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ABSTRACT
Background  Continuous positive airway pressure 
(CPAP) is a recommended first-line therapy for infants 
with respiratory distress at birth. Resuscitation devices 
incorporating CPAP delivery can have significantly different 
imposed resistances affecting airway pressure stability and 
work of breathing.
Aim  To compare CPAP performance of two resuscitation 
devices (Neopuff T-piece resuscitator and rPAP) in a 
neonatal lung model simulating spontaneous breathing 
effort at birth.
Methods  The parameters assessed were variation in 
delivered pressures (∆P), tidal volume (VT), inspiratory 
effort (model pressure respiratory muscle (PRM)) and work 
of breathing (WOB). Two data sequences were required 
with Neopuff and one with rPAP: (1) set PRM with changes 
in VT and (2) constant VT (preterm 6 mL, term 22 mL) with 
increased effort. Data were collected at CPAP settings of 5, 
7 and 9 cmH

2
O using a 1 kg preterm (Compliance: 0.5 mL/

cmH
2
O) and 3.5 kg term (1.0 mL/cmH

2
O) model.

Results  2298 breaths were analysed (760 rPAP, 795 
Neopuff constant VT, 743 Neopuff constant PRM). With 
CPAP at 9 cmH

2
O and set VT the mean ∆P (cmH

2
O) rPAP vs 

Neopuff 1.1 vs 5.6 (preterm) and 1.9 vs 13.4 (term), WOB 
(mJ) 4.6 vs 6.1 (preterm) and 35.3 vs 44.5 (term), and with 
set PRM mean VT (ml) decreased to 6.2 vs 5.2 (preterm) 
and 22.3 vs 17.5 (term) p<0.001. Similar results were 
found at pressures of 5 and 7 cmH

2
O.

Conclusion  rPAP had smaller pressure swings than 
Neopuff at all CPAP levels and was thus more pressure 
stable. WOB was higher with Neopuff when VT was held 
constant. VT reduced with Neopuff when respiratory effort 
was constant.

INTRODUCTION
In recent years, respiratory management 
in the delivery room has shifted towards a 
less-invasive approach with rising numbers 
of infants receiving non-invasive respira-
tory support.1 Multiple trials have studied 
the benefits of non-invasive respiratory 
support for spontaneously breathing preterm 
infants.2–4 Systematic reviews and a meta-
analysis support the early non-invasive support 
in preterm infants with findings of reduced 

incidence of bronchopulmonary dysplasia, 
death and mechanical ventilation.5 6

The European Consensus Guidelines 
on the management of respiratory distress 
syndrome (RDS) recommend continuous 
positive airway pressure (CPAP) as the first-
line support for the initial stabilisation of 
spontaneously breathing preterm infants 
with respiratory distress.7 The International 
Liaison Committee on Resuscitation (ILCOR) 
introduced CPAP as part of neonatal resus-
citation to improve lung recruitment in 
preterm infants in 2010.8 Since then the use 
of CPAP has become increasingly common in 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Lung transition from fetal circulation to independent 
breathing and lung aeration is accompanied by rap-
id changes in lung compliance with implications for 
continuous positive airway pressure (CPAP) delivery 
systems.

	⇒ Resuscitation devices used for CPAP have differ-
ences in imposed expiratory resistance with impli-
cations for pressure stability and work of breathing 
(WOB).

WHAT THIS STUDY ADDS
	⇒ Increased system resistance for Neopuff led to ei-
ther the reduction of tidal volume with constant ef-
fort or increased effort compared with rPAP if the 
tidal volume was maintained constant.

	⇒ Airway pressure stability in CPAP systems can sig-
nificantly affect the WOB.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ A required higher effort between different CPAP de-
livery systems at the same CPAP level might lead to 
respiratory exhaustion and CPAP failure.

	⇒ If CPAP is required for long periods related to in-
terhospital transfer, devices with lower expiratory 
resistance and higher pressure stability may be 
preferable.
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late preterm and term infants with laboured breathing 
or persistent cyanosis without sufficient evidence for 
ILCOR recommendation.9 Term infants treated with 
non-invasive ventilation in Australasian Newborn Inten-
sive Care Units have approximately doubled within the 
last few years.10 The use of T-piece devices with expiratory 
flow restriction to produce CPAP in the delivery room 
has been associated with an increase in pneumothorax, 
especially in infants with increasing gestational age.11–13

