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ABSTRACT
Background Kawasaki disease (KD) is an acute 
vasculitis primarily affecting children. While some 
studies suggest a link between KD and PM

2.5
 exposure, 

findings remain inconsistent. This study aimed to perform 
spatiotemporal analysis to investigate the impact of 
monthly and annual exposure to PM

2.5
 and other air 

pollutants on the incidence of KD before and after the 
advent of the COVID- 19 pandemic.
Methods In this retrospective analysis, we used the 
Japanese administrative claims database to identify the 
incidence of KD in children under age 5 in 335 secondary 
medical care areas across Japan before (from July 2014 
to December 2019) and during (from January 2020 to 
December 2021) the COVID- 19 pandemic. For each of 
these periods, we developed hierarchical Bayesian models 
termed conditional autoregressive (CAR) models that can 
address the spatiotemporal clustering of KD to investigate 
the association between the monthly incidence of KD and 
exposure to PM

2.5
, NO, NO

2
 and SO

2
 over 1- month and 

12- month durations. The pollution data were collected 
from publicly available data provided by the National 
Institute for Environmental Studies.
Results In the before- pandemic and during- pandemic 
periods, 55 289 and 14 023 new cases of KD were 
identified, respectively. The CAR models revealed that only 
12- month exposure to PM

2.5
 was consistently correlated 

with KD incidence, and each 1 µg/m3 increase in annual 
PM

2.5
 exposure corresponded to a 3%–10% rise in KD 

incidence. Consistent outcomes were observed in the age- 
stratified sensitivity analysis.
Conclusions Annual exposure to PM

2.5
 was robustly 

linked with the onset of KD. Further research is needed 
to elucidate the underlying mechanism by which the 
spatiotemporal distribution of PM

2.5
 is associated with KD.

INTRODUCTION
Kawasaki disease (KD) is a febrile illness 
of unknown aetiology that predominantly 
affects children under 5.1–3 Intravenous 
immunoglobulin (IG) therapy has been 
widely adopted to reduce the risk of fatal coro-
nary artery aneurysms, with approximately 
95% of KD cases in Japan receiving intrave-
nous IG early in the course of the illness.2 4–6 
Despite treatment advancements, including 

the combination of corticosteroids with intra-
venous IG, as well as the use of cyclosporine 
A, infliximab or ulinastatin, coronary artery 
lesions occur in about 6% of cases,7 under-
scoring the urgent need to uncover clues 
to understand the disease’s pathogenesis. 
Some researchers attribute the cause of KD 
to viral infections, while others point to the 
association between KD and air pollutants, 
including PM

2.5
.8–11 Cytokine- induced oxida-

tive stress has been proposed as a potential 
mechanism linking chronic exposure to PM

2.5
 

with the onset of KD.11 Association between 
Candida influx and the onset of KD has also 
been reported, which may imply that certain 
substances within air pollutants could trigger 
the disease.8 12

The association between KD and PM
2.5

 has 
been the subject of research. While some 
studies have indicated no significant effect 
of short- term exposure to PM

2.5
, others have 

shown an impact of annual or intrauterine 
exposure to PM

2.5
.9–11 13 14 These studies may 

indicate the association between KD and 

WHAT IS ALREADY KNOWN ON THIS TOPIC
 ⇒ Previous studies have suggested a potential link be-
tween air pollution and Kawasaki disease (KD), but 
the evidence has been inconclusive.

WHAT THIS STUDY ADDS
 ⇒ Our spatiotemporal modelling showed that annual 
exposure to PM

2.5
 was consistently linked with high-

er KD incidence before and during the COVID- 19 
pandemic across all age groups of children (0, 1 or 
2–4 years).

