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ABSTRACT
Emotion and theme recognition in music plays a vital role in music
information retrieval and recommendation systems. Deep learning
based techniques have shown great promise in this regard. Realising
optimal network configurations with least number of FLOPS and
model parameters is of paramount importance to obtain efficient
deployable models, especially for resource constrained hardware.
Yet, not much research has happened in this direction especially in
the context of music emotion recognition. As part of the MediaEval
2020: Emotions and Themes in Music challenge, we (team name:
AUGment), propose novel integration of attention based techniques
for the task of emotion/mood recognition in music. We demonstrate
that using stand-alone self-attention in the later layers of a VGG-ish
network, matches the baseline PR-AUC with 11 % fewer FLOPS and
22 % fewer parameters. Further, utilising the learnable Attention-
based Rectified Linear Unit (AReLU) activation helps to achieve
better performance than the baseline. As an additional gain, a late
fusion of these two models with the baseline also improved the
PR-AUC and ROC-AUC by 1 %.

1 INTRODUCTION
Automatic detection of mood/theme of music is a challenging and
widely researched topic that aids in music tagging and recommen-
dation systems. This involves acoustic feature extraction followed
by single or multi-label classification. Conventional approaches
used hand-crafted audio features representing physical or per-
ceived aspects of sound as input to machine learning algorithms
[14, 18, 21]. Contemporary methods make use of Deep Neural Net-
works (DNNs) with hand-crafted or automatically learnt features
from audio [1, 10, 12, 13, 24].

Attention based mechanisms have shown great promise and
achieved state-of-the-art results in several tasks such as Natu-
ral language processing (NLP) [23], image classification and seg-
mentation [15], computer vision [22], as well as speech analysis
[5, 9, 17, 26, 28]. The effectiveness of these mechanisms in the task
of music mood/emotion recognition, however, is less explored. We
perform an investigation of the effectiveness of different attention
based techniques for multi-label music mood classification.

2 EXPERIMENTAL SETUP
The data used in the MediaEval 2020 task is a subset of the MTG-
Jamendo dataset [4]. The subset used in the MediaEval 2020 task
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[3] includes 18 486 full-length audio tracks of varying length with
mood and theme annotations.The dataset comprises of 56 distinct
mood/themes tags. All tracks have at least one tag, but many have
more than one making it a multi-label classification task.

The Mel-spectrogram is a widely used feature for audio related
tasks such as boundary detection, tagging [11], and latent feature
learning. It is also shown to be an effective time-frequency represen-
tation of audio for the task of automatic music tagging [8]. Using
Mel-spectrogram as the input enables the use of image classification
networks like Convolution Neural Networks (CNN) or Residual
Neural Networks (ResNets). CNNs, including their variants like
Visual Geometry Group (VGG) networks, have been successfully
used for image recognition [25, 29], object detection [16, 20], and
image segmentation [7]. VGG-like architectures that comprise of a
stack of convolution layer followed by a fully connected layer are
further shown to be well-suited for the task of music tagging [3].

We consider the first 1 400 time bins of the Mel-spectrogram
of each track as input, since the central theme or mood is usually
established in the opening of a track. This approach, as opposed
to taking time bins from the center of the track or using random
chunks, additionally ensures that the input is guaranteed to have
non-silent segments. Optionally, trimming silence from the start
would make it even more robust on tracks that potentially could
have delayed onset. A VGG-ish architecture [8] with five 2D con-
volutional layers followed by a dense connection is used as the
baseline for our experiments. We determine the effectiveness of
various attention mechanisms on this baseline for the task of music
mood/theme detection1. Training is done for a maximum of 100
epochs with early stopping if the validation ROC-AUC does not
increase for over 35 epochs.

3 METHODS
3.1 Stand-alone self-attention
Self-attention is attention applied to a single context instead of
across multiple contexts (i. e., the query, keys, and values are ex-
tracted from the same context). Stand-alone self-attention replaces
spatial convolutions with a form of self-attention rather than using
attention as an augmentation on top of convolutions. Stand-alone
self-attention especially in later layers of a network is shown to
outperform the baseline on image classification with far fewer float-
ing point operations per second (FLOPS) and parameters [19]. We
experiment using stand-alone self-attention in later layers of the
baseline VGG-ish network.

