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ABSTRACT
This paper describes the approaches used by our team (MultiBrasil)
for the Multimedia Satellite Task at MediaEval 2017. For both dis-
aster image retrieval and flood-detection in satellite images, we
employ neural networks for end-to-end learning. Specifically, for
the first subtask, we exploit Convolutional Networks and Relation
Networks while, for the latter, dilated Convolutional Networks
were employed.

1 INTRODUCTION
Natural disaster monitoring is a fundamental task to create preven-
tion strategies, as well as to help authorities to act in the control
of damages. In its first appearance at MediaEval, the Multimedia
Satellite Task [3] focuses on monitoring of flooding events, which
is considered the most harmful and costly type of natural disas-
ter in the world [8].The task is subdivided into two subtasks: (a)
Disaster Image Retrieval from Social Media (DIRSM), which deals
with flooding events in data (visual and textual) crawled from social
media; and (b) Flooding-Detection in Satellite Images (FDSI), which
refers to segment flooding regions in satellites images.

2 DISASTER IMAGE RETRIEVAL (DIRSM)
For the DIRSM task, we employed Convolutional Networks (CNN) [6]
to deal with visual features. For textual features, we applied Rela-
tion Networks (RN) [9] and traditional methods (as baseline) such
as Bag of Words (BoW) and bigrams. The recently proposed RN is
a neural network designed for taking into account the relationship
between pairs of objects during training. A RN consists of two
neural networks, f and д, whose parameters are learned jointly.

In runs 1, 2, 3, and 4, we used neural networks and trained them
for classification, with the positive class being a flooding event.
In those runs, the final ranking was created by sorting the test
set with respect to the classification score, from highest to lowest.
Thus, ideally, images with flooding events should have higher score
and appear first in the ranking. None of the runs used additional
datasets.

Run 1: This run, which focuses only on visual data, employed
GoogleNet [11] pre-trained on ImageNet dataset. We fine-tuned the
network using the whole training set, replacing the original last
layer by a new one containing two neurons, which correspond to
the two classes: “flooding” and “non-flooding”.
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Run 2: A relevant portion of the available metadata are tags
and descriptions that are not necessarily well-written sentences.
In addition, the amount of available data also discourages the use
of recent neural networks designed for learning from text data,
as many of them are large architectures based on convolutional
or recurrent neural networks, thus requiring larger datasets of
structured sentences. With this in mind, we hypothesized that the
co-occurrence of words is still valuable evidence of a flooding event
and is easier to learn from than structured sentences. For runs 2
and 3, which use text data, we extracted a set of words from each
image metadata and used a neural network to learn from that set
how to classify if an image describes or not a flooding event. This
set is the union of the set of words extracted from the description
and the set of words occurring in tags. To obtain the set of words
from the description, we remove any HTML, non-letter symbols,
stop words, and then apply a standard stemming procedure [2].

We designed a RN to learn from the sets of words for run 2. In or-
der to create a representation for words, we built a word dictionary
from all words in the training data, assigning an integer ID to each
word. The first layer of the network is a fully connected layer that
takes one-hot encoded vectors representing words as input (ID of
the word is the index of the ‘1’ value) and outputs a 32-dimensional
vector. Using this strategy, vector representations improve as learn-
ing goes on, while not requiring large word datasets.

Run 3: Since we had access to both images and their metadata,
we use an architecture that incorporates a CNN for image data and
a RN similar to the one used for run 2 for the metadata. The CNN
is a ResNet-18 [7] pre-trained on ImageNet, but its last layer was
replaced by a fully-connected layer of 512 units. The f network
of the RN uses the same architecture from run 2, except its last
layer is replaced by a fully-connected layer of 256 units. Then, the
output of both the CNN and RN are concatenated into a single
vector, followed by a fully-connected layer of 512 units and finally a
single sigmoid unit for classification. The network is then trained as
whole, with no specific tuning for handling the pre-trained weights.

Run 4: We proposed an alternative solution for run 1. We split
the training images into 5 disjoint subsets, which are combined
by taking 4 out of 5, covering all possible combinations of the 5
sets (similar to a 5-fold cross validation). This process results in 5
distinct and combined sets (each one composed of 4 subsets), which
are used to fine-tune 5 independent GoogLeNets. In the prediction
phase, we average the scores of being a flooding event given by
each network and then rank the test set with them.

Run 5: We used a metadata-based approach based on an IR
ranking solution, ranking test samples based on their estimation
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of being flood. That estimation comes from a metric evaluation
over a ranked list for each test sample, computed as follows. Let
D = {d1,d2, . . .} be the dev set, and T = {t1, t2, . . .} be the test
set. Also let ⟨M, F ⟩ be a pair of a representation model M and a
distance function F , in whichM is applied over a sample s (the query
from an IR perspective) and produces M(s), and F is applied over a
pair of samples previously modeled by M , so F (M(s1, s2)) = fs1,s2
corresponds to the distance of s1 to s2 with respect to M and F .
With ⟨M, F ⟩ and a test sample t , we generate a ranked list r (t) that
contains up to |D | pairs of ⟨di , ft,di ⟩, where di ∈ D, whose pairs
are sorted by ft,di .

