BMJ Paediatrics Open

BMJ Paediatrics Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Paediatrics Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjpaedsopen.bmj.com</u>).

If you have any questions on BMJ Paediatrics Open's open peer review process please email <u>info.bmjpo@bmj.com</u>

BMJ Paediatrics Open

Spatiotemporal Analysis of the Association Between Kawasaki Disease Incidence and PM2.5 Exposure: A Nationwide Database Study in Japan

Journal:	BMJ Paediatrics Open
Manuscript ID	bmjpo-2024-002887
Article Type:	Original research
Date Submitted by the Author:	08-Jul-2024
Complete List of Authors:	Yoneda, Kota; Tokyo Women's Medical University; Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Health policy and Informatics Shinjo, Daisuke; Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Health policy and informatics Takahashi, Naoto; The University of Tokyo Hospital, Department of Pediatrics Fushimi, Kiyohide; Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Health policy and Informatics
Keywords:	Epidemiology, Child Health, Statistics, COVID-19

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

for Review Only

1	Spatiotemporal Analysis of the Association Between Kawasaki Disease Incidence and
2	PM _{2.5} Exposure: A Nationwide Database Study in Japan
3	
4	Author Information
5	Kota Yoneda, MD, PhD, Department of Health Policy and Informatics, Tokyo Medical and
6	Dental University Graduate School, Tokyo, Japan. Department of Pediatrics, The University
7	of Tokyo Hospital, Tokyo, Japan. ORCID: 0000-0003-1605-5340
8	Daisuke Shinjo, PhD, Department of Health Policy and Informatics, Tokyo Medical and
9	Dental University Graduate School, Tokyo, Japan. ORCID: 000-0002-7495-7409
10	Naoto Takahashi, MD, PhD, Department of Pediatrics, The University of Tokyo Hospital,
11	Tokyo, Japan. ORCID: 0000-0002-2353-4430
12	Kiyohide Fushimi, MD, PhD, Department of Health Policy and Informatics, Tokyo Medical
13	and Dental University Graduate School, Tokyo, Japan. ORCID: 0000-0002-1894-0290
14	
15	Correspondence to: Daisuke Shinjo, PhD,
16	Department of Health Policy and Informatics, Tokyo Medical and Dental University Graduate
17	School, Tokyo, Japan
18	TEL: +81-3-3813-4028, FAX: +81-3-5803-0357
19	Email: dshinjo.hci@tmd.ac.jp,
20	
21	

2		
3	22	
4		
5	23	Abstract
7	20	
, 8		
9	24	Background: Kawasaki disease (KD) is an acute vasculitis primarily affecting children. While
10		
11		
12	25	some studies suggest a link between KD and $PM_{2.5}$ exposure, findings remain inconsistent.
13		
14	26	
15	20	
16		
17 19	27	Method . In this retrospective analysis, we utilised the Japanese administrative claims database
10	_,	
20		
21	28	to identify the incidence of KD in children under age five in 335 secondary medical care areas
22		
23		
24	29	across Japan before the COVID-19 pandemic (from July 2014 to December 2019) and after the
25		
26	30	COVID-19 pandemic (from January 2020 to December 2021) For each of these periods, we
27	50	eo vib 1) pundenne (nom sundary 2020 to beceniber 2021). For each of these periods, we
20		
30	31	developed hierarchical Bayesian models termed conditional autoregressive models that can
31		
32		
33	32	address the spatiotemporal clustering of KD to investigate the association between the monthly
34		
35	22	incidence of KD and exposure to DM NO NO and SO ever 1 month and 12 month
36	55	incluence of KD and exposure to TW _{2.5} , NO, NO ₂ , and SO ₂ over T-month and T2-month
3/		
20 20	34	durations. The pollution data were collected from publicly available data provided by the
40		
41		
42	35	National Institute for Environmental Studies.
43		
44	26	
45	36	
46		
47 79	37	Results : In pre-pandemic and post-pandemic periods, 55,289 and 14,023 new cases of KD
40	-	
50		
51	38	were identified, respectively. The conditional autoregressive models revealed that only 12-
52		
53	20	would are some to DM and a maintainfly a maleted with KD insidence and each 1 we (m3
54	39	month exposure to $PM_{2.5}$ was consistently correlated with KD incidence, and each 1 $\mu g/m^3$
55		
50 57	40	increase in annual PM_{25} exposure corresponded to a 3–10% rise in KD incidence. Consistent
58	-	
59		
60	41	outcomes were observed in the age-stratified sensitivity analysis.

. posure to PM2.5 . to elucidate the under. . PM2.5 is associated with KD. Conclusions: Annual exposure to PM_{2.5} was robustly linked with the onset of KD. Further research is needed to elucidate the underlying mechanism by which the spatiotemporal distribution of $PM_{2.5}$ is associated with KD.

1		
2		
4	48	
5		
6	49	Key Messages
7		
8	50	What is already known on this topic
9 10	00	
11		
12	51	• Previous studies have suggested a potential link between air pollution and Kawasaki
13		
14 15	52	Disease (KD), but the evidence has been inconclusive.
16	-	
17		
18	53	
19		
20 21	54	What this study adds
22		
23		
24	55	• Our spatiotemporal modelling showed that annual exposure to $PM_{2.5}$ was consistently
25		
20 27	56	linked with higher KD incidence before and after the COVID-19 pandemic across all age
28		
29		
30	57	groups of children (0, 1, or 2–4 years).
31		
32 33	58	• A 1 μ g/m ³ increase in PM _{2.5} concentration corresponded to a 3–10% increase in KD cases.
34		
35	50	
36	59	
3/		
30 39	60	How this study might affect research, practice, or policy
40		
41	(1	• This study mayides a strong foundation for future records into the underlying
42	61	• This study provides a strong foundation for future research into the underlying
43 44		
45	62	mechanisms of KD onset related to air pollution.
46		
47	(2)	
48	03	
49 50		
51	64	
52		
53		
54 55		
56		
57		
58		
59		
60		

65	
66	Introduction
67	Kawasaki disease (KD) is a febrile illness of unknown aetiology that predominantly affects
68	children under five. ¹⁻³ Intravenous immunoglobulin (IVIG) therapy has been widely adopted
69	to reduce the risk of fatal coronary artery aneurysms, with approximately 95% of KD cases in
70	Japan receiving IVIG early in the course of the illness. ^{2,4–6} Despite treatment advancements,
71	including the combination of corticosteroids with IVIG, as well as the use of cyclosporine A,
72	infliximab, or ulinastatin, coronary artery lesions occur in about 6% of cases, ⁷ underscoring the
73	urgent need to uncover clues to understand the disease's pathogenesis.
74	
75	The association between KD and $PM_{2.5}$ has been the subject of research. While some studies
76	have indicated no significant effect of short-term exposure to PM _{2.5} , others have shown an
77	impact of annual or intrauterine exposure to $PM_{2.5}$. ^{8–12} These studies may indicate the
78	association between KD and long-term exposure to PM _{2.5} ; however, several limitations should
79	be noted. First, most previous studies ignore repeatedly documented spatiotemporal clustering
80	of KD. ^{13–17} Spatiotemporal clustering of this disease with unknown aetiology indicates possible
81	autocorrelation in the residuals, comprising the validity of the generalised linear regression and
82	leading to biased estimates. The conditional autoregressive (CAR) models, hierarchical
83	Bayesian models designed for spatial and spatiotemporal analysis, can address residual
84	autocorrelation by incorporating a spatiotemporal term. ¹⁸⁻²⁰ Second, studies on KD often focus

1 2	
3	
4 5	8
6	
7 8	8
9	
10 11	8
12	
13	8
14 15	
16	8
17 19	
19	C
20	,
21 22	0
23	9
24 25	
25 26	9
27	
28 29	9
30	
31 32	
33	
34	
35 36	
37	
38	
39 40	
41	
42 43	
44	
45 46	
40 47	
48	
49 50	
51	
52 52	
55 54	
55	
56 57	
58	
59	

85 on the exposure defined by a single time length, leaving it uncertain whether observed differences in results are due to the length of time unit or other aspects of the study design. 86 Third, the dramatic reduction in KD after the onset of the COVID-19 pandemic may have 87 disrupted the stationarity assumptions.^{21–23} 88 89 90 Thus, this paper aims to perform spatiotemporal analysis based on the CAR model to investigate the impact of monthly and annual exposure to PM_{2.5} and other air pollutants on the 91 incidence of KD before and after the advent of the COVID-19 pandemic. 92 93

Methods Data source In this retrospective study, we extracted clinical data from the Japanese administrative claims database named the Diagnosis Procedure Combination (DPC) database, comprising anonymised clinical and administrative claims data featuring baseline information of patients and facilities, diagnostic records, procedural data, device utilisation, and prescription details. As of 2023, over 2,000 hospitals had implemented DPC-based reimbursement systems. This database substantiated its reliability through prior research.²⁴ Data were accessed on August 16, 2023. Among hospitalisation data from April 2014 to March 2022, we extracted clinical information on children under five diagnosed with KD, identified by the International Classification of Diseases, Tenth Revision (ICD-10) code of M30.3. To minimise bias associated with misclassification, we focused on hospital admissions where patients received KD-specific medications, namely IVIG, cyclosporine A, infliximab, or ulinastatin.^{3,6,7} We considered the date of first admission with KD treatment as the onset date, excluding cases with unclear onset dates, specifically transfer cases and those not administered IVIG within seven days of the first admission. Cases of KD that occurred in the first and last three months of the observation period were excluded to address uncertainties associated with the identification of initial hospitalisations and to minimise omissions due to delayed reporting.