 ⇒ Each 1 µg/m3 increase in PM
2.5

 concentration corre-
sponded to a 3%–10% increase in KD cases.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

 ⇒ This study provides a strong foundation for future 
research into the underlying mechanisms of KD on-
set related to air pollution.
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long- term exposure to PM
2.5

; however, several limita-
tions should be noted. First, most previous studies ignore 
repeatedly documented spatiotemporal clustering of 
KD.15–19 Spatiotemporal clustering of this disease with 
unknown aetiology indicates possible autocorrelation 
in the residuals, comprising the validity of the gener-
alised linear regression and leads to biased estimates. 
The conditional autoregressive (CAR) models, which 
are hierarchical Bayesian models designed for spatial 
and spatiotemporal analysis, can address residual auto-
correlation by incorporating a spatiotemporal term.20–22 
Second, studies on KD often focus on the exposure 
defined by a single time length, leaving it uncertain 
whether observed differences in results are due to the 
length of time unit or other aspects of the study design. 
Third, the dramatic reduction in KD after the onset of 
the COVID- 19 pandemic may have disrupted the station-
arity assumptions.8 23 24 Changes in social factors, such 
as mask- wearing and physical distancing, may also have 

modified the impact of air pollutants on the incidence 
of KD.

Thus, this paper aims to perform spatiotemporal anal-
ysis based on the CAR model to investigate the impact 
of monthly and annual exposure to PM

2.5
 and other air 

pollutants on the incidence of KD before and after the 
advent of the COVID- 19 pandemic.

METHODS
Data source
In this retrospective study, we extracted clinical data 
from the Japanese administrative claims database 
named the Diagnosis Procedure Combination (DPC) 
database, comprising anonymised clinical and admin-
istrative claims data featuring baseline information of 
patients and facilities, diagnostic records, procedural 
data, device utilisation and prescription details. As of 
2023, over 2000 hospitals had implemented DPC- based 

Figure 1 Study population and the exclusion criteria. ICD- 10, International Classification of Diseases, Tenth Revision.
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reimbursement systems. This database substantiated its 
reliability through prior research.25 Data were accessed 
on 16 August 2023. Among hospitalisation data from 
April 2014 to March 2022, we extracted clinical infor-
mation on children under 5 diagnosed with KD, iden-
tified by the International Classification of Diseases, 
Tenth Revision (ICD- 10) code of M30.3. To minimise 
bias associated with misclassification, we focused on 
hospital admissions where patients received KD- spe-
cific medications, namely intravenous IG, cyclosporine 
A, infliximab or ulinastatin.3 6 7 We considered the date 
of first admission with KD treatment as the onset date, 
excluding cases with unclear onset dates, specifically 
transfer cases and those not administered intravenous 
IG within 7 days of the first admission. To address uncer-
tainties associated with identifying of initial hospitalisa-
tions, cases of KD that occurred in the first 3 months of 
the observation period were excluded, given the risk of 
misinterpreting the middle of a series of hospitalisations 
that began before the observation period as the onset. 
Cases from the last 3 months of the period were also 
excluded, as the number of onsets during this period 
may be underestimated due to administrative delays in 
medical claims processing. Then, the timeframe from 
July 2014 to December 2019 was defined as the period 
before the COVID- 19 pandemic, whereas from January 
2020 to December 2021, it was defined as the period 
during the COVID- 19 pandemic.

The atmospheric environment database of the National 
Institute for Environmental Studies publishes pollution 
data from 2184 monitoring stations across 319 (95%) of 
the 335 secondary medical care areas in Japan.26 Each 
secondary medical care area, established across 1718 of 
the 1724 municipalities and managed by the 47 prefec-
tural governments, ensures general inpatient treatment, 
including initial treatment of KD. We extracted daily expo-
sure to PM

2.5
, nitric monoxide (NO), nitrogen dioxide 

(NO
2
) and sulphur dioxide (SO

2
) for each medical care 

region, imputed missing values using the prefectural 
average and calculated monthly exposure. As a result, we 
obtained 22 100 and 8040 spatiotemporal units based on 
the exposure status in 335 secondary medical care areas 
over 66 months and 24 months before and after the onset 
of the COVID- 19 pandemic, respectively.

