantine ClinicalTrials.gov,CTD,DrugCentral

2 DB00163 Vitamin E ClinicalTrials.gov,CTD

3 DB01356 Lithium cation Unconfirmed

4 DB00989 Rivastigmine ClinicalTrials.gov, DrugCentral

5 DB00915 Amantadine CTD

6 DB00413 Pramipexole ClinicalTrials.gov, DrugCentral

7 DB00382 Tacrine DrugCentral

8 DB00822 Disulfiram ClinicalTrials.gov

9 DB00763 Methimazole Unconfirmed

10 DB00674 Galantamine DB, DrugCentral
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and pertinent academic articles. Ethanol is used for therapeutic neurolysis of nerves or 
ganglia to relieve intractable chronic pain in conditions such as tics. CDPMF-DDA pre-
dicts that Ethanol could be used to treat Epilepsy, and this assertion is corroborated by 
information from ClinicalTrials.gov and CTD. Magnesium cation, an important cation, 
can also be used to treat epilepsy, as confirmed by relevant literature from CTD. Addi-
tionally, CDPMF-DDA predicts that Primidone and Levetiracetam might be promising 
candidates for treating Epilepsy, as validated by DB and DrugCentral. These findings 
underscore the robustness and reliability of CDPMF-DDA in identifying effective drug 
candidates for Epilepsy, demonstrating its potential utility in medical research and clini-
cal practice.

Additionally, we conduct molecular docking experiments using Alzheimer’s disease 
as an example. We select five target proteins associated with Alzheimer’s disease and 
use AutoDock Vina [47] to evaluate the molecular interaction energy among the top 10 
drugs forecasted by CDPMF-DDA in Fdataset and these five target proteins. The specific 
results are displayed in Table 5. The molecular affinity energies of the untested candi-
date drug lithium cation with the Alzheimer’s disease target proteins, identified by the 
codes 1QJH, 2R0Z, 3K9O, 4FWU, and N62, are -3.8, -4.8, -4.8, -5.4, and -4.8 kcal/mol, 
respectively. Although lithium cation has not yet been confirmed as tied to Alzheimer’s 

Table 4 The top ten potential drug candidates for Epilepsy

Rank DrugBank IDs Candidate drugs Evidences

1 DB00996 Gabapentin DB,DrugCentral,ClinicalTrials.gov,CTD

2 DB00794 Primidone DB,DrugCentral,CTD

3 DB00909 Zonisamide DB,DrugCentral,ClinicalTrials.gov,CTD

4 DB01202 Levetiracetam DB,DrugCentral,

5 DB00898 Ethanol ClinicalTrials.gov,CTD

6 DB01378 Magnesium cation CTD

7 DB01019 Bethanechol Unconfirmed

8 DB00515 Cisplatin CTD

9 DB00653 Magnesium sulfate ClinicalTrials.gov,CTD

10 DB00160 Alanine CTD

Table 5 Molecular binding energies (kcal/mol) of the top 10 Alzheimer’s disease candidate drugs

Drug Docking Energy(kcal/mol)

1QJH 2R0Z 3K9O 4FWU 5N62

Memantine − 5.4 − 5.7 − 5.2 − 5.8 − 5.6

Vitamin E − 5.9 − 5.7 − 5.4 − 6.2 − 5.7

Lithium cation − 3.8 − 4.8 − 4.8 − 5.4 − 4.8

Rivastigmine − 5.0 − 5.7 − 5.0 − 6.2 − 6.3

Amantadine − 4.5 − 5.4 − 4.7 − 5.0 − 5.1

Pramipexole − 5.0 − 5.3 − 4.8 − 5.1 − 5.7

Tacrine − 5.8 − 6.6 − 5.8 − 6.6 − 7.0

Disulfiram − 3.8 − 4.1 − 3.4 − 4.4 − 3.9

Methimazole − 3.4 − 3.2 − 3.5 − 3.5 − 3.7

Galantamine − 6.1 − 6.5 − 6.2 − 6.7 − 6.3
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disease, it is prescribed to treat bipolar disorder and various other mental health dis-
orders. Hampel et al. suggested that it may have therapeutic potential for Alzheimer’s 
disease [48]. The experimental results indicate that lithium cation may serve a potential 
role in the therapy for Alzheimer’s disease, but further verification and research are still 
needed.