BMJ Paediatrics Open

Then, the timeframe from July 2014 to December 2019 was defined as the period before the COVID-19 pandemic, whereas from January 2020 to December 2021 was defined as the period after the COVID-19 pandemic. The atmospheric environment database of the National Institute for Environmental Studies publishes pollution data from 2,184 monitoring stations across 319 (95%) of the 335 secondary medical care areas in Japan.²⁵ Each secondary medical care area, established across 1,718 of the 1,724 municipalities and managed by the 47 prefectural governments, ensures general inpatient treatment, including initial treatment of KD. We extracted daily exposure to PM_{2.5}, nitric monoxide (NO), nitrogen dioxide (NO₂), and sulphur dioxide (SO₂) for each medical care region, imputed missing values using the prefectural average, and calculated monthly exposure. As a result, we obtained 22,100 and 8,040 spatiotemporal units based on the exposure status in 335 secondary medical areas over 66 months and 24 months before and after the onset of the COVID-19 pandemic, respectively. **Outcomes and variables** As an outcome measure, the monthly incidence of KD was counted for each secondary medical care area associated with facilities. The monthly or annual exposure to PM2.5, NO, NO2, and

 SO_2 in the corresponding area were incorporated in the analysis as continuous variables. The

logarithm of person-days for each spatiotemporal unit based on the under-five population in
the Population Census 2020 was implicitly incorporated in all the statistical models as an offset
variable.²⁶

136 Statistical Analysis

To capture the fundamental relationship between KD incidence and exposure to PM_{2.5}, NO, NO₂, and SO₂, we developed non-Bayesian Poisson regression models, both univariable and multivariable, using overall exposure levels during the two distinct periods before and after the onset of the COVID-19 pandemic. Subsequently, we performed Markov chain Monte Carlo (MCMC) simulations with the CARBayes library version 6.1 and CARBayesST library version 5.0 in R version 4.3.2 to create four types of multivariable Bayesian Poisson regression models predicting the monthly incidence of KD based on 1-month and 12-month exposure to these air pollutants: "GLM model" is a Bayesian implementation of a generalised linear model that ignores spatiotemporal autocorrelations; "CARar(1) model" is a first-order CAR model, where "first-order" indicates that the model accounts for dependencies on the immediately previous time step; "CARar(2) model" is an extension of the CARar(1) model, incorporating dependencies on the past two time steps; and "CARadaptive model" is another first-order CAR model, which includes an adapted spatial weight matrix to handle spatial heterogeneity.^{18,19,27–} ³⁰ We adopted the model with the lowest widely applicable information criterion (WAIC)

among these four Bayesian models.³¹ Univariable models were also developed to assess the impact of individual air pollutants. The parameters were estimated from distributions derived from 40,000 MCMC samples, equating to 400,000 iterations with a thinning factor of 10 to reduce autocorrelation. This estimation followed an initial burn-in period of 100,000 iterations to stabilise the sampling process. In the sensitivity analysis, we developed comparative Bayesian models with subjects divided into three age groups: 0 years, 1 year, and 2 to 4 years. C.T. Ethics The Institutional Review Board at Tokyo Medical and Dental University granted ethical approval for this investigation (approval no. M2021-013). Given the anonymised nature of the data, the requirement for informed consent was waived. ά.

1	
2	
3	
4	
5	
6	
7	
/	
ð	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
26	
20	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
<u>⊿</u> 0	
77 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

164	
165	Results
166	We extracted 101,534 admissions of children under five years of age admissions with the ICD-
167	10 code M30.3 from the DPC database (Figure 1). In the pre-and post-COVID-19 pandemic
168	periods, 55,289 and 14,023 onsets of KD were identified, respectively. The basic characteristics
169	in Table 1 indicate the significant reduction in KD incidence and exposure to air pollutants
170	following the COVID-19 pandemic. The scatterplot matrix in Supplementary Figure 1
171	illustrates significant positive correlations between air pollutants.
172	
173	Table 2 presents the non-Bayesian Poisson regression models before and after the COVID-19
174	pandemic, indicating that overall exposure to $PM_{2.5}$ has been the only consistent contributor to
175	the incidence of KD. Multicollinearity was within acceptable limits, with no variance inflation
176	factors above 5. Supplementary Table 1 demonstrates that the CARadaptive models achieved
177	the lowest WAIC. Tables 3 and 4 present the CARadaptive models before and after the
178	COVID-19 pandemic, revealing that 12-month exposure to $PM_{2.5}$ has been the sole consistent
179	contributor to the incidence of KD. Favourable convergence was suggested by the Geweke
180	diagnostics with absolute values less than 2. In univariable analysis before and after the
181	COVID-19 pandemic, monthly exposure to PM _{2.5} was not significantly associated with the
182	onset of KD. In the multivariable CARadaptive model after the COVID-19 pandemic, 1-month
183	exposure to PM _{2.5} and 12-month exposure to NO were associated with a decreased incidence

1 2		
3 4 5	184	of KD, whereas NO ₂ showed a converse effect.
6 7 8	185	
9 10 11	186	Tables 5 and 6 display the pre-pandemic and post-pandemic age-stratified multivariable
12 13 14	187	CARadaptive models achieved in the sensitivity analysis. The reactivity to each air pollutant
15 16 17	188	was aligned with the primary analysis, which revealed sustained significant associations
18 19 20	189	between the onset of KD and 12-month exposure to $PM_{2.5}$.
21 22 23	190	
24 25 26		
20 27 28		
29 30 31		
32 33 34		
35 36 37		
38 39 40		
40 41 42		
43 44 45		
46 47 48		
49 50 51		
52 53		
55 56		
57 58 59		
60		

1	
2	
3	
4	
5	
6	
7	
, 8	
a	
10	
10	
11	
12	
13	
14	
15	
10	
1/	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

192	Discussion
193	Before the COVID-19 pandemic, 55,289 new cases of KD were identified, and 14,023 cases
194	were detected in the post-pandemic period. The classical method of non-Bayesian Poisson
195	regression suggested a fundamental correlation between KD incidence in the secondary
196	medical care area and the regional level of $PM_{2.5}$. A detailed analysis through the CAR models
197	revealed that 12-month exposure to $PM_{2.5}$ was the exclusive variable consistently associated
198	with KD incidence (Tables 3 and 4). Parallel outcomes were observed in the sensitivity
199	analysis stratified by age (Tables 5 and 6).
200	
201	The remarkable reduction in WAIC associated with the CARadaptive models substantiated
202	their efficiency and adequacy in the analysis. The convergence of these models and the
203	consistency of the results bolster the validity and robustness of our research. The comparative
204	analysis of 1-month and 12-month exposure underscored the criticality of the exposure duration.
205	The climb in KD incidence with annual rather than monthly exposure to $PM_{2.5}$ aligns with
206	previous research. ^{8–12} The 3–10% increase in the incidence of KD for every 1 μ g/m ³ increase
207	in PM _{2.5} , as demonstrated by the univariable and multivariable CARadaptive models, was
208	congruent with a previous South Korean study. ¹²
209	

BMJ Paediatrics Open

Previous research has shown that a considerable amount of PM_{2.5} comes from sources over 100 kilometres away, whereas NO₂ mainly comes from sources within 10 kilometres.³² NO has an even shorter dispersal distance compared to NO2.33 Their contrasting effects observed in the post-pandemic multivariable CARadaptive model-the optimistic influence of NO and the pessimistic impact of NO₂—can jointly modify predictions towards less incidence of KD in areas experiencing nearby air pollution. It may be that the remarkable reduction in distantly originated PM_{2.5}³⁴ necessitated adjustments for the less harmful PM_{2.5} derived from proximate pollution sources. The strength of this study lies in the adept use of CAR models that address the well-documented spatiotemporal aggregation of KD.^{13,15} Spatiotemporal autocorrelation of the error term caused by this aggregation violates the Gauss-Markov theorem's assumptions, enhancing the prevalence of type I and type II errors.^{35,36} Given the unknown pathogenesis of KD, measuring all the confounders with spatial effects to eradicate autocorrelation of the error term is not feasible, thus necessitating the adoption of clustering-aware models. Limitations Selection bias is a concern in observational studies. In light of the incidence rates of KD reported in previous studies, it can be estimated that approximately 70% of the domestic cases

1
2
3
4
5
5
0
/
8
9
10
11
12
13
14
15
16
17
18
10
20
20 21
21
22
23
24
25
26
27
28
29
30
31
37
32
27
54 25
35
36
37
38
39
40
41
42
43
44
45
46
- 1 0 ∕17
+/ /0
+0 40
49
50
51
52
53
54
55
56
57
58
59

were included.²² Although the inclusion criteria were carefully constructed based on the ICD-229 10 code and KD-specific medications, the level of concordance between the judged and actual 230 onset of KD is yet to be confirmed. The exclusion of untreated cases can be expected to be 231 marginal, considering the ubiquity of early IVIG administration in Japan.² Although the dose-232 response relationship observed in this study aligns with previous research conducted in 233 geographically close Korea, different results might be obtained in distant countries due to 234 varying sources of PM_{2.5}. Unmeasured substances or microorganisms dispersing similarly to 235 PM_{2.5}, rather than PM_{2.5} itself, might be involved in the onset of KD.^{37,38} Besides, it should be 236 noted that spatiotemporal analysis with different granularities of spatiotemporal units may yield 237 different results.³⁹ Analysis with a finer granularity would pose challenges due to boundary-238 crossing admissions, while extensive unit aggregation would reduce statistical power. We 239 handled data at the spatiotemporal unit level, thereby not distinguishing between prenatal and 240 postnatal exposures at the individual level. While the impact of annual PM_{2.5} exposure in 241 infants under one year may imply potential influences of prenatal exposure, these effects have 242 not been explicitly examined. 243 244 In conclusion, we utilised the CAR models to address the spatiotemporal aggregation of KD, 245 confirming the robust association between the incidence of KD and annual exposure to $PM_{2.5}$. 246

1 2 2		
5 4 5	247	Further investigation is required to clarify the underlying mechanism of association between
6 7 8 9 10 11 23 45 22 22 22 22 22 22 22 22 22 22 22 22 22	248	the spatiotemporal distribution of KD and PM _{2.5} .

249	
250	Acknowledgements
251	We used open geographic data from the publicly available National Land Numerical
252	Information released by the Japanese Ministry of Land, Infrastructure, Transport and Tourism
253	(https://nlftp.mlit.go.jp/).
254	
255	Contributors
256	KY: Conceptualisation, data curation, methodology, formal analysis, and writing of the
257	original draft. DS: Conceptualisation, methodology, review writing, editing, and funding
258	acquisition. NT: Conceptualisation and writing the review. KF: Supervision, resources, review
259	writing, and funding acquisition.
260	
261	Funding
262	Funding for this research was provided by a Grant-in-Aid for Policy Planning and Evaluation
263	Research from Japan's Ministry of Health, Labour and Welfare (grant identifier 22AA2003
264	[awarded to KF]) and a Grant-in-Aid for Scientific Research (B) through the Japan Society for
265	the Promotion of Science (JSPS KAKENHI, grant identifier 20H03921 [awarded to DS]). The
266	funders did not influence the design or conduct of the study, the gathering or interpretation of
267	data, the decision to submit the results for publication, or the drafting of the research paper.
268	

1 2		
3 4 5	269	Competing interests
6 7 8	270	No relevant financial or nonfinancial interest to disclose.
9 10 11	271	
12 13 14	272	Patient and public involvement
15 16 17	273	Patients and/or the public were not involved in this study's design, conduct, or dissemination.
18 19 20	274	
21 22 23	275	Ethics approval
24 25 26	276	This study was approved by the institution review board at the Tokyo Medical and Dental
27 28 29	277	University (Registration no. M2021-013). Given the anonymised nature of the data, the
30 31 32	278	requirement for informed consent was waived.
33 34 35	279	
36 37 38	280	Data availability statement
39 40 41	281	Due to the confidential nature of the data, it is unavailable for sharing.
42 43 44	282	
45 46 47	283	Figure legends
48 49 50	284	Figure 1. Study population and the exclusion criteria.
50 51 52 53	285	
55 54 55		
50 57 58		
59 60		

286 Tables

287 Table 1. Basic Characteristics of Spatiotemporal Units

Characteristic	Before the COVID-19 Pandemic ^a N = 22,110	After the COVID-19 Pandemic ^a N = 8,040	SMD	95% CI
Incidence	1.0 (0.0, 3.0)	0.0 (0.0, 2.0)	0.21	0.18, 0.23
PM _{2.5} , μg/m³	11.4 (9.2, 13.9)	8.5 (6.9, 10.3)	0.94	0.91, 0.96
NO, ppb	2.47 (1.22, 4.52)	1.72 (0.88, 3.07)	0.34	0.31, 0.36
NO ₂ , ppb	7.8 (5.0, 11.4)	6.2 (4.0, 9.2)	0.38	0.35, 0.40
SO ₂ , ppb	1.27 (0.79, 1.94)	0.83 (0.47, 1.24)	0.52	0.50, 0.55

^a Median (Interquartile Range); Standardized Mean Difference; CI, Confidence Interval.

