
A Tweet Text Binary Artificial Neural Network Classifier

MediaEval’20, December 14-15 2020, Online T. Nikoletopoulos et al.

LSTM layer is placed after the Embeddings layer and on top of that,

we have the previous MLP structure.

Finally, we employed another type of ANN capable of handling

sequences - the Convolutional Neural Network (CNN). Here

learning a sequence is achieved via a different mechanism which

exploits the mathematical operation of convolution of the input

sequence with a small kernel. We thus placed after the Embeddings

layer two parallel layers with 32 kernels of length 5 each. The

outputs of those parallel Convolutional layers are then merged and

being fed into the previous MLP architecture.

To convert the continuous (between zero and one) ANN output to

binary (i.e. flood-related input text or not) we use a threshold. Texts

having output above the threshold are labelled as flood-related (i.e.

one) and texts having output below the threshold as labelled zero.

The threshold is chosen for each model separately by maximizing

the F1-score. Finally, the text’s class was assigned by a majority

rule on the three models’ output.

3 RESULTS AND DISCUSSION

3.1 Model setup and performance

After experimenting with various values, we ended up with a

vocabulary of size 3000, sequence length of 40, embedding vector

dimension of 300 and under-sampling ratio of 1.75. The vocabulary

size and sequence length are small compared to typical Natural

Language Processing (NLP) applications due to the short form of

the tweet's text. The architecture of the ANNs used is described

above.

ANNs were trained and evaluated individually on the same

train/validation sets which were created by splitting the devset to

an 80-20% ratio. The F1-scores on the validation set were 0.59 for

the MLP, 0.60 for the RNN and CNN. Those scores were obtained

by choosing thresholds 0.40, 0.65, 0.40 respectively. Finally, we

combined the three ANN outputs by assigning to each input the

majority class for the three ANN outputs. We chose this strategy,

hoping that each ANN would perhaps capture different

idiosyncrasies of the input. The overall F1 score improved slightly

to 0.61. Our score on the test set was 0.5405, significantly lower,

suggesting that we overfitted the training set.

3.2 Limitations of the study

The main challenge of the task was related to the labelling of the

training dataset. We noticed that many samples looked flood-

related from a visual inspection but were not labeled as such (some

example ids are:940319294084202496, 944240672294531073,

950753737466830940, 1059017654088790018,

1055172135587536896). Further, we noticed that many positive

samples are from meteorological alerts. This could maybe restrict

the training set and explain the difficulties of the model in

generalizing well and thus, influence the overall model

performance.

3.3 Outlook - Ways to improve the performance

Experimenting with simpler text representations such as Bag of

Words (BOW) and Term Frequency Inverse Document Frequency

(TF-IDF) vectors and a Logistic Regression classifier revealed that

taking into account tweet entities such as hashtags, in addition to

the plain text, improved predictive performance.

However, due to time limitations, this approach was not

implemented in our ANN framework. Further, it would require

more sophisticated tokenization schemes able to extract hashtags,

than those used for the ANNs input.

Geographical information of tweets, either in the form of metadata

(e.g. coordinates, place attribute) or location mentions in the

tweet’s text could be exploited to ‘geo locate’ the tweet and

possibly be used as additional inputs to the model. Especially since

the dev. set focuses on a particular study area [1].

Finally, let us mention that this study focused solely on the tweet’s

text without considering the associated image. A two-branch

model, where one branch would be the model presented here

excluding the output layer and the other branch an image classifier

both feeding the same output layer could be used to handle both

text and image input.

3.4 Code availability

The model was implemented as a Google Colab Ipython notebook

and code is available upon request

(theo_nikoletopoulos@yahoo.co.uk).

REFERENCES

[1] Stelios Andreadis, Ilias Gialampoukidis, Anastasios

Karakostas, Stefanos Vrochidis, Ioannis Kompatsiaris, Roberto

Fiorin, Daniele Norbiato, and Michele Ferri. 2020. The Flood-

related Multimedia Task at MediaEval 2020. In MediaEval

2020.

[2] Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep

learning. www.deeplearningbook.org

[3] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S. & Dean, J.

(2013). Distributed representations of words and phrases and

their compositionality. Advances in neural information

processing systems (p./pp. 3111--3119)