Subsequently, we employ DS software to visualize the molecular docking results of 
Methimazole and Abeta (PDB code: 2R0Z). As illustrated in Fig. 5, the small molecules 
interact through van der Waals forces with particular amino acid residues exemplified by 
VAL132, SER176, SER161, SER168, PHE166, LEU177, THR176, LEU169, LEU141, and 
ASN160. Additionally, several common intermolecular interactions are noticed, such as 
the typical hydrogen bond interaction between hydrogen atoms and THR177. There are 
also hydrophobic interactions, including carbon-hydrogen bond interactions between 
hydrogen atoms and LEU159 and SER175. According to the visualization results, the 
drugs predicted by CDPMF-DDA as potential treatments for Alzheimer’s disease could 
provide worthwhile references for medical research.

Based on drug similarity, we select the top 10 drug similarity pairs from the drug simi-
larity matrix of Fdataset and obtain 15 drug similarity sets. With CDPMF-DDA, we pre-
dict the top 30 potential therapeutic diseases for each drug, which allows us to build 
the corresponding drug-disease network. We divide these 15 clear community structure 
drugs into 6 communities and performed a visual analysis using the modularization 
function of Gephi software. The experimental results show that these 15 drugs exhibit a 
clear community structure, reflecting the clustering trend of drugs in terms of similarity 
and interaction. As shown in Fig.  6, Gonadorelin, Sermorelin, Cyclosporine, and Leu-
prolide are in the same cluster, all acting on the central nervous system. Among them, 
Gonadorelin and Leuprolide are gonadotropin-releasing hormone analogs that stimulate 
the anterior pituitary to secrete LH and FSH. Similarly, Sermorelin treats children with 
growth hormone deficiency or growth disorders by promoting the release of growth 
hormone from the pituitary. Cyclosporine, which acts as a calcineurin inhibitor, can pre-
vent rejection in organ transplants and treat a range of inflammatory and autoimmune 

Fig. 5 Molecular docking outcomes in both 3D and 2D for Methimazole (DrugBank ID: DB00763) with Abeta 
(PDB code: 2R0Z)
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diseases by providing significant immunosuppressive effects on T cells. Additionally, 
Cyanocobalamin, Vincristine, and Octreotide are widely used in anticancer treatment, 
with Vincristine and Octreotide primarily used to treat tumors. Vincristine may cause 
bone marrow suppression, increasing the need for vitamin B12, while Octreotide may 
reduce the patient’s vitamin B12 levels. Cyanocobalamin can correct vitamin B12 defi-
ciency. Pyridoxal phosphate and Pyridoxine, both vitamins, can be used to treat vitamin 
B6 deficiency. Drug combinations can improve therapeutic effects, reduce drug toxicity 
and side effects, and have a significant impact on the treatment of various complex dis-
eases [49, 50].

In summary, CDPMF-DDA can effectively identify associations between drugs and 
uncover shared characteristics among them, thereby providing a reliable foundation for 
predicting potential treatments for new diseases.

Conclusion
In this study, we introduce CDPMF-DDA, an innovative multi-view contrastive learn-
ing framework for drug-disease association prediction. The framework aims to com-
prehensively explore the latent feature relationships between drug-disease, drug-drug, 
and disease-disease interactions by integrating multi-view feature representations. 
This approach effectively captures complex network structures and association pat-
terns across multiple dimensions of information. By employing probabilistic matrix 
factorization, CDPMF-DDA extracts hidden features across various networks, enhanc-
ing the understanding of drug-disease associations. Additionally, we design a multi-
view contrastive learning mechanism that encompasses drug-disease, drug-drug, and 

Fig. 6 The drug-disease network predicted from Fdataset. This network links 15 selected drugs (depicted 
by large circles) with 450 potential therapeutic diseases (represented by small circles) as predicted by 
CDPMF-DDA. The potential therapeutic diseases for each drug are ranked in accordance with the prediction 
probabilities from CDPMF-DDA, and the connections between drugs and diseases are weighted and 
emphasized accordingly
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disease-disease networks. This mechanism strengthens the model’s ability to learn 
rich features representations and capture key structural information. Extensive experi-
ments on three publicly available datasets demonstrate that CDPMF-DDA outper-
forms five state-of-the-art models. Specifically, in 10 times of tenfold cross-validation, 
CDPMF-DDA achieves an average AUC of 0.9475 and AUPR of 0.5009, surpassing all 
comparison methods. Furthermore, CDPMF-DDA excels Recall@k for the top-k item 
predictions, further validating its outstanding capability in capturing critical drug-dis-
ease relationships.