(orighto	Univariable			Multivariable			
vanable	IRR	95% CI	P value	IRR	95% CI	P value	VIF
Before the CO	VID-19 Pa	andemic					
PM _{2.5} , μg/m³	1.02	1.02, 1.03	<0.001	1.03	1.02, 1.03	<0.001	1.40
NO, ppb	0.99	0.99, 1.00	<0.001	1.00	1.00, 1.01	0.13	4.02
NO ₂ , ppb	1.00	0.99, 1.00	<0.001	0.99	0.99, 0.99	<0.001	4.45
SO2, ppb	1.02	1.02, 1.03	<0.001	1.01	1.00, 1.02	0.011	1.24
After the COVID-19 Pandemic							
PM _{2.5} , μg/m³	1.04	1.03, 1.05	<0.001	1.03	1.02, 1.05	<0.001	1.33
NO, ppb	0.98	0.97, 0.98	<0.001	0.97	0.96, 0.99	<0.001	3.80
NO ₂ , ppb	0.99	0.99, 1.00	<0.001	1.00	0.99, 1.01	0.6	3.99
SO ₂ , ppb	1.08	1.06, 1.11	<0.001	1.06	1.04, 1.09	<0.001	1.23
IRR, Incidence	Rate Rat	tio; CI, Confider	nce Interval; VI	F, Variance I	nflation Factor.		
292							
293							

Verieble	Un	ivariable	Multi	variable
variable	IRR	95% CI	IRR	95% C
1-Month Exposi	ure to Air Pol	lutants		
PM _{2.5} , μg/m³	1.00	1.00, 1.01	1.00	0.99, 1.0
NO, ppb	1.00	1.00, 1.01	1.00	0.99, 1.0
NO ₂ , ppb	1.00	1.00, 1.01	1.00	0.99, 1.0
SO ₂ , ppb	1.02	1.00, 1.04	1.01	0.99, 1.0
12-Month Expos	sure to Air P	ollutants		
PM _{2.5} , μg/m³	1.03*	1.01, 1.05	1.03*	1.01, 1.0
NO, ppb	1.00	0.99, 1.01	0.99	0.97, 1.0
NO ₂ , ppb	1.01	1.00, 1.02	1.01	0.99, 1.0
SO ₂ , ppb	1.02	0.99, 1.06	1.00	0.96, 1.0
IO ₂ , ppb IO ₂ , ppb IO ₂ , ppb	1.01 1.02 Rate Ratio; (1.00, 1.02 0.99, 1.06	1.01 1.00 val. *p < 0.05.	0.99, 1

Table 4.	Table 4. CARadaptive Models After the COVID-19 Pandemic						
Variable	Uni	variable	Multi	variable			
variable	IRR	95% CI	IRR	95% CI			
1-Month Expos	sure to Air Pol	lutants					
PM _{2.5} , μg/m ³	1.00	0.98, 1.02	0.98*	0.97, 1.00			
NO, ppb	1.01	0.99, 1.03	1.02	0.99, 1.05			
NO ₂ , ppb	1.02*	1.01, 1.03	1.01	0.98, 1.03			
SO ₂ , ppb	1.01	0.96, 1.06	1.02	0.96, 1.09			
12-Month Expo	osure to Air Po	ollutants					
PM _{2.5} , µg/m ³	1.09*	1.04, 1.15	1.10*	1.04, 1.17			
NO, ppb	0.99	0.95, 1.02	0.90*	0.84, 0.95			
NO ₂ , ppb	1.02	1.00, 1.05	1.07*	1.02, 1.12			
SO ₂ , ppb	1.02	0.94, 1.10	0.94	0.85, 1.04			

IRR, Incidence Rate Ratio; CI, Confidence Interval. *p < 0.05.

	0 Ye	ars of Age	1 Yea	1 Year of Age		2–4 Years of Age			
Variable	IRR	95% CI	IRR	95% CI	IRR	95%			
1-Month Expos	ure to Air	Pollutants							
PM _{2.5} , μg/m ³	1.00	0.99, 1.01	1.00	0.99, 1.01	1.00	0.99,			
NO, ppb	1.00	0.99, 1.01	1.00	0.99, 1.01	1.00	0.99,			
NO ₂ , ppb	1.00	0.99, 1.01	1.00	0.99, 1.01	1.00	0.99, 1			
SO ₂ , ppb	1.01	0.99, 1.04	1.01	0.99, 1.04	1.01	0.99,			
12-Month Expo	2-Month Exposure to Air Pollutants								
PM _{2.5} , μg/m ³	1.03*	1.00, 1.06	1.03*	1.00, 1.06	1.03*	1.00, 1			
NO, ppb	0.99	0.97, 1.01	0.99	0.97, 1.01	0.99	0.97, ⁻			
NO ₂ , ppb	1.01	0.99, 1.03	1.01	0.99, 1.04	1.01	1.00,			
SO ₂ , ppb	0.99	0.95, 1.03	0.99	0.96, 1.03	1.00	0.96, ⁻			
IRR, Incidence	Rate Rati	o; CI, Confidence	e Interval. *p	< 0.05.					

T - 1- 1-.

Variable	0 Yea	ars of Age	1 Yea	ar of Age	2–4 Ye	ars of Age				
Variable	IRR	95% CI	IRR	95% CI	IRR	95%				
1-Month Expos	sure to Air	Pollutants								
PM _{2.5} , μg/m ³	0.98*	0.97, 1.00	0.98*	0.97, 1.00	0.98*	0.97, 1				
NO, ppb	1.02	0.99, 1.04	1.02	0.99, 1.04	1.02	0.99, 1				
NO ₂ , ppb	1.01	0.98, 1.03	1.01	0.98, 1.03	1.01	0.98, 1				
SO ₂ , ppb	1.02	0.96, 1.09	1.02	0.96, 1.09	1.02	0.96, 1				
12-Month Expo	osure to Ai	Pollutants								
PM _{2.5} , μg/m ³	1.10*	1.04, 1.16	1.10*	1.04, 1.17	1.11*	1.04, 1				
NO, ppb	0.90*	0.85, 0.95	0.90*	0.85, 0.96	0.89*	0.84, 0				
NO ₂ , ppb	1.05*	1.01, 1.10	1.06*	1.01, 1.11	1.07*	1.02, 1				
SO ₂ , ppb	0.94	0.84, 1.04	0.94	0.85, 1.04	0.93	0.84, 1				
IRR, Incidence	IRR, Incidence Rate Ratio; CI, Confidence Interval. *p < 0.05.									

Ago-Stratified Multivariable CAPadaptive Models After the COVID-19

2		
3 4	308	
5	309	References
6 7	310	
8	311	1. Kawasaki T. [Acute febrile mucocutaneous syndrome with lymphoid involvement with
9 10	312	specific desquamation of the fingers and toes in children]. Arerugi. 1967;16:178-222.
11 12	313	2. Ae R. Makino N. Kosami K. Kuwabara M. Matsubara Y. Nakamura Y. Epidemiology
13	314	Treatments, and Cardiac Complications in Patients with Kawasaki Disease: The Nationwide
14 15	315	Survey in Japan, 2017-2018. J Pediatr. 2020;225:23-29.e2.
16 17	316	3. McCrindle BW, Rowley AH, Newburger JW, Burns JC, Bolger AF, Gewitz M, et al.
18 19	317	Diagnosis, Treatment, and Long-Term Management of Kawasaki Disease: A Scientific
20 21	318	Statement for Health Professionals From the American Heart Association. Circulation.
21 22 23	319	2017;135:e927–99.
24	320	4 Furusho K Kamiya T Nakano H Kiyosawa N Shinomiya K Hayashidera T et al High-
25 26 27	321	dose intravenous gammaglobulin for Kawasaki disease. Lancet. 1984;2:1055–8.
28	322	5. Newburger JW, Takahashi M, Beiser AS, Burns JC, Bastian J, Chung KJ, et al. A single
29 30	323	intravenous infusion of gamma globulin as compared with four infusions in the treatment of
31	324	acute Kawasaki syndrome. N Engl J Med. 1991:324:1633–9.
32 33		
34 25	325	6. Kobayashi T, Saji T, Otani T, Takeuchi K, Nakamura T, Arakawa H, et al. Efficacy of
35 36	326	immunoglobulin plus prednisolone for prevention of coronary artery abnormalities in severe
37	327	Kawasaki disease (RAISE study): a randomised, open-label, blinded-endpoints trial. Lancet.
39 40	328	2012;379:1613–20.
40 41	329	7. Miura M, Ayusawa M, Fukazawa R, Hamada H, Ikeda S, Ito S, et al. Guidelines for Medical
42 43	330	Treatment of Acute Kawasaki Disease (2020 Revised Version). Journal of Pediatric Cardiology
44 45	331	and Cardiac Surgery. 2021;5:41–73.
46 47	332	8. Zeft AS, Burns JC, Yeung RS, McCrindle BW, Newburger JW, Dominguez SR, et al.
48	333	Kawasaki Disease and Exposure to Fine Particulate Air Pollution. J Pediatr. 2016;177:179-
49 50	334	183.e1.
52	335	9. Oh J, Lee JH, Kim E, Kim S, Kim HS, Ha E. Is Short-Term Exposure to PM2.5 Relevant to
53 54	336	Childhood Kawasaki Disease? Int J Environ Res Public Health. 2021;18.
55 56	337	10. Yorifuji T, Tsukahara H, Kashima S, Doi H. Intrauterine and Early Postnatal Exposure to
57	338	Particulate Air Pollution and Kawasaki Disease: A Nationwide Longitudinal Survey in Japan.
58 59 60	339	J Pediatr. 2018;193:147-154.e2.

