En geometria, el facetatge és el procés d'eliminar parts d'un polígon, políedre o polítop sense crear cap nous vèrtexs.

Estel octangle com a facetatge del cub

Les noves arestes d'un políedre facetat poden ser creades al llarg de les diagonals de cara o de diagonals espacial internes. Un políedre facetat tindrà dues cares en cada aresta i crea nous políedres o compostos de políedres.

El facetatge és el procés recíproc o dual de l'estelació. Per cada estel·lació d'un polítop convex existeix un facetatge dual del polítop dual.

Polígons facetats

modifica

Per exemple, un pentàgon regular té un facetatge simètric, el pentagrama, i l'hexàgon regular té dos facetatges simètrics, un com a polígon i un com a compost de dos triangles.

Pentàgon Hexàgon Decàgon
     
Pentagrama
{5/2}
Hexàgon estelat Compost
2{3}
Decagrama
{10/3}
Compost
2{5}
Compost
2{5/2}
Decàgon estelat
                   

Políedres facetats

modifica

L'icosàedre regular es pot facetar en tres políedres de Kepler-Poinsot regulars: el petit dodecàedre estelat, el gran dodecàedre i el gran icosàedre. Tots ells tenen 30 arestes.

Convex Estels regulars
icosàedre gran dodecàedre petit dodecàedre estelat gran icosàedre
       

D'altra banda, el dodecàedre pot ser facetat en un políedre de Kepler-Poinsot regular, tres políedres estelats uniformes i tres políedres composts regulars. Els estelats uniformes i els composts de cinc cubs són construïts per mitjà de diagonals de cara. El dodecàedre excavat és un facetatge amb cares d'hexàgon estelat.

Convex estelat regular estelats uniformes Vèrtex-transitiu
dodecàedre gran dodecàedre estelat petit icosidodecàedre ditrigonal dodecadodecàedre ditrigonal gran icosidodecàedre ditrigonal dodecàedre excavat
           
Convex Composts regulars
dodecàedre cinc tetràedres cinc cubs deu tetràedres
       

Bibliografia

modifica
  • Bertrand, J. Note sur la théorie des polyèdres réguliers, Comptes rendus des séances de l'Académie des Sciences, 46 (1858), pp. 79–82.
  • Bridge, N.J. Facetting the dodecahedron, Acta crystallographica A30 (1974), pp. 548–552.
  • Inchbald, G. Facetting diagrams, The mathematical gazette, 90 (2006), pp. 253–261.
  • Alan Holden, Shapes, Space, and Symmetry. New York: Dover, 1991. p.94

Enllaços externs

modifica
  NODES
Intern 1
Note 1
os 19