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ABSTRACT

No-audio Multimodal Speech Detection is one of the tasks in Media-
Eval 2020, with the goal to automatically detect whether someone
is speaking in social interaction on the basis of body movement
signals. In this paper, a multimodal fusion method, combining sig-
nals obtained by an overhead camera and a wearable accelerometer,
was proposed to determine whether someone was speaking. The
proposed system directly takes the accelerometer signals as input,
while using a pre-trained 3D convolutional network to extract the
video features that work as input. Experiments on the No-audio
Multimodal Speech Detection task show that our method outper-
forms all submissions of previous years.

1 INTRODUCTION

There is a close relationship between body movements, e.g., ges-
turing, and speaking status, i.e., whether someone is speaking or
not. This might make it possible to determine whether a person
is speaking by analyzing the person’s body movements. This No-
Audio Multimodal Speech Detection task of MediaEval 2020 focuses
on analyzing the problem of determining the speaking status of
standing subjects in crowded mingling scenarios with the infor-
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has a duration of 2 minutes, resulting in a video segment with 2400
frames and an accelerometer data segment with a size of 3 x 2400.

2.2 AccelNet

As shown in Fig. 1, the AccelNet consists of 3 1-D convolution
layers and a bi-directional GRU layer. Between every two adjacent
convolutional layers, a batch normalization layer is adopted. The 3
convolution layers take kernel sizes of 5, 3, and 3 respectively, and
take stride sizes of 5, 2, and 2 respectively, resulting in a feature with
a receptive [eltl of 23 frames, which is similar to the sampling rate
of 20Hz. Therefore, we can assume that each frame out of the total
of 120 frames from the last convolutional layer, with a dimension
of 256, represents the movement status within a second. Intuitively,
the speaking status in one moment would have a relationship with
the previous and following several time steps, the bi-directional
GRU, with 256 units, is adopted after the last 1-D convolutional
layer to capture this relationship.

Concatenating the features of two directions at each time step,
the bi-directional GRU results in a 512-d feature with a sequence
length of 120. Then this feature will be concatenated with the
video feature to perform the multimodal speech detection task. In
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this paper, we fuse the signals from these two modalities to perform
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with a duration of 22 minutes at 20Hz. For training, we segmented

the video and accelerometer data into 11 segments, each of which

The code of the proposed method can be found at:
https://github.com/xinshengwang/No-audio-speech-detection
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2.4 Fusion and objective function

The early fusion strategy is adopted in this paper. Speci [cally, the
accelerometer feature from the AccelNet and the visual feature
from the VideoNet are concatenated, resulting in a feature with
1024 dimensions and 120 frames. Two linear transformation layers
are used to transform the feature dimension from 1024 to 1, and
then a sigmoid layer is utilized after the last linear transformation
layer to obtain the [nal prediction probability.
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To train the model, the binary cross-entropy loss is adopted on
the frame level. First, the AccelNet and VideoNet are trained for the
unimodal prediction task individually. Next, the pre-trained models
are used in the multimodal task. During multimodal task training,
we only updated the fusion network, i.e., two linear transformation
layers, while keeping the parameters of the pre-trained AccelNet
and VideoNet [xdd.
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Figure 1: The proposed multimodal speech detection net-
work.

3 RESULTS

In order to evaluate our speech detection approach, we followed
the given split method of the No-audio Speech Detection task. The
model was trained on data from 54 subjects and tested on data
from 16 unseen subjects that non-overlap with the subjects in the
training set. We report the Area Under Curve (AUC) metric for each
test subject and each modality. The mean AUC scores computed
over all test subjects are shown in Table 1, while the AUC scores
for each test subject separately are shown in Fig. 2.
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Table 1: Performance of each of the previously submitted
results and our proposed method for the unimodal and mul-
timodal speech detection tasks. Bold indicates best result.

Method Accel Video Fusion
Cabrera-Quiros et al. [2] 0.656+0.074 0.549+0.079 0.658+0.073

Liu et al. [6] 0.533+0.020 0.512+ 0.021 0.535+0.019
Giannakeris etal. [3]  0.649+0.066 0.614+0.067 0.672+0.051
Li etal. [5] 0.644 0.513 0.620
Vargas et al. [8] 0.692 0.552 0.693

The proposed model 0.689+0.094 0.656+0.076 0.712+0.081
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Figure 2: AUC scores for each test subject.

In Table 1, our method is compared with the submission results
of pervious years. Our method achieves the better performance on
the multimodal speech detection task. On the unimodal tasks, our
AccelNet outperforms our VideoNet. Moreover, our accelerometer
data-based method is only slightly lower than that of [8], while
our video-based method achieves a much higher performance than
the second best approach [3], indicating the good performance of
C3D on extracting video features and also the good design of the
VideoNet. The best performance of our multimodal result bene [is]
from the good performance of the VideoNet.

From Fig. 2 we can see that the accelerometer modality-based
method does not always outperform the video-based method, indi-
cating that the signals from the accelerometer and video could be
complementary, which could explain the higher performance of the
fusion of the two modalities compared to the unimodal methods.
However, fusion did not lead to an improved performance for all
individual test subjects (see subjects 17 and 83), and a better fusion
method should be considered in the future.

4 CONCLUSION

In this paper, we proposed a multimodal speech detection model,
with video and accelerometer data as input. Our model showed
competitive results on the unimodal speech detection tasks with
either video or accelerometer data as input, and it outperformed
previous methods on the multi-modal task which uses both types
of input.
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