2		
3 4	340	11. Buteau S, Belkaibech S, Bilodeau-Bertrand M, Hatzopoulou M, Smargiassi A, Auger N.
5	341	Association between Kawasaki Disease and Prenatal Exposure to Ambient and Industrial Air
6 7	342	Pollution: A Population-Based Cohort Study. Environ Health Perspect. 2020;128:107006.
8 9	343	12 Kim H. Jang H. Lee W. Oh J. Lee J-Y. Kim M-H. et al. Association between long-term
10	244	PM2.5 exposure and risk of Kawasaki disease in children: A nationwide longitudinal cohort
11 12	244	atudy. Environ Bas 2022;244:117822
12	345	study. Environ Res. 2023;244:11/823.
14 15	346	13. Yashiro M, Nakamura Y, Ojima T, Tanihara S, Oki I, Yanagawa H. [Ten Year Observation
16	347	of Time-space Relationship on Incidences of Kawasaki Disease in Japan, Analyses in
17 18 10	348	Hokkaido and Shikoku]. The journal of the Japan Pediatric Society. 1999;103:832–7.
20	349	14. Nakamura Y, Yashiro M, Uehara R, Oki I, Watanabe M, Yanagawa H. Monthly
21	350	observation of the number of patients with Kawasaki disease and its incidence rates in Japan:
22	351	chronological and geographical observation from nationwide surveys. J Epidemiol.
24 25	352	2008;18:273–9.
23 26		
27	353	15. Sano T, Makino N, Aoyama Y, Ae R, Kojo T, Kotani K, et al. Temporal and geographical
28 29	354	clustering of Kawasaki disease in Japan: 2007-2012. Pediatr Int. 2016;58:1140-5.
30 31	355	16. Burney JA, DeHaan LL, Shimizu C, Bainto EV, Newburger JW, DeBiasi RL, et al.
32 33 24	356	Temporal clustering of Kawasaki disease cases around the world. Sci Rep. 2021;11:22584.
34 35	357	17. Kim J, Hong K, Yoo D, Chun BC. Spatiotemporal clusters of Kawasaki disease in South
36	358	Korea from 2008 to 2017: A municipal-level ecological study. Front Pediatr. 2022;10:1054985.
37		
39	359	18. Lee D. CARBayes: An R Package for Bayesian Spatial Modeling with Conditional
40 41	360	Autoregressive Priors. J Stat Softw. 2013;55:1–24.
42 43	361	19. Lee D, Rushworth A, Napier G. Spatio-Temporal Areal Unit Modeling in R with
44 45	362	Conditional Autoregressive Priors Using the CARBayesST Package. Journal of Statistical
45 46	363	Software. 2018;84:1–39.
47		
48 49	364	20. Robert P. Haining GL. Modelling Spatial and Spatial-Temporal Data: A Bayesian
50 51	365	Approach. Chapman and Hall/CRC; 2020.
52	366	21. Iio K, Matsubara K, Miyakoshi C, Ota K, Yamaoka R, Eguchi J, et al. Incidence of
55 54	367	Kawasaki disease before and during the COVID-19 pandemic: a retrospective cohort study in
55	368	Japan. BMJ Paediatr Open. 2021;5:e001034.
56 57		
58	369	22. Ae R, Makino N, Kuwabara M, Matsubara Y, Kosami K, Sasahara T, et al. Incidence of
59 60	370	Kawasaki Disease Before and After the COVID-19 Pandemic in Japan: Results of the 26th

371 Nationwide Survey, 2019 to 2020. JAMA Pediatr. 2022;176:1217–24.

1 2 3

4 5

6

7

8

9

10 11

12

13

14

15 16

20

25

31

39

54

58

372 23. Burney JA, Roberts SC, DeHaan LL, Shimizu C, Bainto EV, Newburger JW, et al.
373 Epidemiological and Clinical Features of Kawasaki Disease During the COVID-19 Pandemic
374 in the United States. JAMA Netw Open. 2022;5:e2217436.

24. Yamana H, Moriwaki M, Horiguchi H, Kodan M, Fushimi K, Yasunaga H. Validity of
diagnoses, procedures, and laboratory data in Japanese administrative data. J Epidemiol.
2017;27:476–82.

378 25. Air Pollution Continuous Monitoring Data. National Institute for Environmental Studies.
 379 https://tenbou.nies.go.jp/. Accessed 20 Feb 2024.

21 380 26. 2020 Population Census. Portal Site of Official Statistics of Japan. 2021. https://www.e22 381 stat.go.jp/en/stat-search/files?page=1&toukei=00200521&tstat=000001136464. Accessed 20
24 382 Feb 2024.

383 27. Leroux BG, Lei X, Breslow N. Estimation of Disease Rates in Small Areas: A new Mixed
 384 Model for Spatial Dependence. In: Statistical Models in Epidemiology, the Environment, and
 385 Clinical Trials. Springer New York; 2000. p. 179–91.

32 386 28. R Core Team. R: A Language and Environment for Statistical Computing. 2023.

34
 387 29. Rushworth A, Lee D, Mitchell R. A spatio-temporal model for estimating the long-term
 368 effects of air pollution on respiratory hospital admissions in Greater London. Spat
 378 389 Spatiotemporal Epidemiol. 2014;10:29–38.

- 390 30. Rushworth A, Lee D, Sarran C. An Adaptive Spatiotemporal Smoothing Model for
 391 Estimating Trends and Step Changes in Disease Risk. J R Stat Soc Ser C Appl Stat.
 392 2017;66:141–57.
- 393 31. Watanabe S. Asymptotic Equivalence of Bayes Cross Validation and Widely Applicable
 394 Information Criterion in Singular Learning Theory. J Mach Learn Res. 2010;11:3571–94.
- 395 32. Wang Y, Bechle MJ, Kim S-Y, Adams PJ, Pandis SN, Pope CA, et al. Spatial
 396 decomposition analysis of NO2 and PM2.5 air pollution in the United States. Atmos Environ.
 397 2020;241:117470.
- 398 33. Fraigneau Y, Gonzalez M, Coppalle A. Turbulence effects upon the NO2NO conversion in
 399 the vicinity of an urban area. Sci Total Environ. 1996;189–190:293–300.
- 59 400 34. Zhang Y, Wu W, Li Y, Li Y. An investigation of PM2.5 concentration changes in Mid-

2		
3 4	401	Eastern China before and after COVID-19 outbreak. Environ Int. 2023;175:107941.
5 6	402	35. Lehmann EL, Casella G. Normal Linear Models. In: Theory of Point Estimation. 2nd ed.
7 8	403	Springer New York; 1998. p. 176–87.
9 10	404	36. Majumdar S, Flynn C, Mitra R. Detecting Bias in the Presence of Spatial Autocorrelation.
11 12	405	2022;171:6–18.
13	100	27 Dadá V Curall D. Dahingan M. Dallastar I. Durna IC. Cavan DD. at al. Tranagnharia
14	406	winds from northeastern China carry the etiologic agent of Kawasaki disease from its source
16 17	408	to Japan. Proc Natl Acad Sci U S A. 2014;111:7952–7.
18 19		
20	409	38. El-Askary H, LaHaye N, Linstead E, Sprigg WA, Yacoub M. Remote sensing observation
21 22	410	of annual dust cycles and possible causality of Kawasaki disease outbreaks in Japan. Glob
23 24	411	Cardior Sci Placi. 2017,2017.e201722.
25	412	39. Wang Y, Di Q. Modifiable areal unit problem and environmental factors of COVID-19
26 27	413	outbreak. Sci Total Environ. 2020;740:139984.
28 29	414	
30 31		
32		
33 34		
35 36		
37		
38 39		
40 41		
41		
43 44		
45 46		
40 47		
48 49		
50		
52		
53 54		
55 56		
57		
58 59		

60

Model

GLM model

CARar(1) model

CARar(2) model

CARadaptive model

1 2

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
10	
11	
12	
13	
14	
15	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
23	
24	
25	
26	
27	
20	
20	
29	
30	
31	
32	
22	
33	
34	
35	
36	
27	
57	
38	
39	
40	
/1	
40	
42	
43	
44	
45	
15	
40	
47	
48	
49	
50	
50	
51	
52	
53	
51	
54	
55	
56	
57	
58	
50	
59	

60

Supplementary Table 1.	Widely Applicable Information	Criteria of the
	Bayesian Models	

After the COVID-19 Pandemic

23,873

18,350

18,485

18,313

Before the COVID-19 Pandemic

76,061

56,931

57,038

56,140

In the second se GLM, Generalized Linear Regression; CARar(1), Conditional Autoregression with order 1; CARar(2), Conditional Autoregression with order 2; CARadaptive, Conditional Autoregression with an Adaptive Spatial Autocorrelation Structure

Supplementary Figure 1. Scatter plot matrix of air pollutants stratified before and after the COVID-19 pandemic groups. ***p < 0.001

BMJ Paediatrics Open

Spatiotemporal Analysis of the Association Between Kawasaki Disease Incidence and PM2.5 Exposure: A Nationwide Database Study in Japan

Journal:	BMJ Paediatrics Open
Manuscript ID	bmjpo-2024-002887.R1
Article Type:	Original research
Date Submitted by the Author:	05-Sep-2024
Complete List of Authors:	Yoneda, Kota; Tokyo Women's Medical University; Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Health policy and Informatics Shinjo, Daisuke; Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Health policy and informatics Takahashi, Naoto; The University of Tokyo Hospital, Department of Pediatrics Fushimi, Kiyohide; Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Health policy and Informatics
Keywords:	Epidemiology, Child Health, Statistics, COVID-19

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

for Review Only

4 5 6 7	1	Spatiotemporal Analysis of the Association Between Kawasaki Disease Incidence and
7 8 9	2	PM _{2.5} Exposure: A Nationwide Database Study in Japan
10 11 12 13	3	
14 15 16	4	Author Information
17 18 19	5	Kota Yoneda, MD, PhD, Department of Health Policy and Informatics, Tokyo Medical and
20 21 22	6	Dental University Graduate School, Tokyo, Japan. Department of Pediatrics, The University
23 24 25	7	of Tokyo Hospital, Tokyo, Japan. ORCID: 0000-0003-1605-5340
26 27 28	8	Daisuke Shinjo, PhD, Department of Health Policy and Informatics, Tokyo Medical and
20 29 30	9	Dental University Graduate School, Tokyo, Japan. ORCID: 000-0002-7495-7409
32 33	10	Naoto Takahashi, MD, PhD, Department of Pediatrics, The University of Tokyo Hospital,
34 35 36	11	Tokyo, Japan. ORCID: 0000-0002-2353-4430
37 38 39 40	12	Kiyohide Fushimi, MD, PhD, Department of Health Policy and Informatics, Tokyo Medical
41 42 43	13	and Dental University Graduate School, Tokyo, Japan. ORCID: 0000-0002-1894-0290
44	14	
45	15	Correspondence to: Daisuke Shinjo, PhD,
46 47	16	Department of Health Policy and Informatics. Tokyo Medical and Dental University Graduate
48	17	School Tokyo Japan
49 50	18	TEL $+81_{-3}$ -3813-4028 EAX $+81_{-3}$ -5803-0357
51	10	$\begin{array}{c} \text{TEL. } & 01 - 5 - 5 01 5 - 7 020, \text{TAA. } & 01 - 5 - 5 00 5 - 05 57 \\ \text{Email: definite hei} & 0 + m d = 0 \text{ in} \end{array}$
52	19	Email: dsninjo.nci@tmd.ac.jp,
53 54 55	20	
56 57 58 59 60	21	