Since the first use of CPAP as a mode of non-invasive 
ventilation for preterm infants by Gregory et al in 1971,14 
several devices and methods to generate CPAP have been 
introduced to clinicians. For resuscitation, the number of 
devices capable of pressure ventilation with positive end-
expiratory pressure (PEEP) to a non-breathing infant 
and/or providing CPAP to an infant that is breathing is 
limited. TPR is the most common, but a new alternative 
is the rPAP.15 Both have the advantage of easy transition 
between positive pressure ventilation (PPV) and CPAP, 
but the resistance to breathing and method of gener-
ating CPAP is not similar. Previous research has shown 

differences in the resultant pressure waveforms between 
CPAP delivery systems16–19 and large differences in expi-
ratory resistances.20

In respiratory systems, the work of breathing (WOB) is 
the product of pressure and volume, with the mechanical 
work needed for breathing referred to as total or physio-
logical WOB. Imposed WOB (iWOB) is the component of 
work added to the patient by respiratory equipment.21 22 
CPAP can decrease the total WOB in infants with RDS 
and surfactant deficiency by increasing the functional 
residual capacity (FRC), splinting airways and optimising 
breathing.1 23 However, the WOB may be increased by 
the added CPAP system resistance from the interface, 
connectors and device design. It can be investigated in 
lung models or real patients but is sensitive to changes in 
breathing patterns such as VT and minute ventilation.21 24

The infant’s effort to breathe causes fluctuations in 
the pressure waveform around set CPAP levels. Pressure 
stability refers to the variation in pressures above and 
below the set mean pressure, the ∆P. Smaller ∆P when 
comparing CPAP systems with identical respiratory 

Table 1  Comparison of rPAP and Neopuff: Mean and Coefficient of Variation% for P, tidal volume, pressure respiratory 
muscle and work of breathing in preterm and term models at different set positive end-expiratory pressure levels

Preterm (1000 g)

CPAP 
(cmH

2
O)

P min 
(cmH

2
O)

P max 
(cmH

2
O)

Δ P (cmH
2
O) VT set 

(ml)
VT measured 
(ml)

Effort
(cmH

2
O)

WOB (mJ)

rPAP* 5 5.0, 1.0% 5.6, 1.3% 0.7, 13% 6 6.4, 9% 12.7, 8% 4.7, 1.3%

7 6.8, 1% 7.7, 1% 0.9, 10.1% 6 6.3, 5.5% 12.2, 3% 4.6, 1.1%

9 8.9, 10% 10.0, 1.0% 1.1, 13% 6 6.2, 6.7% 12.2, 3% 4.6, 1.2%

NP: VT 
constant

5 3.6, 2% 7.5, 2.1% 3.9, 4.7% 6 6.3, 3.3% 13.3, 2.7% 5.2, 0.9%

7 5.1, 1.7% 10, 1.4% 4.9, 4% 6 6.6, 3.5% 14.3, 3% 5.8, 1.3%

9 6.6, 1.7% 12.2, 0.9% 5.6, 3.5% 6 6.4, 3.3% 14.8, 3% 6.1, 1.6%

NP: Effort 
constant

5 3.5, 2.6% 7.1, 2.7% 3.6, 6% NA 5.9, 6.2% 12.2, 4.2% 4.5, 0.8%†

7 5.4, 1.6% 9.6, 1.5% 4.3, 4.4% NA 5.7, 3.4% 12.2, 2.9% 4.3, 1.3%†

9 6.9, 1.9% 11.6, 1.8% 4.7, 6.8% NA 5.2, 7.8% 12.1, 6.2% 4.1, 1.6%†

Term (3500 g)