Outcomes and variables
As an outcome measure, the monthly incidence of KD 
was counted for each secondary medical care area asso-
ciated with facilities. The monthly or annual exposure 
to PM

2.5
, NO, NO

2
 and SO

2
 in the corresponding area 

was incorporated in the analysis as continuous variables. 
The logarithm of person- days for each spatiotemporal 
unit based on the under 5 population in the Population 
Census 2020 was implicitly incorporated in all the statis-
tical models as an offset variable.27

Statistical analysis
To capture the fundamental relationship between KD 
incidence and exposure to PM

2.5
, NO, NO

2
 and SO

2
, we 

developed non- Bayesian Poisson regression models, both 
univariable and multivariable, using overall exposure 
levels during the two distinct periods before and after 
the onset of the COVID- 19 pandemic. Subsequently, we 
performed Markov chain Monte Carlo (MCMC) simula-
tions with the CARBayes library V.6.1 and CARBayesST 
library V.5.0 in R V.4.3.2 to create four types of multi-
variable Bayesian Poisson regression models predicting 
the monthly incidence of KD based on 1- month and 
12- month exposure to these air pollutants: ‘GLM model’ 
is a Bayesian implementation of a generalised linear 
model that ignores spatiotemporal autocorrelations; 
‘CARar(1) model’ is a first- order CAR model, where ‘first- 
order’ indicates that the model accounts for dependen-
cies on the immediately previous time step; ‘CARar(2) 
model’ is an extension of the CARar(1) model, incor-
porating dependencies on the past two time steps; and 
‘CARadaptive model’ is another first- order CAR model, 
which includes an adapted spatial weight matrix to 
handle spatial heterogeneity.20 21 28–31 We adopted the 
model with the lowest widely applicable information 
criterion (WAIC) among these four Bayesian models.32 
Univariable models were also developed to assess the 
impact of individual air pollutants. The parameters were 
estimated from distributions derived from 40 000 MCMC 
samples, equating to 400 000 iterations with a thinning 
factor of 10 to reduce autocorrelation. This estimation 
followed an initial burn- in period of 100 000 iterations to 
stabilise the sampling process. In the sensitivity analysis, 
we developed comparative Bayesian models with subjects 

Table 1 Basic characteristics of spatiotemporal units

Characteristic Before the COVID- 19 pandemic,* n=22 110 During the COVID- 19 pandemic,* n=8040 SMD 95% CI

Incidence 1.0 (0.0, 3.0) 0.0 (0.0, 2.0) 0.21 0.18, 0.23

PM
2.5

, μg/m3 11.4 (9.2, 13.9) 8.5 (6.9, 10.3) 0.94 0.91, 0.96

NO, ppb 2.47 (1.22, 4.52) 1.72 (0.88, 3.07) 0.34 0.31, 0.36

NO
2
, ppb 7.8 (5.0, 11.4) 6.2 (4.0, 9.2) 0.38 0.35, 0.40

SO
2
, ppb 1.27 (0.79, 1.94) 0.83 (0.47, 1.24) 0.52 0.50, 0.55

*Median (IQR).
ppb, parts per billion; SMD, standardised mean difference.
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divided into three age groups: 0 years, 1 year and 2–4 
years.

Patient and public involvement
Patients and/or the public were not involved in this 
study’s design, conduct or dissemination.

RESULTS
We extracted 101 534 admissions of children under 5 
years of age admissions with the ICD- 10 code M30.3 
from the DPC database (figure 1). In the before- 
COVID- 19 and during- COVID- 19 pandemic periods, 
55 289 (837.7 per month) and 14 023 (584.3 per 
month) onsets of KD were identified, respectively. The 
basic characteristics in table 1 indicate the significant 
reduction in KD incidence and exposure to air pollut-
ants following the COVID- 19 pandemic. Intergroup 

differences with standardised mean differences greater 
than 0.1 were observed. The scatterplot matrix in 
online supplemental figure 1 illustrates significant posi-
tive correlations between air pollutants. As shown in 
online supplemental table 1, the missing rates of daily 
air pollutant data at the secondary medical care area 
level were within a few per cent.

