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ABSTRACT
This paper presents our approach developed for the Medico auto-

matic polyp segmentation challenge 2020 1. We used a U-Net model
with two different encoder backbones: ResNet-34 and EfficientNet-
B2. The two models were trained separately, and trained for en-
sembling using Tversky loss. We performed CutMix and standard
augmentations for data pre-processing. For ensembling, we chose
the hyperparameter of the loss function in the range that makes
individual models have high recall while relaxing the precision. We
evaluated the individual models and the ensemble model on valida-
tion data. ResNet-34 backbone model and the ensemble model were
submitted to the challenge website for further evaluation on the
test data. Our ensemble model improved performance on metrics
compared to the single networks by achieving a Dice Coefficient of
0.8316, Intersection Over Union of 0.7550, Precision of 0.8851, and
Overall Accuracy of 0.9583.

1 INTRODUCTION
Colorectal cancers are one of the leading causes of death world-

wide. Colonoscopy is preferred for detecting and removing the
colorectal polyps, which are the predecessors of Colorectal Can-
cers(CRC) [3]. Polyps generally occur as a protrusion of the mucosa
looking like a bumpy structure. However, wide variation in shape,
size, intensity of polyps, and specular reflection in colonoscopy
images can make polyps very difficult to detect by endoscopists
that can have a severe impact on CRC patients and often are con-
tributor to higher mortality rate in CRC [3]. In recent years, several
computer-aided polyp detection and segmentation methods has
been developed [2, 4, 7]. While the detection methods provide
image level presence or absence of polyps or locate them with a
rectangular box, semantic segmentation provides pixel-wise classi-
fication targeting finer polyp boundaries. In this paper, we focus
on semantic segmentation for automated delineation of polyps.

2 RELATED WORK
The state-of-the-art polyp segmentation methods use Convolu-

tional Neural Networks (CNN). Akbari et al. [1] used FCN-8S [15]
network to get region of probable polyps followed by Otsu thresh-
olding to select the largest connected component to segment polyp
regions, resulting in 81% accuracy in the CVC- ColonDB database2.
Sanchez et al. [16] first proposed a polyp detection system using
texture to find potential polyps windows, which were further seg-
mented to produce masks for polyp location and extension. Kang
et al. [10] used a transfer learning-based ensemble method. They
1https://multimediaeval.github.io/editions/2020/tasks/medico/
2http://mv.cvc.uab.es/projects/colon-qa/cvccolondb/
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Figure 1: Original colonoscopy images and correspond-
ing ground truth polyp masks for Kvasir-SEG training
dataset [9]

ensembled Mask R-CNN [5] models, one with ResNet-50 backbone
and another with ResNet-101 [6], and then performed bit wise com-
bination of two predicted masks. CNN based polyp segmentation
method must have uncertainty in predictions. [18] studied uncer-
tainty estimation and model interpretability for polyp segmentation
task. It also provided the advancements on two methods, firstly in
FCN-8 [15] by keeping batch normalization after each layer, and
secondly in SegNet by including dropouts. Their best performance
method on EndoScene dataset used Monte Carlo Dropout model
and had far fewer parameters.

3 DATASET
We use publicly available Kvasir-SEG dataset [9] that consists of

1000 images of gastrointestinal polyp images and corresponding
manually annotated segmentation masks verified by an experienced
gastroenterologist. The sample-images of this data set are shown
in Figure 1. We performed a random split of the dataset into 80%
and 20% train-validation split resulting into 880 training set and
120 validation set. 160 test images were provided by the organisers
during the [8] challenge for which no ground truth masks were
provided.

4 METHOD
An encoder decoder architecture with transfer learning was

used for computing the predicted mask on the provided polyp
dataset [9]. In addition to this, we have also exploited different data
augmentation techniques and used Tversky loss function [14] to
tune the precision and recall of the individual models for effective
ensembling.

4.1 Encoder-decoder architecture
The encoder-decoder architecture is one of the widely used ar-

chitectures for medical image segmentation. The encoder takes
the input and downscales it by computing feature representations
at various resolution scales and outputs feature maps that hold
encoded information of the input image. In the decoder part these

https://multimediaeval.github.io/editions/2020/tasks/medico/
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feature maps are up sampled and restored to the full segmentation
map. Here we use a U-Net architecture developed by Ronnerberger
et al. [13]. In this model, the authors include a skip-connection to
propagate the original resolution information from encoder to the
decoder layers. In this work, we have exploited ResNet-34 [6] and
EfficientNet-B2 [17] backbones in the U-Net architecture.