CDPMF-DDA also shows promise in drug-target prediction and gene-disease asso-
ciation analysis. Future research will focus on optimizing matrix factorization to more 
effectively preserve key information from the original data and exploring adaptive multi-
modal data fusion strategies to improve performance.
Acknowledgements
Not applicable.

Author contributions
XT is responsible for conceptualizing the project, participating in the review and editing of the manuscript, and design-
ing the methodology; YH is involved in the conceptualization, writes the initial draft of the study, and develops the rel-
evant software; YM participates in the review and editing of the manuscript and is also responsible for acquiring funding; 
ZW and JL each conduct formal analysis of the data; CL and XH are in charge of data collection and curation; JX and JY 
provide supervision and manage the necessary resources.All authors reviewed the manuscript.

Funding
This work is supported by the National Natural Science Foundation of China (Grant Nos. 62302156, and 62402349), the 
Natural Science Foundation of Hunan Province (Grant No. 2023JJ40180), the Natural Science Foundation of Hubei Prov-
ince (Grant No. 2024AFB127), and Wuhan Textile University Foundation (Grant Nos. 20230612 and 2024309).

Availability of data and materials
No datasets were generated or analysed during the current study.

Declarations

Ethics approval and consent to participate
Not Applicable.

Consent for publication
Not Applicable.

Competing interests
The authors declare no competing interests.

Received: 30 October 2024   Accepted: 27 December 2024

References
 1. Lau A, So H-C. Turning genome-wide association study findings into opportunities for drug repositioning. Comput 

Struct Biotechnol J. 2020;18:1639–50.
 2. Li J, Zheng S, Chen B, Butte AJ, Swamidass SJ, Lu Z. A survey of current trends in computational drug repositioning. 

Brief Bioinform. 2016;17(1):2–12.
 3. Ao C, Xiao Z, Guan L, Yu L. Computational Approaches for Predicting Drug-Disease Associations: A Comprehensive 

Review. arXiv preprint arXiv:06388.2023.
 4. Giri S, Bader A. A low-cost, high-quality new drug discovery process using patient-derived induced pluripotent 

stem cells. Drug Discov Today. 2015;20(1):37–49.
 5. Bhutani P, Joshi G, Raja N, Bachhav N, Rajanna PK, Bhutani H, et al. US FDA approved drugs from 2015–June 2020: a 

perspective. J Med Chem. 2021;64(5):2339–81.
 6. Asselah T, Durantel D, Pasmant E, Lau G, Schinazi RF. COVID-19: discovery, diagnostics and drug development. J 

Hepatol. 2021;74(1):168–84.
 7. Huang Z, Xiao Z, Ao C, Guan L, Yu L. Computational approaches for predicting drug-disease associations: a compre-

hensive review. Front Comp Sci. 2025;19(5):1–15.
 8. Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, et al. Drug repurposing: progress, challenges and recom-

mendations. Nat Rev Drug Discov. 2019;18(1):41–58.



Page 17 of 18Tang et al. BMC Bioinformatics            (2025) 26:5  

 9. He S, Yun L, Yi H. Fusing graph transformer with multi-aggregate GCN for enhanced drug–disease associations 
prediction. BMC Bioinf. 2024;25(1):79.

 10. Chen X, Yin J, Qu J, Huang L. MDHGI: matrix decomposition and heterogeneous graph inference for miRNA-disease 
association prediction. PLoS Comput Biol. 2018;14(8):e1006418.

 11. Rohani N, Eslahchi C, Katanforoush A. ISCMF: Integrated similarity-constrained matrix factorization for drug–drug 
interaction prediction. Netw Model Anal Health Inf Bioinform. 2020;9:1–8.

 12. Guan N-N, Zhao Y, Wang C-C, Li J-Q, Chen X, Piao X. Anticancer drug response prediction in cell lines using 
weighted graph regularized matrix factorization. Mol Therapy-Nucleic Acids. 2019;17:164–74.

 13. Liu W, Tang T, Lu X, Fu X, Yang Y, Peng L. MPCLCDA: predicting circRNA–disease associations by using automatically 
selected meta-path and contrastive learning. Brief Bioinf. 2023;24(4):bbad227.