1		
3 4	22	
5 6 7	23	Abstract
, 8 9 10	24	Background: Kawasaki disease (KD) is an acute vasculitis primarily affecting children. While
11 12 13	25	some studies suggest a link between KD and PM _{2.5} exposure, findings remain inconsistent.
14 15 16	26	This study aimed to perform spatiotemporal analysis to investigate the impact of monthly and
17 18 19	27	annual exposure to $PM_{2.5}$ and other air pollutants on the incidence of KD before and after the
20 21 22	28	advent of the COVID-19 pandemic.
23 24 25	29	Methods: In this retrospective analysis, we utilized the Japanese administrative claims
26 27 28	30	database to identify the incidence of KD in children under age five in 335 secondary medical
29 30 31	31	care areas across Japan before (from July 2014 to December 2019) and during (from January
32 33 34	32	2020 to December 2021) the COVID-19 pandemic. For each of these periods, we developed
35 36 37	33	hierarchical Bayesian models termed conditional autoregressive models that can address the
38 39	34	spatiotemporal clustering of KD to investigate the association between the monthly incidence
40 41 42	35	of KD and exposure to PM _{2.5} , NO, NO ₂ , and SO ₂ over 1-month and 12-month durations. The
43 44 45	36	pollution data were collected from publicly available data provided by the National Institute
40 47 48	37	for Environmental Studies.
49 50 51	38	Results: In the before-pandemic and during-pandemic periods, 55,289 and 14,023 new cases
52 53 54	39	of KD were identified, respectively. The conditional autoregressive models revealed that only
55 56 57	40	12-month exposure to $PM_{2.5}$ was consistently correlated with KD incidence, and each 1 μ g/m ³
58 59 60	41	increase in annual $PM_{2.5}$ exposure corresponded to a 3–10% rise in KD incidence. Consistent

outcomes were observed in the age-stratified sensitivity analysis.

<text><text><text> Conclusions: Annual exposure to PM2.5 was robustly linked with the onset of KD. Further

research is needed to elucidate the underlying mechanism by which the spatiotemporal

- distribution of $PM_{2.5}$ is associated with KD.

https://mc.manuscriptcentral.com/bmjpo

1 ว		
2 3	40	
4	48	
5 6 7	49	Key Messages
8 9 10	50	What is already known on this topic
11 12 13	51	• Previous studies have suggested a potential link between air pollution and Kawasaki
14 15 16	52	Disease (KD), but the evidence has been inconclusive.
17 18 19	53	
20 21 22	54	What this study adds
23 24 25	55	• Our spatiotemporal modelling showed that annual exposure to $PM_{2.5}$ was consistently
26 27 28	56	linked with higher KD incidence before and during the COVID-19 pandemic across all
29 30 31	57	age groups of children (0, 1, or 2–4 years).
32 33 34	58	• Each 1 μ g/m ³ increase in PM _{2.5} concentration corresponded to a 3–10% increase in KD
35 36 37	59	cases.
38 39 40	60	
41 42 43	61	How this study might affect research, practice, or policy
44 45 46	62	• This study provides a strong foundation for future research into the underlying
47 48 49	63	mechanisms of KD onset related to air pollution.
50 51 52	64	
53 54 55 56 57 58 59 60	65	

2		
3		
4		
5		
с 6		
7		
/ ^		
ð o		
9		
1	0	
1	1	
1	2	
1	3	
1	4	
1	5	
1	6	
1	7	
1	8	
1	9	
2	Ô	
2	1	
~ う	י כ	
2 ว	2 2	
2 ~	د ۸	
2	4	
2	5	
2	6	
2	7	
2	8	
2	9	
3	0	
3	1	
3	2	
3	3	
3	4	
3	5	
3	6	
2 2	7	
ך כ	, Q	
כ כ	ი ი	
د ۸	פ ה	
4	1	
4	1 ~	
4	2	
4	3	
4	4	
4	5	
4	6	
4	7	
4	8	
4	9	
5	0	
5	1	
5	2	
5	3	
5	4	
5	5	
5	6	
5	7	
5	ړ و	
כ ב	0 0	
د ہ	ש ה	

66

67 Introduction

Kawasaki disease (KD) is a febrile illness of unknown aetiology that predominantly affects 68 69 children under five.¹⁻³ Intravenous immunoglobulin (IVIG) therapy has been widely adopted to reduce the risk of fatal coronary artery aneurysms, with approximately 95% of KD cases in 70 Japan receiving IVIG early in the course of the illness.^{2,4–6} Despite treatment advancements, 71 including the combination of corticosteroids with IVIG, as well as the use of cyclosporine A, 72 infliximab, or ulinastatin, coronary artery lesions occur in about 6% of cases,⁷ underscoring the 73 74 urgent need to uncover clues to understand the disease's pathogenesis. Some researchers attribute the cause of Kawasaki disease to viral infections, while others point to the association 75 between KD and air pollutants, including PM_{2.5}.^{8–11} Cytokine-induced oxidative stress has been 76 proposed as a potential mechanism linking chronic exposure to PM2.5 with the onset of 77 Kawasaki disease.¹¹ Association between Candida influx and the onset of KD has also been 78 reported, which may imply that certain substances within air pollutants could trigger the 79 disease.^{8,12} 80

81

The association between KD and $PM_{2.5}$ has been the subject of research. While some studies have indicated no significant effect of short-term exposure to $PM_{2.5}$, others have shown an impact of annual or intrauterine exposure to $PM_{2.5}$.^{9–11,13,14} These studies may indicate the association between KD and long-term exposure to $PM_{2.5}$; however, several limitations should

BMJ Paediatrics Open

86	be noted. First, most previous studies ignore repeatedly documented spatiotemporal clustering
87	of KD. ^{15–19} Spatiotemporal clustering of this disease with unknown etiology indicates possible
88	autocorrelation in the residuals, comprising the validity of the generalized linear regression and
89	leads to biased estimates. The conditional autoregressive (CAR) models, which are hierarchical
90	Bayesian models designed for spatial and spatiotemporal analysis, can address residual
91	autocorrelation by incorporating a spatiotemporal term. ^{20–22} Second, studies on KD often focus
92	on the exposure defined by a single time length, leaving it uncertain whether observed
93	differences in results are due to the length of time unit or other aspects of the study design.
94	Third, the dramatic reduction in KD after the onset of the COVID-19 pandemic may have
95	disrupted the stationarity assumptions. ^{8,23,24} Changes in social factors, such as mask-wearing
96	and physical distancing, may also have modified the impact of air pollutants on the incidence
97	of Kawasaki disease.
98	
99	Thus, this paper aims to perform spatiotemporal analysis based on the CAR model to
100	investigate the impact of monthly and annual exposure to PM _{2.5} and other air pollutants on the
101	incidence of KD before and after the advent of the COVID-19 pandemic.
102	

1 2		
3 4 5	103	
6 7 8	104	Methods
9 10 11	105	Data source
12 13 14	106	In this retrospective study, we extracted clinical data from the Japanese administrative claims
15 16 17	107	database named the Diagnosis Procedure Combination (DPC) database, comprising
18 19 20	108	anonymized clinical and administrative claims data featuring baseline information of patients
21 22 23	109	and facilities, diagnostic records, procedural data, device utilization, and prescription details.
24 25 26	110	As of 2023, over 2,000 hospitals had implemented DPC-based reimbursement systems. This
27 28 29	111	database substantiated its reliability through prior research. ²⁵ Data were accessed on August
30 31 32	112	16, 2023. Among hospitalization data from April 2014 to March 2022, we extracted clinical
33 34 35	113	information on children under five diagnosed with KD, identified by the International
37 38 30	114	Classification of Diseases, Tenth Revision (ICD-10) code of M30.3. To minimize bias
40 41 42	115	associated with misclassification, we focused on hospital admissions where patients received
42 43 44 45	116	KD-specific medications, namely IVIG, cyclosporine A, infliximab, or ulinastatin. ^{3,6,7} We
46 47 48	117	considered the date of first admission with KD treatment as the onset date, excluding cases
49 50 51	118	with unclear onset dates, specifically transfer cases and those not administered IVIG within 7
52 53 54	119	days of the first admission. To address uncertainties associated with identifying of initial
55 56 57	120	hospitalizations, cases of KD that occurred in the first three months of the observation period
58 59 60	121	were excluded, given the risk of misinterpreting the middle of a series of hospitalizations that

BMJ Paediatrics Open

began before the observation period as the onset. Cases from the last 3 months of the period were also excluded, as the number of onsets during this period may be underestimated due to administrative delays in medical claims processing. Then, the timeframe from July 2014 to December 2019 was defined as the period before the COVID-19 pandemic, whereas from January 2020 to December 2021 was defined as the period during the COVID-19 pandemic. The atmospheric environment database of the National Institute for Environmental Studies publishes pollution data from 2,184 monitoring stations across 319 (95%) of the 335 secondary medical care areas in Japan.²⁶ Each secondary medical care area, established across 1,718 of the 1,724 municipalities and managed by the 47 prefectural governments, ensures general inpatient treatment, including initial treatment of KD. We extracted daily exposure to PM_{2.5}, nitric monoxide (NO), nitrogen dioxide (NO₂), and sulphur dioxide (SO₂) for each medical care region, imputed missing values using the prefectural average, and calculated monthly exposure. As a result, we obtained 22,100 and 8,040 spatiotemporal units based on the exposure status in 335 secondary medical care areas over 66 months and 24 months before and after the onset of the COVID-19 pandemic, respectively. **Outcomes and variables** As an outcome measure, the monthly incidence of KD was counted for each secondary medical

care area associated with facilities. The monthly or annual exposure to PM2.5, NO, NO2, and SO_2 in the corresponding area were incorporated in the analysis as continuous variables. The logarithm of person-days for each spatiotemporal unit based on the under-five population in the Population Census 2020 was implicitly incorporated in all the statistical models as an offset GOC. variable.27 **Statistical Analysis** To capture the fundamental relationship between KD incidence and exposure to PM_{2.5}, NO, NO₂, and SO₂, we developed non-Bayesian Poisson regression models, both univariable and multivariable, using overall exposure levels during the two distinct periods before and after the onset of the COVID-19 pandemic. Subsequently, we performed Markov chain Monte Carlo (MCMC) simulations with the CARBayes library version 6.1 and CARBayesST library version 5.0 in R version 4.3.2 to create four types of multivariable Bayesian Poisson regression models predicting the monthly incidence of KD based on 1-month and 12-month exposure to these air pollutants: "GLM model" is a Bayesian implementation of a generalized linear model that ignores spatiotemporal autocorrelations; "CARar(1) model" is a first-order CAR model, where "first-order" indicates that the model accounts for dependencies on the immediately previous time step; "CARar(2) model" is an extension of the CARar(1) model, incorporating dependencies on the past two time steps; and "CARadaptive model" is another first-order CAR

BMJ Paediatrics Open

model, which includes an adapted spatial weight matrix to handle spatial heterogeneity.^{20,21,28-} ³¹ We adopted the model with the lowest widely applicable information criterion (WAIC) among these four Bayesian models.³² Univariable models were also developed to assess the impact of individual air pollutants. The parameters were estimated from distributions derived from 40,000 MCMC samples, equating to 400,000 iterations with a thinning factor of 10 to reduce autocorrelation. This estimation followed an initial burn-in period of 100,000 iterations to stabilize the sampling process. In the sensitivity analysis, we developed comparative Bayesian models with subjects divided into three age groups: 0 years, 1 year, and 2 to 4 years. **Ethics** The Institutional Review Board at Tokyo Medical and Dental University granted ethical approval for this investigation (approval no. M2021-013). Given the anonymized nature of the data, the requirement for informed consent was waived. Patient and public involvement Patients and/or the public were not involved in this study's design, conduct, or dissemination.