1The source code is published at https://github.com/SrividyaTR/MediaEval2020-
EmotionAndThemeInMusic
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No. Model GFLOPS # Parameters ROC-AUC PR-AUC
1 VGG-ish baseline 3.32 448 122 .725 .107
2 Self-attention in Layer3 2.94 350 074 .716 .108
3 Self-attention in Layer4 3.28 350 074 .723 .108
4 Self-attention in Layer5 3.32 399 098 .716 .101
5 AReLU activation in baseline 3.32 448 132 .728 .107
6 Late fusion of models 2 and 5 – – .732 .114
7 Late fusion of models 1, 2 and 5 – – .735 .118

Table 1: Results onMediaEval2020 test set. Using self-attention in Layer3matches the baseline PR-AUCwith 11% fewer FLOPS
and 22% fewer parameters

3.2 Attention-based Rectified Linear Unit
The Attention-based Rectified Linear Unit (AReLU) is a learnable
activation function [6]. It exploits an element-wise attention mecha-
nism and amplifies positive elements and suppresses negative ones
through learnt, data-adaptive parameters. The network training
is more resistant to gradient vanishing as the attention module
within AReLU learns element-wise residues of the activated part
of the input. With only two extra learnable parameters (alpha and
beta) per layer, AReLU enables fast network training under small
learning rates. We experiment using AReLU activation in all of the
5 layers of the baseline VGG-ish network and observe improved
performance.

3.3 Fusion Experiments
We perform late fusion experiments by averaging the prediction
scores of our different models for the test partition. By a fusion
of the prediction scores from the stand-alone self-attention based
model, AReLU-activation based model, and the baseline, we further
improve the performance as compared to the baseline.

4 SUBMISSIONS AND RESULTS
Figure 1 provides an overview of our approach and the different
attention mechanisms that we utilise for the task of emotion and
theme recognition in music. Overall, we submitted 4 models to
the challenge. The first model is based on self-attention in Layer3
of the VGG-ish baseline and the second is based on using AReLU
activation in all the 5 convolution layers of the baseline. The next
2 submissions are a late-fusion of these 2 models and with the
baseline.

Table 1 summarises the results of our experiments. Using stand-
alone self-attention instead of 2D convolution in Layer3 of the
VGG-ish network resulted in a PR-AUC comparable to the baseline
with 11% fewer FLOPS and 22% fewer parameters. Using AReLU
activation in all of the 5 layers of the VGG-ish network improved
the ROC-AUC as compared to the baseline. A late fusion of these 2
model’s prediction resulted in about 1 % increase in both PR-AUC
and ROC-AUC . A fusion of our model with the baseline model
helped in further improving the performance.

We experimented using self-attention in other convolution lay-
ers of the baseline VGG-ish network, but the best performance with
least trainable parameters was noted when using self-attention
in Layer3. Using self-attention in Layer4 also gave comparable
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Figure 1: Overview of our different Attention-based ap-
proaches for Emotion and Theme Recognition in Music

performance though with 1.2 % fewer FLOPS and 22% fewer pa-
rameters. Further, when using self-attention in initial layers (Layer1
or Layer2), the amount of memory required to hold the activations
was significantly large, leading to the observation that it works best
on down-sampled input. We also observed that using a batch-size
of 16 and learning rate of 0.0001 helped in faster convergence to
the best model. The best model was learnt within 25 epochs in all
our experiments.

5 DISCUSSION AND OUTLOOK
We demonstrated the effectiveness of a self-attention-based VGG-
like network for multi-label emotion and theme recognition in mu-
sic. This network’s computational efficiency is particularly relevant
when executing the model inference on a mobile device or other
resource constrained computing hardware. We also established the
performance benefits of using AReLU activation for this task. A
potential future work is to evaluate the effectiveness of incorpo-
rating AReLU activation within a self-attention based VGG-like
network instead of performing a late fusion. One should evaluate
the effectiveness of other attention-based techniques like attention
augmented convolution [2] for this task. Data Augmentation us-
ing mix-up [27] could also be evaluated to analyse the impact on
performance.
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