 14. Zhang W, Chen Y, Li D, Yue X. Manifold regularized matrix factorization for drug-drug interaction prediction. J 
Biomed Inform. 2018;88:90–7.

 15. Sadeghi S, Lu J, Ngom A. A network-based drug repurposing method via non-negative matrix factorization. Bioin-
formatics. 2022;38(5):1369–77.

 16. Wang M-N, Xie X-J, You Z-H, Ding D-W, Wong L. A weighted non-negative matrix factorization approach to predict 
potential associations between drug and disease. J Transl Med. 2022;20(1):552.

 17. Yang M, Wu G, Zhao Q, Li Y, Wang J. Computational drug repositioning based on multi-similarities bilinear matrix 
factorization. Brief bioinf. 2021;22(4):267.

 18. Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems. Comput Sci Rev. 
2009;42(8):30–7.

 19. Meng Y, Wang Y, Xu J, Lu C, Tang X, Peng T, et al. Drug repositioning based on weighted local information aug-
mented graph neural network. Brief Bioinf. 2024;25(1):bbad431.

 20. Xu K, Hu W, Leskovec J, Jegelka S. How powerful are graph neural networks? arXiv preprint https:// arxiv. org/ abs/ 
1810. 00826.

 21. You J, Ying Z, Leskovec J. Design space for graph neural networks. Adv Neural Inf Process Syst. 2020;33:17009–21.
 22. Yu Z, Huang F, Zhao X, Xiao W, Zhang W. Predicting drug–disease associations through layer attention graph convo-

lutional network. Brief Bioinf. 2021;22(4):bbaa243.
 23. Zhao B-W, Su X-R, Hu P-W, Ma Y-P, Zhou X, Hu L. A geometric deep learning framework for drug repositioning over 

heterogeneous information networks. Brief Bioinf. 2022;23(6):bbac384.
 24. Sun X, Jia X, Lu Z, Tang J, Li M. Drug repositioning with adaptive graph convolutional networks. Bioinformatics. 

2024;40(1):btad748.
 25. He C, Duan L, Zheng H, Song L, Huang M. An explainable framework for drug repositioning from disease informa-

tion network. Neurocomputing. 2022;511:247–58.
 26. Gao Z, Ma H, Zhang X, Wang Y, Wu Z. Similarity measures-based graph co-contrastive learning for drug–disease 

association prediction. Bioinformatics. 2023;39(6):btad357.
 27. Jia X, Sun X, Wang K, Li M, Informatics H. DRGCL: drug repositioning via semantic-enriched graph contrastive learn-

ing. IEEE J Biomed. 2024. https:// doi. org/ 10. 1109/ JBHI. 2024. 33725 27.
 28. Gao Y, Li X, Yan H. Rethinking graph contrastive learning: an efficient single-view approach via instance discrimina-

tion. IEEE Trans Multimed. 2023. https:// doi. org/ 10. 1109/ TMM. 2023. 33132 67.
 29. Bae S, Kim S, Ko J, Lee G, Noh S, Yun S-Y, editors. Self-contrastive learning: single-viewed supervised contrastive 

framework using sub-network. Proceedings of the AAAI Conference on Artificial Intelligence; 2023.
 30. Xia L, Huang C, Xu Y, Zhao J, Yin D, Huang J, editors. Hypergraph contrastive collaborative filtering. Proceedings of 

the 45th International ACM SIGIR conference on research and development in information retrieval; 2022.
 31. Meng Y, Lu C, Jin M, Xu J, Zeng X, Yang J. A weighted bilinear neural collaborative filtering approach for drug reposi-

tioning. Brief Bioinf. 2022;23(2):bbab581.
 32. Gottlieb A, Stein GY, Ruppin E, Sharan R. PREDICT: a method for inferring novel drug indications with application to 

personalized medicine. Mol Syst Biol. 2011;7(1):496.
 33. Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, et al. DrugBank: a knowledgebase for drugs, drug 

actions and drug targets. Nucleic Acids Res. 2008;36(supp1):D901–6.
 34. Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA. Online Mendelian Inheritance in Man (OMIM), a knowl-

edgebase of human genes and genetic disorders. Nucleic Acids Res. 2005;33(suppl1):D514–7.
 35. Yi H-C, You Z-H, Wang L, Su X-R, Zhou X, Jiang T-H. In silico drug repositioning using deep learning and comprehen-

sive similarity measures. BMC Bioinf. 2021;22:1–15.
 36. Liang X, Zhang P, Yan L, Fu Y, Peng F, Qu L, et al. LRSSL: predict and interpret drug–disease associations based on 

data integration using sparse subspace learning. Bioinformatics. 2017;33(8):1187–96.
 37. Kang H, Hou L, Gu Y, Lu X, Li J, Li Q. Drug–disease association prediction with literature based multi-feature fusion. 