Table 2 presents the non- Bayesian Poisson regression 
models before and during the COVID- 19 pandemic, 
indicating that overall exposure to PM

2.5
 has been the 

only consistent contributor to the incidence of KD. 
Multicollinearity was within acceptable limits, with no 
variance inflation factors above 5. Online supplemental 
table 2 demonstrates that the CARadaptive models 
achieved the lowest WAIC. Tables 3 and 4 present the 
CARadaptive models before and during the COVID- 19 
pandemic, revealing that 12- month exposure to PM

2.5
 

has been the sole consistent contributor to the incidence 

Table 3 CARadaptive models before the COVID- 19 
pandemic

Variable

Univariable Multivariable

IRR 95% CI IRR 95% CI

1- month exposure to air pollutants

  PM
2.5

, µg/m3 1.00 1.00, 1.01 1.00 0.99, 1.01

  NO, ppb 1.00 1.00, 1.01 1.00 0.99, 1.01

  NO
2
, ppb 1.00 1.00, 1.01 1.00 0.99, 1.01

  SO
2
, ppb 1.02 1.00, 1.04 1.01 0.99, 1.04

12- month exposure to air pollutants

  PM
2.5

, µg/m3 1.03* 1.01, 1.05 1.03* 1.01, 1.06

  NO, ppb 1.00 0.99, 1.01 0.99 0.97, 1.01

  NO
2
, ppb 1.01 1.00, 1.02 1.01 0.99, 1.03

  SO
2
, ppb 1.02 0.99, 1.06 1.00 0.96, 1.04

*P<0.05.
IRR, incidence rate ratio; ppb, parts per billion.

Table 4 CARadaptive models during the COVID- 19 
pandemic

Variable

Univariable Multivariable

IRR 95% CI IRR 95% CI

1- month exposure to air pollutants

  PM
2.5

, µg/m3 1.00 0.98, 1.02 0.98* 0.97, 1.00

  NO, ppb 1.01 0.99, 1.03 1.02 0.99, 1.05

  NO
2
, ppb 1.02* 1.01, 1.03 1.01 0.98, 1.03

  SO
2
, ppb 1.01 0.96, 1.06 1.02 0.96, 1.09

12- month exposure to air pollutants

  PM
2.5

, µg/m3 1.09* 1.04, 1.15 1.10* 1.04, 1.17

  NO, ppb 0.99 0.95, 1.02 0.90* 0.84, 0.95

  NO
2
, ppb 1.02 1.00, 1.05 1.07* 1.02, 1.12

  SO
2
, ppb 1.02 0.94, 1.10 0.94 0.85, 1.04

*P<0.05.
IRR, incidence rate ratio; ppb, parts per billion.

Table 2 Non- Bayesian Poisson regression models before and during the COVID- 19 pandemic

Variable

Univariable Multivariable

IRR 95% CI P value IRR 95% CI P value VIF

Before the COVID- 19 pandemic

  PM
2.5

, µg/m3 1.02 1.02, 1.03 <0.001 1.03 1.02, 1.03 <0.001 1.40

  NO, ppb 0.99 0.99, 1.00 <0.001 1.00 1.00, 1.01 0.13 4.02

  NO
2
, ppb 1.00 0.99, 1.00 <0.001 0.99 0.99, 0.99 <0.001 4.45

  SO2, ppb 1.02 1.02, 1.03 <0.001 1.01 1.00, 1.02 0.011 1.24

After the COVID- 19 pandemic

  PM
2.5

, µg/m3 1.04 1.03, 1.05 <0.001 1.03 1.02, 1.05 <0.001 1.33

  NO, ppb 0.98 0.97, 0.98 <0.001 0.97 0.96, 0.99 <0.001 3.80

  NO
2
, ppb 0.99 0.99, 1.00 <0.001 1.00 0.99, 1.01 0.6 3.99

  SO
2
, ppb 1.08 1.06, 1.11 <0.001 1.06 1.04, 1.09 <0.001 1.23

IRR, incidence rate ratio; ppb, parts per billion; VIF, variance inflation factor.
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of KD. Favourable convergence was suggested by the 
Geweke diagnostics with absolute values less than 2. In 
univariable analysis before and during the COVID- 19 
pandemic, monthly exposure to PM