2		
4 5	177	
6 7 8	178	Results
9 10 11 12	179	We extracted 101,534 admissions of children under 5 years of age admissions with the ICD-
12 13 14 15	180	10 code M30.3 from the DPC database (Figure 1). In the before-and during-COVID-19
16 17 18	181	pandemic periods, 55,289 (837.7 per month) and 14,023 (584.3 per month) onsets of KD were
19 20 21	182	identified, respectively. The basic characteristics in Table 1 indicate the significant reduction
22 23 24	183	in KD incidence and exposure to air pollutants following the COVID-19 pandemic. Intergroup
25 26 27	184	differences with standardized mean differences greater than 0.1 were observed. The scatterplot
28 29 30	185	matrix in Supplementary Figure 1 illustrates significant positive correlations between air
31 32 33	186	pollutants. As shown in Supplementary Table 1 , the missing rates of daily air pollutant data
33 34 35	187	at the secondary medical care area level were within a few percent.
36 37	188	
38 39 40	189	Table 2 presents the non-Bayesian Poisson regression models before and during the COVID-
41 42 43	190	19 pandemic, indicating that overall exposure to $PM_{2.5}$ has been the only consistent contributor
44 45 46	191	to the incidence of KD. Multicollinearity was within acceptable limits, with no variance
47 48 49	192	inflation factors above 5. Supplementary Table 2 demonstrates that the CARadaptive models
50 51 52	193	achieved the lowest WAIC. Tables 3 and 4 present the CARadaptive models before and during
53 54 55	194	the COVID-19 pandemic, revealing that 12-month exposure to $PM_{2.5}$ has been the sole
56 57 58	195	consistent contributor to the incidence of KD. Favorable convergence was suggested by the
59 60	196	Geweke diagnostics with absolute values less than 2. In univariable analysis before and during

1 2		
3 4 5	197	the COVID-19 pandemic, monthly exposure to $PM_{2.5}$ was not significantly associated with the
6 7 8	198	onset of KD. CARadaptive model during the COVID-19 pandemic, 1-month exposure to $PM_{2.5}$
9 10 11	199	and 12-month exposure to NO were associated with a decreased incidence of KD, whereas NO ₂
12 13 14	200	showed a converse effect.
15 16 17	201	
18 19 20	202	Tables 5 and 6 display the age-stratified multivariable CARadaptive models achieved in the
21 22 23	203	sensitivity analysis for the before-pandemic and during-pandemic. The reactivity to each air
24 25 26	204	pollutant was aligned with the primary analysis, which revealed sustained significant
27 28 29	205	associations between the onset of KD and 12-month exposure to $PM_{2.5}$.
30 31 32	206	
33 34		
35 36		
37 38		
39 40		
41		
42 43		
44 45		
46		
47 48		
40 49		
50		
51 52		
53		
54 55		
55 56		
57		
58		
59 60		

2		
3 4	• • •	
4 5	207	
6		
7	208	Discussion
8		
9 10	200	
11	209	Before the COVID-19 pandemic, 55,289 new cases of KD were identified, and 14,023 cases
12		
13	210	were detected during the pandemic period. The classical method of non-Bayesian Poisson
14		
15 16	211	ware and a findemental completion between KD insidement in the secondary
17	211	regression suggested a fundamental correlation between KD incidence in the secondary
18		
19	212	medical care area and the regional level of $PM_{2.5}$. A detailed analysis through the CAR models
20		
21	010	
23	213	revealed that 12-month exposure to $PM_{2.5}$ was the exclusive variable consistently associated
24		
25	214	with KD incidence (Tables 3 and 4). Parallel outcomes were observed in the sensitivity
26		
27	015	
29	215	analysis stratified by age (Tables 5 and 6).
30		
31	216	
32		
33 34	217	The remarkable reduction in WAIC according with the CAR dentive models substantiated
35	21/	The remarkable reduction in wAIC associated with the CARadaptive models substantiated
36		
37	218	their efficiency and adequacy in the analysis. The convergence of these models and the
38 30		
40	210	consistency of the results holster the validity and robustness of our research. The comparative
41	21)	consistency of the results boister the validity and foodstiless of our research. The comparative
42		
43	220	analysis of 1-month and 12-month exposure underscored the criticality of the exposure duration.
44 45		
46	221	The climb in KD incidence with annual rather than monthly exposure to PM ₂ , aligns with
47	221	The enhibitin KD merdence with annual father than monthly exposure to TM _{2.5} anglis with
48		
49 50	222	previous research. ^{9–11,13,14} The univariable and multivariable CARadaptive models
50 51		
52	223	demonstrated a $3-10\%$ increase in the incidence of KD for every 1 μ g/m ³ increase in PM ₂ c
53	223	demonstrated a 5 1070 mercase in the mercane of KD for every 1 μ g/m mercase in 1 $M_{2.5}$.
54		
55 56	224	This increase corresponds to a 16–61% rise with a 5 μ g/m ³ increase and is consistent with
57		
58	225	findings from a previous South Korean study. ¹¹
59		5 · · · · · · · · · · · · · · · · · · ·
60		

BMJ Paediatrics Open

Previous research has shown that a considerable amount of PM_{2.5} comes from sources over 100 kilometers away, whereas NO₂ mainly comes from sources within 10 kilometres.³³ NO has an even shorter dispersal distance compared to NO2.34 Their contrasting effects observed in the during-pandemic multivariable CARadaptive model-the optimistic influence of NO and the pessimistic impact of NO₂—can jointly modify predictions towards less incidence of KD in areas experiencing nearby air pollution. It may be that the remarkable reduction in distantly originated PM_{2.5}³⁵ necessitated adjustments for the less harmful PM_{2.5} derived from proximate pollution sources. The strength of this study lies in the adept use of CAR models that address the well-documented spatiotemporal aggregation of KD.^{15,17} Spatiotemporal autocorrelation of the error term caused by this aggregation violates the Gauss-Markov theorem's assumptions, enhancing the prevalence of type I and type II errors.^{36,37} Given the unknown pathogenesis of KD, measuring all the confounders with spatial effects to eradicate autocorrelation of the error term is not feasible, thus necessitating the adoption of clustering-aware models. Limitations Selection bias is a concern in observational studies. In light of the incidence rates of KD reported in previous studies, it can be estimated that approximately 70% of the domestic cases

1	
2	
3	
4	
5	
6	
0	
/	
8 Q	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
ו∠ 21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
20	
2/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55	
54	
55	
50	
57	
58	
59	
60	

245	were included. ²³ Although the inclusion criteria were carefully constructed based on the ICD-
246	10 code and KD-specific medications, the level of concordance between the judged and actual
247	onset of KD is yet to be confirmed. In this real-world data study, information on symptoms and
248	clinical findings was not available. We considered the risk of misclassification with
249	Multisystem Inflammatory Syndrome in Children (MIS-C) to be negligible based on the rarity
250	of MIS-C cases in Japan. ⁸ The exclusion of untreated cases can be expected to be marginal,
251	considering the ubiquity of early IVIG administration in Japan. ² Imputation of exposure at the
252	prefectural level for the small amount of missing data may have biased the analyses toward the
253	null. Although the dose-response relationship observed in this study aligns with previous
254	research conducted in geographically close Korea, different results might be obtained in distant
255	countries due to varying sources of PM _{2.5} . Unmeasured substances or microorganisms
256	dispersing similarly to $PM_{2.5}$, rather than $PM_{2.5}$ itself, might be involved in the onset of KD. ^{39,40}
257	Besides, it should be noted that spatiotemporal analysis with different granularities of
258	spatiotemporal units may yield different results. ⁴¹ Given the limited geographic activity range
259	of children under the age of five, the impact of exposure outside their secondary medical care
260	area would be minimal. Analysis with a finer granularity would pose challenges due to
261	boundary-crossing admissions, while extensive unit aggregation would reduce statistical power.
262	We handled data at the spatiotemporal unit level, thereby not distinguishing between prenatal
263	and postnatal exposures at the individual level. While the impact of annual $PM_{2.5}$ exposure in

1 2		
3 4 5	264	infants under 1 year may imply potential influences of prenatal exposure, these effects have
6 7 8	265	not been explicitly examined.
9 10 11	266	
12 13 14	267	In conclusion, we utilized the CAR models to address the spatiotemporal aggregation of KD,
15 16 17	268	confirming the robust association between the incidence of KD and annual exposure to $PM_{2.5}$.
19 20 21	269	Further investigation is required to clarify the underlying mechanism of association between
21 22 23	270	the spatiotemporal distribution of KD and $PM_{2.5}$.
24 25 26		
27 28 29		
30 31 32		
33 34 35		
36 37 38		
39 40 41		
42 43 44		
45 46 47		
48 49		
50 51 52		
53 54 55		
56 57 58		
59 60		

2		
3 4	271	
5 6 7	272	Acknowledgements
8 9 10	273	We used open geographic data from the publicly available National Land Numerical
11 12 13	274	Information released by the Japanese Ministry of Land, Infrastructure, Transport and Tourism
14 15 16	275	(https://nlftp.mlit.go.jp/).
17 18 19	276	
20 21 22	277	Contributors
23 24 25	278	KY: Conceptualization, data curation, methodology, formal analysis, and writing of the
26 27 28	279	original draft. DS: Conceptualization, methodology, review writing, editing, and funding
29 30 31	280	acquisition. NT: Conceptualization and writing the review. KF: Supervision, resources, review
32 33 34	281	writing, and funding acquisition. All authors have accepted responsibility for the entire content
35 36 37	282	of this manuscript and approved its submission. The guarantor (DS) accepts full responsibility
38 39 40	283	for the work and the conduct of the study, had access to the data, and controlled the decision
41 42 43	284	to publish.
44 45 46	285	
47 48 49	286	Funding
50 51 52	287	Funding for this research was provided by a Grant-in-Aid for Policy Planning and Evaluation
53 54 55	288	Research from Japan's Ministry of Health, Labour and Welfare (grant identifier 22AA2003
56 57 58	289	[awarded to KF]) and a Grant-in-Aid for Scientific Research (B) through the Japan Society for
59 60	290	the Promotion of Science (JSPS KAKENHI, grant identifier 20H03921 [awarded to DS]). The

https://mc.manuscriptcentral.com/bmjpo

1 2		
3 4 5	291	funders did not influence the design or conduct of the study, the gathering or interpretation of
6 7 8	292	data, the decision to submit the results for publication, or the drafting of the research paper.
9 10 11	293	
12 13 14	294	Competing interests
15 16 17	295	No relevant financial or nonfinancial interest to disclose.
18 19 20	296	
21 22 23	297	Ethics approval
24 25 26	298	This study was approved by the institution review board at the Tokyo Medical and Dental
27 28 29	299	University (Registration no. M2021-013). Given the anonymized nature of the data, the
30 31 32	300	requirement for informed consent was waived.
33 34 35	301	
30 37 38	302	Data availability statement
40 41 42	303	Due to the confidential nature of the data, it is unavailable for sharing.
42 43 44	304	
43 46 47	305	Figure legends
40 49 50	306	Figure 1. Study population and the exclusion criteria.
51 52 53 54 55 56 57 58 59	307	
60		