rPAP* 5 4.4, 2% 6.1, 2.4% 1.7, 9.4% 22 22.5, 4.7% 24.4, 3.2% 35.2, 1%

7 6.3, 1.1% 8.1, 1.1% 1.9, 6.9% 22 22.5, 2.8% 24.6, 3% 35.4, 1.1%

9 8.3, 1.1% 10.2, 1% 1.9, 7.3% 22 22.3, 3.2% 24.4, 3% 35.3, 1.6%

NP: VT 
constant

5 1, 10% 10.5, 1.5% 9.4, 2.5% 22 22.6, 2.9% 28.6, 2.9% 42.7, 1.1%

7 1.8, 7.8% 13.4, 1.3% 11.7, 2.5% 22 22.3, 3% 29.8, 2.8% 44.4, 0.9%

9 3.1, 5.9% 16.5,1.3% 13.4, 2.6% 22 21.5, 3.1% 30.6, 2.9% 44.5, 1.3%

NP: Effort 
constant

5 1.4, 8% 9.8, 2.6% 8.4, 3.7% NA 19.5, 3.1% 24.5, 3.1% 31.6, 1.2%†

7 2.6, 4.6% 12.4, 1.3% 9.8, 2.6% NA 18.6, 3% 24.5, 2.9% 30.4, 1.2%†

9 4.1, 4.3% 15, 1.1% 10.9, 2.8% NA 17.5, 3.1% 24.5, 3% 29.1, 1.2%†

All differences significant p<0.001, ANOVA repeated measurements
*VT with rPAP remained constant at set effort.
†VT in these simulations reduced and WOB not comparable to constant VT
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parameters can be described as more pressure stable.17 
In bench tests, rPAP has shown lower imposed resistance 
and more pressure stability with significantly fewer inspi-
ratory and expiratory pressure fluctuations than the 
Neopuff T-piece resuscitator (TPR).20 In constant-flow 
CPAP systems, gas flow continues throughout the inspi-
ratory/expiratory cycle resulting in the need for the 
patient’s expiratory effort to overcome the flow and the 
resistance of the CPAP generating device during expira-
tion, which leads to an increased expiratory work.25

Lung simulators such as the Neonatal Active Lung 
Model (NALM) are designed to be programmable, 
dynamic and react to the tested device. They simulate 
breathing by allowing the user to set airway resistance 
(R

aw
), compliance of respiratory system (C

rs
) and tidal 

volumes (VT). The muscular effort needed to produce 
the simulated breath is labelled as the ‘pressure of respi-
ratory muscles’ (PRM) in NALM.26 PRM is generated 
with a moving piston within the NALM. Resistance and 
compliance can be linear or non-linear and in more 
complex simulations have more than one compartment. 
The NALM responds with changes in tidal volumes when 
system pressure and resistance change. Lung model 
simulators are thus dynamic, but the response is limited 
as they cannot react actively by changing the respiratory 
rate or inspiratory–expiratory ratio.

The NALM calculates the total WOB using the area 
of a pressure–volume loop of a simulated breath.21 This 
includes the simulated effort limited to inspiration with 
exhalation considered passive. iWOB reflects the added 

resistance from the CPAP device and is calculated from 
the pressure–volume loop at the interface. It can be split 
into an inspiratory and expiratory part. All measure-
ments of WOB are directly affected by changes in VT, 
and this makes reporting complicated. To standardise 
the comparison of devices, either the pressure or the 
targeted tidal volume needs to be maintained stable.27

The relationship between simulated effort and VT for 
resuscitation devices providing CPAP during simulated 
breathing has not previously been investigated. We aim to 
compare the delivered CPAP performance of two resus-
citation devices with differing imposed resistances in a 
neonatal lung model simulating spontaneous breathing 
after birth by examining pressure stability, the effect on 
delivered tidal volume and simulated WOB.

METHODS
Two CPAP/PPV resuscitation systems were compared: 
the Inspire rPAP (Inspiration Healthcare) and the 
Neopuff TPR (Fisher and Paykel Healthcare). Both 
devices were connected to the NALM (Schaller 
Medizintechnik, Germany, V1-4.0), which simulated 
spontaneous breathing modelling a preterm and 
term newborn infant with respiratory distress.28–31 
Prior to connection to either CPAP device, the 
NALM was set as per previous researchers for these 
models16 19 32 33 on ‘spontaneous breathing’ and was 
representative of a term 3500 g (C

rs
:1 mL/cmH

2
O, 

inflation rate 50 /min, inspiratory time 0.4 s) and 
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Figure 1  Pressure fluctuations around a set mean pressure of 5,7,9 cmH
2
O with simulated spontaneous respiration for rPAP 

(blue) vs Neopuff (red) with constant tidal volume in term and preterm models. PEEP, positive end-expiratory pressure levels.
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preterm 1000 g (C
rs

:0.5 mL/cmH
2
O, 70 /min, 0.3 s) 

infant with respiratory distress (online supplemental 
material).19

Before recording the NALM was equilibrated for 
30 min and calibrated. The pressure and flow of the 
tested resuscitation devices were adjusted using a 
ventilator calibration analyser (Flow Analyser PF-300 
IMT Medical, Buchs, Switzerland). The PEEP was set 
by adjusting the total flow on Inspire rPAP (7.1 L/
min for 5.0 cm H

2
O, 9.0 L/min for 7 cm H

2
O, 10.7 L/

min for 9.0 cm H
2
O), Neopuff was set up with a total 

flow of 10 L/min for all PEEP values. The experiments 
were conducted without a leak, using non-humidified 
gas 21% O2 at ambient room temperature and with 
no facemask interface.