2.5
 was not signifi-

cantly associated with the onset of KD. CARadaptive 
model during the COVID- 19 pandemic, 1- month expo-
sure to PM

2.5
 and 12- month exposure to NO were asso-

ciated with a decreased incidence of KD, whereas NO
2
 

showed a converse effect.
Tables 5 and 6 display the age- stratified multivariable 

CARadaptive models achieved in the sensitivity analysis 
for the before pandemic and during pandemic. The reac-
tivity to each air pollutant was aligned with the primary 
analysis, which revealed sustained significant associations 
between the onset of KD and 12- month exposure to 
PM

2.5
.

DISCUSSION
Before the COVID- 19 pandemic, 55 289 new cases of KD 
were identified, and 14 023 cases were detected during the 
pandemic period. The classical method of non- Bayesian 
Poisson regression suggested a fundamental correlation 
between KD incidence in the secondary medical care 
area and the regional level of PM

2.5
. A detailed analysis 

through the CAR models revealed that 12- month expo-
sure to PM

2.5
 was the exclusive variable consistently 

associated with KD incidence (tables 3 and 4). Parallel 
outcomes were observed in the sensitivity analysis strati-
fied by age (tables 5 and 6).

The remarkable reduction in WAIC associated with 
the CARadaptive models substantiated their efficiency 
and adequacy in the analysis. The convergence of these 
models and the consistency of the results bolster the 

Table 5 Age- stratified multivariable CARadaptive models before the COVID- 19 pandemic

Variable

0 years of age 1 year of age 2–4 years of age

IRR 95% CI IRR 95% CI IRR 95% CI

1- month exposure to air pollutants

  PM
2.5

, µg/m3 1.00 0.99, 1.01 1.00 0.99, 1.01 1.00 0.99, 1.01

  NO, ppb 1.00 0.99, 1.01 1.00 0.99, 1.01 1.00 0.99, 1.01

  NO
2
, ppb 1.00 0.99, 1.01 1.00 0.99, 1.01 1.00 0.99, 1.01

  SO
2
, ppb 1.01 0.99, 1.04 1.01 0.99, 1.04 1.01 0.99, 1.04

12- month exposure to air pollutants

  PM
2.5

, µg/m3 1.03* 1.00, 1.06 1.03* 1.00, 1.06 1.03* 1.00, 1.06

  NO, ppb 0.99 0.97, 1.01 0.99 0.97, 1.01 0.99 0.97, 1.01

  NO
2
, ppb 1.01 0.99, 1.03 1.01 0.99, 1.04 1.01 1.00, 1.03

  SO
2
, ppb 0.99 0.95, 1.03 0.99 0.96, 1.03 1.00 0.96, 1.04

*P<0.05.
IRR, incidence rate ratio; ppb, parts per billion.

Table 6 Age- stratified multivariable CARadaptive models during the COVID- 19 pandemic

Variable

0 years of age 1 year of age 2–4 years of age

IRR 95% CI IRR 95% CI IRR 95% CI

1- month exposure to air pollutants

  PM
2.5

, µg/m3 0.98* 0.97, 1.00 0.98* 0.97, 1.00 0.98* 0.97, 1.00

  NO, ppb 1.02 0.99, 1.04 1.02 0.99, 1.04 1.02 0.99, 1.05

  NO
2
, ppb 1.01 0.98, 1.03 1.01 0.98, 1.03 1.01 0.98, 1.03

  SO
2
, ppb 1.02 0.96, 1.09 1.02 0.96, 1.09 1.02 0.96, 1.09

12- month exposure to air pollutants

  PM
2.5

, µg/m3 1.10* 1.04, 1.16 1.10* 1.04, 1.17 1.11* 1.04, 1.17

  NO, ppb 0.90* 0.85, 0.95 0.90* 0.85, 0.96 0.89* 0.84, 0.95

  NO
2
, ppb 1.05* 1.01, 1.10 1.06* 1.01, 1.11 1.07* 1.02, 1.12

  SO
2
, ppb 0.94 0.84, 1.04 0.94 0.85, 1.04 0.93 0.84, 1.03

*P<0.05.
IRR, incidence rate ratio; ppb, parts per billion.
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validity and robustness of our research. The compara-
tive analysis of 1- month and 12- month exposure under-
scored the criticality of the exposure duration. The 
climb in KD incidence with annual rather than monthly 
exposure to PM