308 Tables

Table 1. Basic Characteristics of Spatiotemporal Units

	Before the COVID-19	During the COVID-19		
Characteristic	Pandemic ^a	Pandemic ^a	SMD	95% CI
	N = 22,110	N = 8,040		
Incidence	1.0 (0.0, 3.0)	0.0 (0.0, 2.0)	0.21	0.18, 0.23
PM _{2.5} , μg/m ³	11.4 (9.2, 13.9)	8.5 (6.9, 10.3)	0.94	0.91, 0.96
NO, ppb	2.47 (1.22, 4.52)	1.72 (0.88, 3.07)	0.34	0.31, 0.36
NO ₂ , ppb	7.8 (5.0, 11.4)	6.2 (4.0, 9.2)	0.38	0.35, 0.40
SO ₂ , ppb	1.27 (0.79, 1.94)	0.83 (0.47, 1.24)	0.52	0.50, 0.55

*Median (Interquartile Range); SMD, Standardized Mean Difference; CI, Confidence Interval.

> https://mc.manuscriptcentral.com/bmjpo

COVID-19 Pandemic							
Variable	Univariable			Multivariable			
	IRR	95% CI	P value	IRR	95% CI	P value	VI
Before the CO	VID-19 Pa	andemic					
PM _{2.5} , μg/m ³	1.02	1.02, 1.03	<0.001	1.03	1.02, 1.03	<0.001	1.4
NO, ppb	0.99	0.99, 1.00	<0.001	1.00	1.00, 1.01	0.13	4.0
NO ₂ , ppb	1.00	0.99, 1.00	<0.001	0.99	0.99, 0.99	<0.001	4.4
SO2, ppb	1.02	1.02, 1.03	<0.001	1.01	1.00, 1.02	0.011	1.2
After the COVI	D-19 Pan	demic					
PM _{2.5} , μg/m ³	1.04	1.03, 1.05	<0.001	1.03	1.02, 1.05	<0.001	1.3
NO, ppb	0.98	0.97, 0.98	<0.001	0.97	0.96, 0.99	<0.001	3.8
NO ₂ , ppb	0.99	0.99, 1.00	<0.001	1.00	0.99, 1.01	0.6	3.9
SO ₂ , ppb	1.08	1.06, 1.11	<0.001	1.06	1.04, 1.09	<0.001	1.2

Table 2 Non-Bayesian Poisson Regression Models Refore and During the

IRR, Incidence Rate Ratio; CI, Confidence Interval; VIF, Variance Inflation Factor.

.,	Uni	variable	Multi	variable
vanable	IRR	95% CI	IRR	95% C
1-Month Exposi	ure to Air Pol	lutants		
PM _{2.5} , μg/m ³	1.00	1.00, 1.01	1.00	0.99, 1.
NO, ppb	1.00	1.00, 1.01	1.00	0.99, 1.
NO ₂ , ppb	1.00	1.00, 1.01	1.00	0.99, 1.
SO ₂ , ppb	1.02	1.00, 1.04	1.01	0.99, 1.
12-Month Expos	sure to Air Po	ollutants		
PM _{2.5} , µg/m ³	1.03*	1.01, 1.05	1.03*	1.01, 1.
NO, ppb	1.00	0.99, 1.01	0.99	0.97, 1.
NO ₂ , ppb	1.01	1.00, 1.02	1.01	0.99, 1.
SO ₂ , ppb	1.02	0.99, 1.06	1.00	0.96, 1.

IRR, Incidence Rate Ratio; CI, Confidence Interval. *p < 0.05.

Table 4. C	CARadaptiv	e Models During	the COVID-1	9 Pandemic
Variable	Uni	variable	Multi	variable
vanable	IRR	95% CI	IRR	95% CI
1-Month Expos	ure to Air Pol	lutants		
PM _{2.5} , μg/m ³	1.00	0.98, 1.02	0.98*	0.97, 1.00
NO, ppb	1.01	0.99, 1.03	1.02	0.99, 1.05
NO ₂ , ppb	1.02*	1.01, 1.03	1.01	0.98, 1.03
SO ₂ , ppb	1.01	0.96, 1.06	1.02	0.96, 1.09
12-Month Expo	sure to Air Po	ollutants		
PM _{2.5} , μg/m ³	1.09*	1.04, 1.15	1.10*	1.04, 1.17
NO, ppb	0.99	0.95, 1.02	0.90*	0.84, 0.95
NO ₂ , ppb	1.02	1.00, 1.05	1.07*	1.02, 1.12
SO ₂ , ppb	1.02	0.94, 1.10	0.94	0.85, 1.04

IRR, Incidence Rate Ratio; CI, Confidence Interval. *p < 0.05.

I able	e 5. Age-	CO	VID-19 Pan	ARadaptive Mo Idemic	aeis Befor	e the
Variable	0 Ye	ars of Age	1 Yea	ar of Age	2–4 Years of Age	
vallable	IRR	95% CI	IRR	95% CI	IRR	95% CI
1-Month Expos	ure to Air	Pollutants				
PM _{2.5} , μg/m ³	1.00	0.99, 1.01	1.00	0.99, 1.01	1.00	0.99, 1.0
NO, ppb	1.00	0.99, 1.01	1.00	0.99, 1.01	1.00	0.99, 1.0
NO ₂ , ppb	1.00	0.99, 1.01	1.00	0.99, 1.01	1.00	0.99, 1.0
SO ₂ , ppb	1.01	0.99, 1.04	1.01	0.99, 1.04	1.01	0.99, 1.0
12-Month Expo	sure to Ai	Pollutants				
PM _{2.5} , μg/m ³	1.03*	1.00, 1.06	1.03*	1.00, 1.06	1.03*	1.00, 1.0
NO, ppb	0.99	0.97, 1.01	0.99	0.97, 1.01	0.99	0.97, 1.0
NO ₂ , ppb	1.01	0.99, 1.03	1.01	0.99, 1.04	1.01	1.00, 1.0
SO ₂ , ppb	0.99	0.95, 1.03	0.99	0.96, 1.03	1.00	0.96, 1.0

Table 5. Age-Stratified Multivariable CARadaptive Models Before the

IRR, Incidence Rate Ratio; CI, Confidence Interval. *p < 0.05.

			19 Panden	nic			
Variable	0 Yea	ars of Age	1 Yea	1 Year of Age		2–4 Years of Age	
variable	IRR	95% CI	IRR	95% CI	IRR	95% CI	
1-Month Expos	ure to Air I	Pollutants					
PM _{2.5} , μg/m ³	0.98*	0.97, 1.00	0.98*	0.97, 1.00	0.98*	0.97, 1.0	
NO, ppb	1.02	0.99, 1.04	1.02	0.99, 1.04	1.02	0.99, 1.0	
NO ₂ , ppb	1.01	0.98, 1.03	1.01	0.98, 1.03	1.01	0.98, 1.0	
SO ₂ , ppb	1.02	0.96, 1.09	1.02	0.96, 1.09	1.02	0.96, 1.0	
12-Month Expo	sure to Air	Pollutants					
PM _{2.5} , μg/m ³	1.10*	1.04, 1.16	1.10*	1.04, 1.17	1.11*	1.04, 1.1	
NO, ppb	0.90*	0.85, 0.95	0.90*	0.85, 0.96	0.89*	0.84, 0.9	
NO ₂ , ppb	1.05*	1.01, 1.10	1.06*	1.01, 1.11	1.07*	1.02, 1.1	
SO ₂ , ppb	0.94	0.84, 1.04	0.94	0.85, 1.04	0.93	0.84, 1.0	

Table 6 Age-Stratified Multivariable CARadaptive Models During the COVID

IRR, Incidence Rate Ratio; CI, Confidence Interval. *p < 0.05.

2 3 4 5 324 5 325 6 22(

References

1

7

23

28

34

1. Kawasaki T. [Acute febrile mucocutaneous syndrome with lymphoid involvement with specific desquamation of the fingers and toes in children]. Arerugi. 1967;16:178–222.

327 2. Ae R, Makino N, Kosami K, et al. Epidemiology, Treatments, and Cardiac Complications
328 in Patients with Kawasaki Disease: The Nationwide Survey in Japan, 2017-2018. J Pediatr.
329 2020;225:23-29.e2.

330 3. McCrindle BW, Rowley AH, Newburger JW, et al. Diagnosis, Treatment, and Long-Term
 331 Management of Kawasaki Disease: A Scientific Statement for Health Professionals From the
 American Heart Association. Circulation. 2017;135:e927–99.

¹⁹
²⁰
²¹
²¹
²³
²³
²⁴
²⁵
²⁵
²⁵
²⁶
²⁷
²⁷
²⁸
²⁹
²⁹
²¹
²²
²¹
²¹
²¹
²¹
²²
²¹
²²
²³
²¹
²¹
²¹
²²
²³
²¹
²¹
²²
²³
²¹
²¹
²²
²³
²¹
²²
²³
²¹
²¹
²²
²³
²³
²⁴
²⁵
²⁵
²⁶
²⁶
²⁶
²⁷
²⁶
²⁶</l

335 5. Newburger JW, Takahashi M, Beiser AS, et al. A single intravenous infusion of gamma
336 globulin as compared with four infusions in the treatment of acute Kawasaki syndrome. N Engl
337 J Med. 1991;324:1633–9.

338 6. Kobayashi T, Saji T, Otani T, et al. Efficacy of immunoglobulin plus prednisolone for
339 prevention of coronary artery abnormalities in severe Kawasaki disease (RAISE study): a
340 randomised, open-label, blinded-endpoints trial. Lancet. 2012;379:1613–20.

35 341 7. Miura M, Ayusawa M, Fukazawa R, et al. Guidelines for Medical Treatment of Acute
 342 Kawasaki Disease (2020 Revised Version). Journal of Pediatric Cardiology and Cardiac
 343 Surgery. 2021;5:41–73.

