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Abstract 

In this paper, an operational algorithm is proposed for the mapping of surface moisture over 

the northern and central parts of Tunisia, in North Africa. A change detection approach is 

applied, using 160 multi-incidence Envisat ASAR Wide Swath images acquired in the 

horizontal polarization over a 7-year period. Parameterization of this algorithm is considered 

for three classes of vegetation cover density (NDVI<0.25, 0.25<NDVI<0.5 and NDVI>0.5), 

retrieved from SPOT-VGT decadal images. A relative soil moisture index, ranging between 0 

(for the driest surfaces) and 1 (for saturated soils), is proposed for each date, with a resolution 

of 1 km. The retrieved soil moistures are validated by means of ground measurements based 

on continuous thetaprobe measurements, as well as low resolution (25 km) ERS and ASCAT 

soil moisture products from the Vienna University of Technology (TU Wien). A qualitative 

relationship between spatio-temporal variations of moisture and precipitation is also 

discussed.  
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1. Introduction 

Soil moisture is a key state parameter of the land surface, influencing the manner in which 

rainwater is shared between the phenomena of evapotranspiration, infiltration and runoff 

[Beven et al, 1996; Koster et al, 2004]. In the case of semi-arid regions, this parameter is 

particularly important for irrigation management [Bastiaanssen et al., 2000]. If  water 

resources, which are often very limited, are to be optimized and protected, an accurate 

estimation of the soil’s water content is needed in order to determine the expected 

evapotranspiration flux. Considerable efforts have thus been devoted to improving the 

evaluation of soil moisture and evapotranspiration, and to understanding its relationship with 

the vegetation cover and the soil’s water content [Allen et al., 2005; Albergel et al., 2010].  

Radar remote sensing has demonstrated its strong potential for monitoring of soil moistrure 

over the last twenty years [Ulaby et al., 1996; Wagner et al., 1998; Paloscia et al., 2008; Zribi 

et al., 2011].  Using Synthetic Aperture Radars (SARs), it is possible to estimate the soil 

moisture at a high spatial resolution.  

The radar signal backscattered by bare soil strongly depends on the soil's moisture content and 

its surface roughness (e.g. [Fung, 1994]). In the case of sparse vegetation, the return signal 

depends both on the vegetation’s intrinsic backscattering characteristics and on the soil signal 

attenuation introduced by the vegetation (Bindlish et al., 2001; Zribi et al., 2011, Lievens et 

al., 2011). Various theoretical and empirical approaches have been developed for bare soils 

([Fung, 1994; Oh et al., 2004; Dubois et al., 1995]). Analytical electromagnetic backscatter 

models (Kirchhoff models, the small perturbation method, and more recently the Integral 

Equation Model (IEM (Fung et al., 1994), the AIEM (Chen et al., 2003), …) have been used 

to improve the understanding of radar signal behavior, as a function of surface parameters and 

soil moisture in particular. In order to reduce the discrepancy between these models and real 



data, various improvements have been achieved in the description of roughness (Lievens et 

al., 2011).  

Among these approaches, the “linear approach”, which relates the surface soil moisture to 

calibrated and validated SAR (Synthetic Aperture Radar) measurements expressed in decibels 

(dB) (SIRC, ERS, RADARSAT, Envisat ASAR, TerraSAR-X...), is widely used (Guerboudi 

et al., 2011, Moran et al., 2000).  

In recent years, different operational algorithms have been proposed, based on a change 

detection approach. This is particularly relevant for low-resolution spaceborne scatterometers 

(active microwave) and passive microwave instruments (Njoku et al. 2003, Kerr et al., 2010). 

The data from scatterometers has been used in a large number of studies related to the study 

of soil moisture [Wagner et al., 1999, Zribi et al., 2008, Naemi et al., 2009a, Naemi et al., 

2009b, Brocca 2011], with the aim of allowing this parameter to be operationally monitored 

from space, for hydrological or climatic applications (Owe et al., 2008, Albergel et al. 2010, 

Brocca et al., 2010, Draper et al., 2011). These products would not be sufficient for regional 

hydrological studies, which require detailed estimations of the spatial variations of soil 

moisture. In this context, [Wagner et al., 2008; Pathe et al., 2009] proposed a modified 

approach for the operational estimation of soil moisture at medium spatial resolutions, using 

the Global and Wide Swath modes of the Advanced Synthetic Aperture Radar (ASAR). [Van 

Doninck et al., 2012] proposed an adapted algorithmic approach, providing a more accurate 

analysis of seasonal vegetation effects over Calabria in Italy. The study sites are often in 

Europe, and often corresponding to humid regions. The major difficulty encountered when 

applying a change detection algorithm on humid sites is that of under-estimating the radar 

signal's sensitivity to soil moisture, determined from the difference between the signals 

acquired for the driest and wettest signals. In practice, it is difficult to retrieve extremely dry 



surfaces present in humid regions, when using a limited SAR database for the development of 

a retrieval algorithm [Hornacek et al., 2012]. 

