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LSTM layer is placed after the Embeddings layer and on top of that, 

we have the previous MLP structure. 

Finally, we employed another type of ANN capable of handling 

sequences - the Convolutional Neural Network (CNN). Here 

learning a sequence is achieved via a different mechanism which 

exploits the mathematical operation of convolution of the input 

sequence with a small kernel. We thus placed after the Embeddings 

layer two parallel layers with 32 kernels of length 5 each. The 

outputs of those parallel Convolutional layers are then merged and 

being fed into the previous MLP architecture. 

To convert the continuous (between zero and one) ANN output to 

binary (i.e. flood-related input text or not) we use a threshold. Texts 

having output above the threshold are labelled as flood-related (i.e. 

one) and texts having output below the threshold as labelled zero. 

The threshold is chosen for each model separately by maximizing 

the F1-score. Finally, the text’s class was assigned by a majority 

rule on the three models’ output.  

 

3 RESULTS AND DISCUSSION 

3.1 Model setup and performance 

After experimenting with various values, we ended up with a 

vocabulary of size 3000, sequence length of 40, embedding vector 

dimension of 300 and under-sampling ratio of 1.75. The vocabulary 

size and sequence length are small compared to typical Natural 

Language Processing (NLP) applications due to the short form of 

the tweet's text. The architecture of the ANNs used is described 

above. 

ANNs were trained and evaluated individually on the same 

train/validation sets which were created by splitting the devset to 

an 80-20% ratio. The F1-scores on the validation set were 0.59 for 

the MLP, 0.60 for the RNN and CNN. Those scores were obtained 

by choosing thresholds 0.40, 0.65, 0.40 respectively. Finally, we 

combined the three ANN outputs by assigning to each input the 

majority class for the three ANN outputs. We chose this strategy, 

hoping that each ANN would perhaps capture different 

idiosyncrasies of the input. The overall F1 score improved slightly 

to 0.61. Our score on the test set was 0.5405, significantly lower, 

suggesting that we overfitted the training set. 

 

3.2 Limitations of the study 

The main challenge of the task was related to the labelling of the 

training dataset. We noticed that many samples looked flood-

related from a visual inspection but were not labeled as such (some 

example ids are:940319294084202496, 944240672294531073, 

950753737466830940, 1059017654088790018, 

1055172135587536896). Further, we noticed that many positive 

samples are from meteorological alerts. This could maybe restrict 

the training set and explain the difficulties of the model in 

generalizing well and thus, influence the overall model 

performance.   

 

3.3 Outlook - Ways to improve the performance 

Experimenting with simpler text representations such as Bag of 

Words (BOW) and Term Frequency Inverse Document Frequency 

(TF-IDF) vectors and a Logistic Regression classifier revealed that 

taking into account tweet entities such as hashtags, in addition to 

the plain text, improved predictive performance. 

However, due to time limitations, this approach was not 

implemented in our ANN framework. Further, it would require 

more sophisticated tokenization schemes able to extract hashtags, 

than those used for the ANNs input. 

Geographical information of tweets, either in the form of metadata 

(e.g. coordinates, place attribute) or location mentions in the 

tweet’s text could be exploited to ‘geo locate’ the tweet and 

possibly be used as additional inputs to the model. Especially since 

the dev. set focuses on a particular study area [1]. 

Finally, let us mention that this study focused solely on the tweet’s 

text without considering the associated image. A two-branch 

model, where one branch would be the model presented here 

excluding the output layer and the other branch an image classifier 

both feeding the same output layer could be used to handle both 

text and image input. 

 

3.4 Code availability 

The model was implemented as a Google Colab Ipython notebook 

and code is available upon request 

(theo_nikoletopoulos@yahoo.co.uk). 
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