2.5
 aligns with previous research.9–11 13 14 

The univariable and multivariable CARadaptive models 
demonstrated a 3%–10% increase in the incidence of KD 
for every 1 µg/m³ increase in PM

2.5
. This increase corre-

sponds to a 16%–61% rise with a 5 µg/m³ increase and is 
consistent with findings from a previous South Korean 
study.11

Previous research has shown that a considerable 
amount of PM

2.5
 comes from sources over 100 km away, 

whereas NO
2
 mainly comes from sources within 10 km.33 

NO has an even shorter dispersal distance compared with 
NO

2
.34 Their contrasting effects observed in the during- 

pandemic multivariable CARadaptive model—the opti-
mistic influence of NO and the pessimistic impact of 
NO

2
—can jointly modify predictions towards less inci-

dence of KD in areas experiencing nearby air pollution. 
It may be that the remarkable reduction in distantly 
originated PM

2.5
35 necessitated adjustments for the less 

harmful PM
2.5

 derived from proximate pollution sources.
The strength of this study lies in the adept use of CAR 

models that address the well- documented spatiotemporal 
aggregation of KD.15 17 Spatiotemporal autocorrelation 
of the error term caused by this aggregation violates 
the Gauss- Markov theorem’s assumptions, enhancing 
the prevalence of type I and type II errors.36 37 Given 
the unknown pathogenesis of KD, measuring all the 
confounders with spatial effects to eradicate autocorrela-
tion of the error term is not feasible, thus necessitating 
the adoption of clustering- aware models.

Limitations
Selection bias is a concern in observational studies. In 
light of the incidence rates of KD reported in previous 
studies, it can be estimated that approximately 70% of the 
domestic cases were included.23 Although the inclusion 
criteria were carefully constructed based on the ICD- 10 
code and KD- specific medications, the level of concord-
ance between the judged and actual onset of KD is yet 
to be confirmed. In this real- world data study, informa-
tion on symptoms and clinical findings was not available. 
We considered the risk of misclassification with multi-
system inflammatory syndrome in children (MIS- C) to be 
negligible based on the rarity of MIS- C cases in Japan.8 38 
The exclusion of untreated cases can be expected to be 
marginal, considering the ubiquity of early intravenous 
IG administration in Japan.2 Imputation of exposure at 
the prefectural level for the small amount of missing data 
may have biased the analyses toward the null. Although 
the dose–response relationship observed in this study 
aligns with previous research conducted in geographi-
cally close Korea, different results might be obtained in 
distant countries due to varying sources of PM

2.5
. Unmeas-

ured substances or microorganisms dispersing similarly 
to PM

2.5
, rather than PM

2.5
 itself, might be involved in 

the onset of KD.39 40 Besides, it should be noted that 
spatiotemporal analysis with different granularities of 
spatiotemporal units may yield different results.41 Given 
the limited geographic activity range of children under 
the age of five, the impact of exposure outside their 
secondary medical care area would be minimal. Anal-
ysis with a finer granularity would pose challenges due 
to boundary- crossing admissions, while extensive unit 
aggregation would reduce statistical power. We handled 
data at the spatiotemporal unit level, thereby not distin-
guishing between prenatal and postnatal exposures at 
the individual level. While the impact of annual PM

2.5
 

exposure in infants under 1 year may imply potential 
influences of prenatal exposure, these effects have not 
been explicitly examined.

In conclusion, we used the CAR models to address the 
spatiotemporal aggregation of KD, confirming the robust 
association between the incidence of KD and annual 
exposure to PM

2.5
. Further investigation is required to 

clarify the underlying mechanism of association between 
the spatiotemporal distribution of KD and PM

2.5
.
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