We found a significant drop in delivered VT 
compared with the set NALM values when connecting 
the Neopuff TPR to NALM in both term and preterm 
models. This did not occur with rPAP. To fairly 
examine the WOB aspect, changes in PRM were 
adjusted to maintain a constant VT since in a system 
with a constant compliance, the WOB is propor-
tional to VT.24 Two data sequences were collected 
with Neopuff to examine both states of constant VT 
and constant PRM. As there was no change in rPAP 
from set NALM values, only one data sequence was 
collected.

Patient and public involvement
This is a bench study of mechanical properties using a 
computerised lung simulator. There was no patient or 
animal involvement.

Data analysis
Data were collected from the NALM over 2 min for each 
setting. These data were imported into Stata V.18 MP 
(StataCorp, College Station, USA). Each respiratory cycle 
was identified by pressure waveform changes of PRM in 
Stata.

The measured parameters included the mean CPAP 
pressure, minimum and maximum airway pressures 
and their difference (Δ P), VT, PRM and WOB (total 
WOB calculated by NALM). Mean values for those 
parameters are reported in table 1. Analysis of variance 
(ANOVA) for repeated measures was used to deter-
mine differences in mean and Coefficient of Variation 
(CV%) for measured parameters at different set PEEP 
values and compliance between the two tested devices. 
Differences between means determined by multiway 
ANOVA were reported with p values adjusted. F test 
was performed using Box’s conservative epsilon; p 
values of <0.05 were considered statistically signifi-
cant. Bonferroni corrections of estimates were made 
to adjust for multiple comparisons.

RESULTS
2298 simulated breaths were analysed comprising 760 
with rPAP, 795 with Neopuff with constant VT and 743 
with Neopuff and constant PRM.

Pressure
Pressure swings were significantly lower with rPAP 
compared with Neopuff, across all PEEP values in 
preterm and term models for both settings (VT or PRM 
constant) figure 1 and table 1. The largest ΔP was seen 
at higher PEEP levels in sequence 2 (constant VT) with a 
mean of 1.1 vs 5.6 cmH

2
O rPAP vs Neopuff, CV% 13% vs 

3.5% in the preterm model and 1.9 vs 13.4 cmH
2
O rPAP 

vs Neopuff CV 7.3% vs 2.6% in the term model. The high 
CV% observed with rPAP can be attributed to the noisy 
signal produced by rPAP (table 1).

A higher PEEP had a greater impact on ΔP with 
Neopuff compared with rPAP: Mean ΔP 9.4–13.4 cmH

2
O 

Neopuff vs 1.7–1.9 cmH
2
O rPAP (ranges for PEEP 5–9, 

term model).
A larger increase in ΔP was recorded in both term and 

preterm constant VT models with the Neopuff (mean 5.6 
preterm vs 13.4 cmH

2
O term) compared with rPAP (1.1 

preterm vs 1.9 cmH
2
O term).

Tidal volume
In simulations with the constant inspiratory effort (PRM), 
the largest reduction in VT was seen in the term model 
at PEEP 9 cmH

2
O with Neopuff where VT was reduced 

to a mean of 17.5 mL compared with rPAP of 22.3 mL. 

Figure 2  Pressure swings (Δ P in cmH
2
O) and WOB (mJ) for 

preterm and term experiments with constant tidal volumes 
for Neopuff (red) and rPAP (blue) at PEEP 5,7 and 9. Box 
plots with mean and coefficient of variation percentage. 
PEEP, positive end-expiratory pressure levels; VT, tidal 
volume; WOB, work of breathing.
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Similar findings could be observed in the preterm model 
6.2 vs 5.2 mL for rPAP vs Neopuff at the highest set PEEP. 
Showing a VT reduction of 20.5% in the term model and 
13.3% in the preterm model (set PEEP 9) with constant 
inspiratory effort. These findings were less pronounced 
at lower PEEP levels (table 1 and figure 2).

In the sequence with constant VT, the inspiratory effort 
(PRM) was adjusted for Neopuff. The highest required 
PRM were at 9 cm CPAP with a total increase in effort of 
2.6 cmH

2
O in the preterm and 6.1 cmH

2
O in the term 

model.

WOB
In simulations with constant VT the total WOB was signif-
icantly higher with Neopuff. The greatest differences 
were seen at the highest PEEP level, mean 4.6 vs 6.1 
mJ, CV 1.2 vs 1.6% in preterm and 35.3 vs 44.5 mJ, CV 
1.6% vs 1.3% in term model rPAP vs Neopuff. A higher 
increase in WOB between PEEP levels was present with 
Neopuff (mean 5.2–6.1 mJ preterm and 42.7–44.5 mJ 
term) compared with rPAP (4.7–4.6 mJ preterm and 
35.2–35.3 mJ term). Examples of pressure-volume loops 
are presented in figure 3.