Front Pharmacol. 2023;14:1205144.
 38. Zhang W, Yue X, Lin W, Wu W, Liu R, Huang F, et al. Predicting drug-disease associations by using similarity con-

strained matrix factorization. BMC Bioinf. 2018;19:1–12.
 39. Meng Y, Jin M, Tang X, Xu J. Drug repositioning based on similarity constrained probabilistic matrix factorization: 

COVID-19 as a case study. Appl Soft Comput. 2021;103:107135.
 40. Yang B, Chen H. Predicting circRNA-drug sensitivity associations by learning multimodal networks using graph 

auto-encoders and attention mechanism. Brief Bioinf. 2023;24(1):bbac596.
 41. Yang H, Ding Y, Tang J, Guo F. Inferring human microbe–drug associations via multiple kernel fusion on graph neural 

network. Knowl-Based Syst. 2022;238:107888.
 42. Zeng X, Zhu S, Liu X, Zhou Y, Nussinov R, Cheng F. deepDR: a network-based deep learning approach to in silico 

drug repositioning. Bioinformatics. 2019;35(24):5191–8.
 43. Avram S, Bologa CG, Holmes J, Bocci G, Wilson TB, Nguyen D-T, et al. DrugCentral 2021 supports drug discovery and 

repositioning. Nucleic Acids Res. 2021;49(D1):D1160–9.
 44. Wu Q, Su S, Cai C, Xu L, Fan X, Ke H, et al. Network Proximity-based computational pipeline identifies drug candi-

dates for different pathological stages of Alzheimer’s disease. Comput Struct Biotechnol J. 2023;21:1907–20.

https://arxiv.org/abs/1810.00826
https://arxiv.org/abs/1810.00826
https://doi.org/10.1109/JBHI.2024.3372527
https://doi.org/10.1109/TMM.2023.3313267


Page 18 of 18Tang et al. BMC Bioinformatics            (2025) 26:5 

 45. Murakawa-Hirachi T, Mizoguchi Y, Ohgidani M, Haraguchi Y, Monji A. Effect of memantine, an anti-Alzheimer’s drug, 
on rodent microglial cells in vitro. Sci Rep. 2021;11(1):6151.

 46. Lloret A, Esteve D, Monllor P, Cervera-Ferri A, Lloret A. The effectiveness of vitamin E treatment in Alzheimer’s dis-
ease. Int J Mol Sci. 2019;20(4):879.

 47. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, 
efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–61.

 48. Hampel H, Lista S, Mango D, Nistico R, Perry G, Avila J, et al. Lithium as a treatment for Alzheimer’s disease: the 
systems pharmacology perspective. J Alzheimers Dis. 2019;69(3):615–29.

 49. Tang X, Zhou C, Lu C, Meng Y, Xu J, Hu X, et al. Enhancing drug repositioning through local interactive learning with 
bilinear attention networks. IEEE J Biomed. 2023. https:// doi. org/ 10. 1109/ JBHI. 2023. 33352 75.

 50. Chen X, Ren B, Chen M, Wang Q, Zhang L, Yan G. NLLSS: predicting synergistic drug combinations based on semi-
supervised learning. PLoS Comput Biol. 2016;12(7):e1004975.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/JBHI.2023.3335275

	CDPMF-DDA: contrastive deep probabilistic matrix factorization for drug-disease association prediction
	Abstract 
	Introduction
	Methods
	Methods overview
	Model architecture
	Probabilistic matrix factorization
	Multi-view contrastive learning
	Optimization

	Experimental
	Datasets
	Evaluation metrics
	Baseline methods
	Parameters SETTING


	Results and discussions
	Performance of CDPMF-DDA in 10 times of tenfold cross-validation
	Ablation analysis
	Case studies

	Conclusion
	Acknowledgements
	References


