Operador de d'Alembert

un operador laplacià de l'espai de Minkowski

En la relativitat especial, electromagnetisme i teoria de l'ona, l'operador de d'Alembert (denotat per un quadrat: ), també anomenat operador d'Alembertià, operador d'ona o operador caixa és un operador laplacià de l'espai de Minkowski. L'operador rep el seu nom del matemàtic i físic francès Jean le Rond d'Alembert.

A l'espai de Minkowski, en coordenades estàndard (t, x, y, z), té la forma

On ∇² és l'operador laplacià tridimensional i gμν és la mètrica inversa de Minkowski amb

, , for .

S'ha de tenir en compte que els índexs de sumació μ i ν oscil·len entre 0 i 3: vegeu la notació d'Einstein. Hem assumit unitats tals que la velocitat de la llum c = 1.

(Alguns autors utilitzen alternativament la signatura mètrica negativa de (− + + +), amb ).

Les transformacions de Lorentz deixen la mètrica de Minkowski invariant, de manera que el d'Alembertià produeix un escalar de Lorentz. Les expressions de coordenades anteriors segueixen sent vàlides per a les coordenades estàndard de cada marc inercial.

Notacions alternatives

modifica

Hi ha diverses notacions per al d'Alembertià. El més comú és el símbol   (Unicode: U+2610   BALLOT BOX): els quatre costats del quadrat que representen les quatre dimensions de l'espaitemps, i l'operador   posa l'accent en la propietat escalar a través del terme quadrat (com el laplacià). Aquest símbol és de vegades anomenat quabla (veure símbol nabla). En consonància amb la notació triangular per al laplacià, de vegades s'utilitza   .

Una altra manera d'escriure el d'Alembertià en coordenades estàndard planes és  . Aquesta notació s'utilitza àmpliament en la teoria quàntica de camps, on normalment es indexen les derivades parcials, de manera que la manca d'un índex amb la derivada parcial quadrada assenyala la presència del d'Alembertià.

Algunes vegades   s'utilitza per representar la derivada covariant Levi-Civita en quatre dimensions. Llavors, s'utilitza el símbol  per representar les derivades de l'espai, però això és dependent de la carta de coordenades.

Aplicacions

modifica
 
on u(x,t) és el desplaçament.
 
on Aμ és el quadripotencial electromagnètic.
 
que descriu camps escalars d'espín zero.

Funció de Green

modifica

La funció de Green,  , per al operador d'Alembertian es defineix per l'equació

 

on  és la funció delta de Dirac multidimensional i   i   són dos punts a l'espai de Minkowski.

Una solució especial ve donada per la funció de Green retardada que correspon a la propagació del senyal només cap endavant en el temps

 [1]

on   és la funció esglaó de Heaviside.

Referències

modifica
  1. S. Siklos. «The causal Green's function for the wave equation». Arxivat de l'original el 30 de novembre 2016. [Consulta: 2 gener 2013].

Vegeu també

modifica

Enllaços externs

modifica
  NODES
mac 2
os 7