DISCUSSION
This bench test has confirmed that in both term and 
preterm NALM models simulating breathing with 
respiratory distress, the TPR (Neopuff) affects breathing 
with larger pressure swings around the set CPAP level 
compared with that measured with rPAP. The increased 

resistance to breathing was reflected in both ∆P, VTs and 
the effect on PRM. The overall impact of using Neopuff 
TRP compared with rPAP to deliver CPAP in our models 
led to either the VT reducing or a required increase in 
simulated effort.

Significant differences were also found in WOB levels 
recorded by the NALM. At a constant compliance, the 
elastic WOB is proportional to the VT.34 Interpreting 
WOB in our dynamic active model is more complex with 
the calculations being dependent on the VT and, for the 
total WOB, the simulated effort. Since the added device 
resistance reduces the VT or requires an increase in simu-
lated effort, this must be accounted for when looking at 
the absolute values of WOB and is a limiting factor in 
this bench test. Nonetheless, our findings of WOB are 
consistent with the in vivo study by Pandit et al comparing 
variable to constant flow CPAP devices25 but could not be 
confirmed by Courtney et al.35

Fluid clearance in transition to breathing happens 
quickly36 with dynamic changes in lung compliance 
and resistance. This transition is difficult to simulate in 
current lung simulators. Limitations are (1) the bench 
testing on fixed respiratory function parameters, which 
are not representative of these dynamic changes after 
birth; (2) our model was intentionally designed to be 
leak free; (3) the inability to split the WOB value of 
the NALM to an inspiratory and expiratory compo-
nent; and (4) infants alter respiratory rate more than 
VT to maintain minute ventilation, which cannot be 
modelled with simulators, and the general translation 
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of this bench model to in vivo results needs further 
investigation.

Infants breathing on identical respiratory support 
systems with the same settings might have a different 
iWOB and different inspiratory flow rates.21 Increasing 
the fresh gas flow to Neopuff TPR increased pressure 
stability.20 This has not been investigated in our study. A 
higher flow on Neopuff might be beneficial in terms of 
less effort, especially for CPAP use over a longer period. 
An increased iWOB compared with the WOB of spon-
taneous breathing is assumed to play a role in CPAP 
failure.21

Whether there are benefits of pressure fluctuations 
in the initial aeration is uncertain, but high resistance 
might reduce peak flows and tidal volumes. A recent 
animal study by Kuypers et al in intubated preterm rabbits 
receiving PPV using higher expiratory resistance showed 
reduced deflation rates and increased the accumulation 
of FRC over time.37 Concerns of adverse effects caused by 
larger pressure fluctuations such as a higher incidence 
of pneumothorax have been raised.18 The use of CPAP 
for newborn stabilisation with a T-piece system has shown 
an increased rate of pneumothorax, especially in late 
preterm and term infants.11 13 This might be associated 
with faster lung compliance changes in this group. Addi-
tionally, high system resistance could increase the risk of 
inadvertent PEEP due to a shorter expiration time.38

Previous clinical and bench studies report larger VTs 
and greater changes in lung volume in variable versus 
continuous flow CPAP.19 20 25 Cook et al found VT drops 
with a constant inspiratory effort on higher PEEP levels, 
which were less pronounced in CPAP systems with flow 
opposition.16 This is confirmed by the findings in our 
bench test.

Flow opposition CPAP systems showed an advantage 
regarding extubation success in preterms.39 A recently 
performed randomised controlled trial by Donaldsson 
et al comparing the more pressure-stable rPAP to the 
Neopuff TPR reported a reduced delivery room intu-
bation using the dual flow system.40 Whether pres-
sure stability of CPAP systems is of importance in the 
early phase during transition to breathing in newborns 
requiring airway pressure support needs further investi-
gation. In vivo studies are required to assess the actual 
imposed (inspiratory and expiratory) WOB in relation 
to dynamic changes of lung compliance and resistance 
during transition.

Prolonged support using resuscitation CPAP systems 
occurs in many settings while awaiting inter-hospital 
transfer. Our findings of differences in pressure stability 
and the impact of WOB may be particularly relevant in 
these clinical scenarios.

CONCLUSION
Our study showed large differences between the two 
resuscitation systems related to the imposed respiratory 
resistance of the CPAP devices. The rPAP device had 

smaller pressure swings than Neopuff at all CPAP levels 
and was more pressure stable. WOB was higher with a 
greater respiratory effort with Neopuff when VT was held 
constant, and VT reduced with Neopuff when respiratory 
effort was constant. The clinical impact of higher pressure 
stability and lower iWOB in the stabilisation of newborn 
infants needs further investigation in in vivo studies.
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