We tested ⟨M, F ⟩ pairs, then selected the ones who performed
best on dev set. For the three best pairs, we produce three ranked
lists for a sample. We use a graph-based rank-aggregation technique
to produce an unified ranked list. By applying the same procedure
to the dev samples as well, as if they were also queries, we generate
graphs that combine their ranked lists, thus we end up with graphs
for every sample. Given a test graph, we compare it to the dev
graphs and produce a final ranked list. A graph-based dissimilarity
function [12] is used to compare test and dev graphs. Given the
set of ranked lists produced for each test sample, we estimate ‘how
much flood’ a test sample is, using the NDCG@K measure [5].
The final submission file contains test samples decreasingly sorted
by their estimation. We chose K by evaluating within the dev set,
picking K = 7, which maximized the effectiveness.

The three best ⟨M, F ⟩ pairs were ⟨RF, WGU⟩, ⟨bigrams-TF, cosine⟩,
and ⟨BoW-TF, cosine⟩, where TF is a weighting functions, RF (rel-
ative frequency) is a graph-based text representation model [10],
and WGU [12] is graph-based dissimilarity function.

3 FLOOD-DETECTION (FDSI)
For the FDSI task, we employed CNNs with dilated (or a-trous)
convolution [4]. Unlike standard CNNs, networks composed of this
type of convolution learn the given task by processing the input
without downsampling it. This is only possible because dilated con-
volutions allow gaps (or “holes”) inside their filters, which represent
a great advantage in terms of computational processing, as well as
in terms of learning, given that internal feature maps do not lose
resolution (and information).

In this subtask, we proposed 4 CNNs. The most important one,
which was exploited in all runs, is composed of 6 dilated convolution
layers and the final fully-connected one, which is responsible for
the classification. There are no poolings or normalizations inside
the network. The first two convolutions have 5 × 5 filters with
dilation rate 1. Convolutions 3 and 4 have 4 × 4 filters but larger
rate 2. Finally, the last convolutions have smaller filters (3 × 3) but
larger dilation rate 4. In a pre-processing stage, we normalized the
images using the mean and standard deviation of each image band.

Run 1: We trained the aforementioned CNN by using overlap-
ping patches of size 25 × 25 extracted from all training images. In
the prediction phase, we also extracted overlapping patches with
the same resolution from the testing images and averaged the prob-
abilities outputted by the network.

Run 2: We processed the images exactly as in run 1 but using a
larger patch, with 50 × 50 pixels, which tends to aggregate more
context that could improve the learning process.

Run 3: We combined the features extracted from several distinct
CNNs using a linear SVM. Specifically, the SVM receives as input
features extracted from CNNs trained in run 1, 2, and 5, as well
as: (i) a dilated CNN with pooling layers (but that do not reduce
the resolution giving the padding), and (ii) two networks based
SegNet [1] that uses deconvolution layers.

Run 4: We combined all networks presented in run 3 using a
majority voting scheme.

Run 5: We trained a specific dilated CNN (using patches of
25 × 25) for each of the six locations, i.e., we had one network
specialized for each location. The prediction is similar to run 1,
except for the use of each CNN in its respective location. For the
new location, we combined the features extracted from each CNN
using a linear SVM, just like run 3.

4 RESULTS & DISCUSSION
Table 1 presents our results for the DIRSM subtask. The best results
considering AP@480 was achieved by run 3 (95.84%), the neural
network solution that combines textual and visual data. However,
considering the MAP@[50,100,250,480] the visual only approach
that combines results from 5 fine-tunned networks from GoogLeNet
(91.59%) stood out (e.g., run 4). In both cases, the results of neural
networks surpassed by far those yielded by the IR approach (run 5).

Table 1: Average Precision (%) at 480 and Mean Average Pre-
cision (MAP) (%) at cut-offs 50, 100, 250 and 480 (DIRSM).

Run 1 Run 2 Run 3 Run 4 Run 5

AP@480 74.60 76.71 95.84 82.06 54.31
MAP@[50,100,250,480] 87.88 62.53 85.63 91.59 41.13

Our results for FDSI subtask (Table 2) indicated that the solution
that extracts features using several CNNs and combines them with
SVM produced the best results (run 3) for test items referring to
either locations seen before in training set, or new locations.

Table 2: Mean Intersection Over Union (%) (FDSI).

Run 1 Run 2 Run 3 Run 4 Run 5

Same locations 87.64 86.56 88.23 78.06 87.93
New locations 82.53 80.25 84.10 49.80 84.10

5 FINAL REMARKS & FUTURE WORK
As future work, for the DIRSM subtask, we intend to: (i) combine
different networks (VGG, AlexNet, ResNet, DenseNet) and (ii) use
RNs with open vocabulary models, as the current approach has its
vocabulary limited to the training data. For the FDSI subtask, we in-
tend to: (i) explore different learning algorithms as post-processing,
and (ii) combine distinct networks.
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