⁴⁰ 344
⁴¹ 344
⁴² 345
⁴³ 346
⁴³ 346
⁴⁴ 346
⁴⁵ 2021;5:e001034.

45
46 347 9. Yorifuji T, Tsukahara H, Kashima S, et al. Intrauterine and Early Postnatal Exposure to
47 348 Particulate Air Pollution and Kawasaki Disease: A Nationwide Longitudinal Survey in Japan.
49 349 J Pediatr. 2018;193:147-154.e2.

⁵¹ 350 10. Buteau S, Belkaibech S, Bilodeau-Bertrand M, et al. Association between Kawasaki
 ⁵³ 351 Disease and Prenatal Exposure to Ambient and Industrial Air Pollution: A Population-Based
 ⁵⁴ 352 Cohort Study. Environ Health Perspect. 2020;128:107006.

⁵⁶
⁵⁷
⁵⁸
⁵⁹
⁵⁹
⁵⁴
⁵⁵
⁵⁵
⁵⁶
⁵⁷
⁵⁸
⁵⁹
⁵⁹
⁵⁹
⁵⁹
⁵⁰
⁵¹
⁵¹
⁵²
⁵³
⁵³
⁵⁴
⁵⁵
⁵⁵
⁵⁶
⁵⁷
⁵⁷
⁵⁸
⁵⁹
⁵⁹
⁵⁹
⁵⁹
⁵⁹
⁵⁰
⁵⁰
⁵¹
⁵¹
⁵²
⁵³
⁵⁴
⁵⁵
⁵⁵
⁵⁶
⁵⁷
⁵⁶
⁵⁷
⁵⁷
⁵⁸
⁵⁹
⁵⁹
⁵⁹
⁵⁹
⁵⁹
⁵⁹
⁵⁰
⁵⁰
⁵⁰
⁵⁰
⁵¹
⁵¹
⁵²
⁵³
⁵³
⁵⁴
⁵⁵
⁵⁵
⁵⁶
⁵⁶
⁵⁷
⁵⁶
⁵⁷
⁵⁷
⁵⁸
⁵⁹
⁵⁹</l

Page 27 of 32

1 2		
2 3	356	12 Rodó X Ballester I Cavan D et al. Association of Kawasaki disease with tronospheric
4 5	357	wind patterns. Sci Rep. 2011:1:152
6	557	while patterns. Ser Kep. 2011,1.152.
7 8	358	13. Zeft AS, Burns JC, Yeung RS, et al. Kawasaki Disease and Exposure to Fine Particulate
9	359	Air Pollution. J Pediatr. 2016;177:179-183.e1.
10 11		
12	360	14. Oh J, Lee JH, Kim E, et al. Is Short-Term Exposure to PM2.5 Relevant to Childhood
13 14	361	Kawasaki Disease? Int J Environ Res Public Health. 2021;18.
15	262	15 Vachira M Nakamura V Ojima T at al [Tan Vaar Observation of Time space
16 17	262	Polationship on Incidences of Kawasaki Discass in Japan Analyses in Hokkaido and Shikaku
18	264	The journal of the Japan Podiatria Society, 1000:102:822, 7
19 20	504	The Journal of the Japan Fediatile Society. 1999,105.852–7.
20	365	16. Nakamura Y, Yashiro M, Uehara R, et al. Monthly observation of the number of patients
22 23	366	with Kawasaki disease and its incidence rates in Japan: chronological and geographical
23 24	367	observation from nationwide surveys. J Epidemiol. 2008;18:273–9.
25		
20 27	368	17. Sano T, Makino N, Aoyama Y, et al. Temporal and geographical clustering of Kawasaki
28	369	disease in Japan: 2007-2012. Pediatr Int. 2016;58:1140–5.
29 30	270	18 Durney IA Delleen II. Chimizy C et al Temperal elustering of Kewageli disease ages
31 22	370 271	around the world. Sei Bon, 2021:11:22584
32 33	5/1	around the world. Sci Kep. 2021,11.22384.
34 25	372	19. Kim J, Hong K, Yoo D, et al. Spatiotemporal clusters of Kawasaki disease in South Korea
35 36	373	from 2008 to 2017: A municipal-level ecological study. Front Pediatr. 2022;10:1054985.
37		
38 39	374	20. Lee D. CARBayes: An R Package for Bayesian Spatial Modeling with Conditional
40	375	Autoregressive Priors. J Stat Softw. 2013;55:1–24.
41 42	276	21 Les D. Buchworth A. Nonier C. Spatie Temperal Areal Unit Madeling in D. with
43	5/0 277	21. Lee D, Rushwolul A, Naplel G. Spatio-Temporal Areal Onit Modeling in R with Conditional Autorographics Using the CARDougeST Declarge Journal of Statistical
44 45	270	Software 2018:84:1, 20
46	5/8	Software. 2018,84.1–39.
47 48	379	22. Robert P. Haining GL. Modelling Spatial and Spatial-Temporal Data: A Bayesian
49 50	380	Approach. Chapman and Hall/CRC; 2020.
50 51		
52	381	23. Ae R, Makino N, Kuwabara M, et al. Incidence of Kawasaki Disease Before and After the
53 54	382	COVID-19 Pandemic in Japan: Results of the 26th Nationwide Survey, 2019 to 2020. JAMA
55	383	Pediatr. 2022;176:1217–24.
56 57	201	24 Dumov IA Dohorto SC Dollago II at al Eridemi-lesis-lesis della
58	384 295	24. Burney JA, Koberts SC, DeHaan LL, et al. Epidemiological and Clinical Features of Kowasaki Disease During the COVID 10 Paralamic in the Unit of States and Clinical Features of
59 60	383	Rawasaki Disease During the COVID-19 Pandemic in the United States. JAMA Netw Open.

386 2022;5:e2217436.

1 2 3

4 5

6

7

8 9

13

24

32

45

53

57

387 25. Yamana H, Moriwaki M, Horiguchi H, et al. Validity of diagnoses, procedures, and
388 laboratory data in Japanese administrative data. J Epidemiol. 2017;27:476–82.

389 26. Air Pollution Continuous Monitoring Data. National Institute for Environmental Studies.
 390 https://tenbou.nies.go.jp/. Accessed 20 Feb 2024.

391 27. 2020 Population Census. Portal Site of Official Statistics of Japan. 2021. https://www.e392 stat.go.jp/en/stat-search/files?page=1&toukei=00200521&tstat=000001136464. Accessed 20
393 Feb 2024.

394 28. Leroux BG, Lei X, Breslow N. Estimation of Disease Rates in Small Areas: A new Mixed
 395 Model for Spatial Dependence. In: Statistical Models in Epidemiology, the Environment, and
 396 Clinical Trials. Springer New York; 2000. p. 179–91.

- 25 397 29. R Core Team. R: A Language and Environment for Statistical Computing. 2023.
 26
- 398 30. Rushworth A, Lee D, Mitchell R. A spatio-temporal model for estimating the long-term
 399 effects of air pollution on respiratory hospital admissions in Greater London. Spat
 400 Spatiotemporal Epidemiol. 2014;10:29–38.
- 401 31. Rushworth A, Lee D, Sarran C. An Adaptive Spatiotemporal Smoothing Model for
 402 Estimating Trends and Step Changes in Disease Risk. J R Stat Soc Ser C Appl Stat.
 403 2017;66:141-57.
- 404 32. Watanabe S. Asymptotic Equivalence of Bayes Cross Validation and Widely Applicable
 405 Information Criterion in Singular Learning Theory. J Mach Learn Res. 2010;11:3571–94.
- 42
 406 33. Wang Y, Bechle MJ, Kim S-Y, et al. Spatial decomposition analysis of NO2 and PM2.5
 407 air pollution in the United States. Atmos Environ. 2020;241:117470.
- 46
 408 34. Fraigneau Y, Gonzalez M, Coppalle A. Turbulence effects upon the NO2NO conversion in
 409 the vicinity of an urban area. Sci Total Environ. 1996;189–190:293–300.
- 410 35. Zhang Y, Wu W, Li Y, Li Y. An investigation of PM2.5 concentration changes in Mid411 Eastern China before and after COVID-19 outbreak. Environ Int. 2023;175:107941.
- 412 36. Lehmann EL, Casella G. Normal Linear Models. In: Theory of Point Estimation. 2nd ed.
 413 Springer New York; 1998. p. 176–87.
- 414 37. Majumdar S, Flynn C, Mitra R. Detecting Bias in the Presence of Spatial Autocorrelation.
 415 2022;171:6–18.

38. Matasubara D, Matsubara Y, Ayusawa M, et al. Nationwide survey of multisystem inflammatory syndrome in children associated with Coronavirus disease 2019 in japan. Social Science Research Network. 2024.

39. Rodó X, Curcoll R, Robinson M, et al. Tropospheric winds from northeastern China carry the etiologic agent of Kawasaki disease from its source to Japan. Proc Natl Acad Sci U S A. 2014;111:7952-7.

40. El-Askary H, LaHaye N, Linstead E, et al. Remote sensing observation of annual dust cycles and possible causality of Kawasaki disease outbreaks in Japan. Glob Cardiol Sci Pract. 2017;2017:e201722.

t 41. Wang Y, Di Q. Modifiable areal unit problem and environmental factors of COVID-19 outbreak. Sci Total Environ. 2020;740:139984

2	
3	
4	
5	
2	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
33	
24	
34	
35	
36	
37	
38	
39	
40	
то // 1	
41	
42	
43	
44	
45	
46	
47	
10	
40	
49	
50	
51	
52	
53	
54	
55	
22	
56	
57	
58	

59 60

Supplementary Table 1. Missing Rates of Daily Air Pollutant Data at the	
Secondary Medical Care Area Level	

Characteristic	Before the COVID-19 Pandemic N = 335	During the COVID-19 Pandemic N = 335
PM _{2.5} , %	0.2 (0.0, 2.4)	0.3 (0.0, 1.4)
NO, %	0.0 (0.0, 1.1)	0.0 (0.0, 0.8)
NO ₂ , %	0.0 (0.0, 1.1)	0.0 (0.0, 0.8)
SO ₂ , %	0.1 (0.0, 3.6)	0.1 (0.0, 1.9)
Median (Interquarti	le Range)	

Model	Before the COVID-19 Pandemic	During the COVID-19 Pandemic		
GLM model	76,061	23,873		
CARar(1) model	56,931	18,350		
CARar(2) model	57,038	18,485		
CARadaptive model	56,140	18,313		
GLM, Generalized Linear Regression; CARar(1), Conditional Autoregression with order 1; CARar(2), Conditional Autoregression with order 2; CARadaptive, Conditional Autoregression with an Adaptive Spatial Autocorrelation Structure				

Supplementary Table 2. Widely Applicable Information Criteria of the **Bavesian Models**

Supplementary Figure 1. Scatter plot matrix of air pollutants stratified before and after the COVID-19 pandemic groups. ***p < 0.001