Single model. We used ResNet-34 as our first model. The weights
saved after the training phase were loaded in the network and test
data were fed to get the predicted polyp masks.

Ensemble model. We used two models, ResNet-34 and EfficientNet-
B2, to predict our masks. Then we ensembled the predictions by
using bit wise multiplication between the two predicted masks.

4.2 Data Augmentation
We used random angles for rotations, contrast, gaussian noise,

zoom, elastic deformation, resize, flips, affine, and scaling to over-
come overfitting. We also used CutMix regularization [19] in the
data augmentation process which chooses a patch from another
random image of the same batch and appends the patch in the
current training image. We observed that using CutMix regularizer
increased the accuracy by up to 3% in the validation set.

4.3 Loss function
Tversky loss [14] L) E is a generalisation of Dice similarity co-

efficient and FV scores. This loss is used for an imbalance dataset.
By adjusting the hyperparameters as in [12], we used random beta
values from 0.9 to 1. Random values of beta were used to create
variation between the two models, ResNet-34 and EfficientNet-B2.
By using beta in this range, it focuses more on the false negatives
and decreases them.

L) E = 1 −
∑#

9=1 𝑦
9 𝑓 9∑#

9=1 [𝑦 9 𝑓 9 + 𝛽𝑦 9 (1 − 𝑓 9 ) + (1 − 𝛽) (1 − 𝑦 9 ) 𝑓 9 ]
(1)

where, 𝑦 9 is 1 if the pixel j is a ground truth polyp mask and 0 if
it is a non polyp mask. Also, 𝑓 9 is the probability of pixel j to be a
polyp and (1-𝑓 9 ) is the probability of a pixel j to be a non-polyp.
𝛽 ∈ [0.9,1) is a hyperparameter. This loss function penalizes false
negatives when 𝛽 is kept in this range. N is the number of pixels.

5 EXPERIMENTS
5.1 Implementation Details

We used ResNet-34 as backbone for our first model (model-I),
and a combined ensemble model with EfficientNet-B2 as backbone
for our second model (model-II). Transfer learning based approach
with a pre-trained mechanism using the ImageNet dataset was
implemented. Adam optimiser [11] was used with a learning rate
of 1𝑒−3, and default beta values of 𝛽1 = 0.9, 𝛽2 = 0.99.

5.2 Evaluation metrics
We have used dice coefficient (DSC), Jaccard or intersection-over-

union (IoU), precision (Prec.), recall (Rec.), overall accuracy (Acc.)
and frames-per-second (FPS) to evaluate our approach.

Figure 2: Original colonoscopy images (top row), predicted
masks from model-I (middle row) and model-II (bottom row)
for the provided test dataset of this competition.

5.3 Results and Discussion
Quantitative results for both of our model on validation set are

shown in Table 1. It can be observed that our ensemble model
(model-II) outperformed our single method (model-I). However, the
FPS is reduced to half for the model-II. Similar observation can be
seen from Table 2 where model-II has nearly 2% improved DSC and
IoU metric scores compared to the model-I. This better outcome
with model-II was obtained as the multiplied outputs between the
two models was considered. Qualitative results for both the models
on unseen test data provided by the challenge organisers are shown
in Figure 2.

Table 1: Results on the validation split on the provided
Kvasir-SEG training dataset

Model DSC IoU Recall Prec. Acc. FPS
model-I 0.8212 0.7393 0.8748 0.8460 0.9423 60
model-II 0.8379 0.7603 0.8417 0.9001 0.9451 30

Table 2: Results on unseen test dataset (provided by the or-
ganisers)

Model DSC IoU Recall Prec. Acc. F2 FPS
model-I 0.8148 0.7342 0.8764 0.8145 0.9452 0.8354 27
model-II 0.8316 0.7550 0.8316 0.8851 0.9583 0.8249 16

6 CONCLUSION
We have proposed to use an ensemble model that performs a

bit-wise operation to output the final mask between two backbone
architectures. Additionally, we have performed several data aug-
mentation techniques and weighted loss that provided us with
improved results on both validation and unseen test set. In future,
we aim to apply dilated convolutions and attention networks to
exploit the strength of the encoder-decoder architecture.
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