In the case of semi-arid regions, seasonal analysis of the influence of vegetation could lead to 

errors in the estimation of soil moisture. In fact, as a consequence of frequent periods of 

drought, the dynamics of the vegetation cycle can be highly variable, from one year to 

another, and even from one period to another within the same agricultural season (Amri et al., 

2011). The aim of the present study is thus to apply an operational change detection approach, 

based on developed methodologies, which takes the particularities of the climate and 

vegetation cover of semi-arid regions into account. The algorithms proposed in the present 

study are expected to be highly beneficial for the upcoming SENTINEL-1 mission, for which 

an operational algorithm will be needed for the mapping of soil moisture. This mission is 

based on the Sentinel constellation of two C-band radar satellites, of which the first is to be 

launched in 2013. Given the large data volume generated by Sentinel-1, the techniques 

developed for the ASAR detection of soil moisture changes are likely to be applicable to, and 

improved for, this new instrument.  

In Section 2, the studied site and database are presented. In Section 3, the algorithm proposed 

for the estimation of the soil moisture index is presented and validated. Finally, our 

conclusions are presented in Section 4. 

2. Database  

2.1 Study  area 

The study area (Zribi et al., 2011) corresponds to the central and northern parts of Tunisia, 

situated in North Africa, covering an area approximately 200 km in width and 300 km in 

length (see Figure 1). The south of the selected site boarders to the Sahara desert, which is of 

limited interest since it is characterized by extremely low variations in soil moisture. The 

climate in this region is semi-arid, with an average annual rainfall ranging between 



approximately 200 mm per year in the south and 1000 mm per year in the north. It is 

characterized by a rainy season lasting from October to May, with the two rainiest months 

being October and March. As is generally the case in semi-arid areas, the rainfall patterns in 

this area are highly variable in time and space. Figure 1 provides a topographical map of the 

studied site, whose landscape is nearly flat in the east, and reaches a maximum altitude of 

1200 m in the west.  

Figure 2 illustrates the land cover of the studied area. The vegetation in the central area is 

dominated by agriculture (annual crops and arboriculture (mainly olive trees)) and pastures. 

Various crops are grown and their rotation is typical of semi-arid regions. Cereals are the 

main annual crop, and sowing generally takes place during the month of December, although 

this can vary according to the level of precipitation observed during the autumn. The cereals 

are harvested in the month of June. The north, which is the wettest area, is characterized by 

the presence of more dense vegetation, in particular the forested zones in the north-west.  

Ground measurements 

In this section, two types of measurement are considered: moisture and precipitation. Ground 

moisture measurements were acquired over the last three years (2009-2011), although only in 

the Kairouan plain in the centre of Tunisia, through the use of two continuous thetaprobe 

measurements (Amri et al., 2012). All of these measurements are calibrated using gravimetric 

measurements. 

The estimated precipitation levels were based on a network of rain gauges distributed over the 

entire site. The Inverse Distance Weighting (IDW) interpolation algorithm, widely used in the 

scientific community, was applied to the recorded data to derive daily precipitation maps. 

This technique estimates values at non-sampled points, by computing the weighted average of 

observed data at nearby measurement points. The weighting is defined as a function of the 

inverse distance of the non-sampled point from each of the neighboring points (Teegavarupu 



and Chandramouli, 2005, Shepard et al., 1968). As the landscape is mainly flat in the 

validation areas, there is no mountainous terrain able to influence the spatial distribution of 

rainfall. 

2.3 Satellite data 

a) Envisat ASAR data 

The ENVISAT satellite was launched by ESA (European Space Agency) on March 1st, 2002, 

and was functional until April 8th, 2012. One of its nine Earth-observation instruments, 

ASAR, was a multi-mode sensor working in the C-band (5.3 GHz), at several polarizations 

(HH, VV, HV and VH) and at various incidence angles and spatial/radiometric resolutions, 

depending on its operational mode [Desnos et al., 1999]. At the C-band frequency 

atmospheric perturbations can be considered to have a negligible influence on the 

instrumental performance [Ulaby et al., 1981]. The ASAR data used in the present study was 

provided by ASAR's ScanSAR Wide Swath (WS) observation mode at HH polarization, with 

a spatial resolution of 150 m and incidence angles ranging between 16 and 43 degrees. 

Between May 2004 and December 2011, 160 images were acquired at various incidence 

angles over the central and northern regions of Tunisia. These images cover all four seasons, 

including dry and wet periods, and were used for the development of the methodology 

described in the following. Table 1 provides a monthly breakdown of the numbers of images 

recorded during this period, showing that similar numbers of images was retrieved for all 

months of the year. 

b) SPOT/VGT data 

The ten-day synthesis (S10) is a full resolution product (1 km resolution), providing 10-day 

NDVI (Normalized Difference Vegetation Index) data [Maisongrande et al., 2004]. The 

NDVI can be related to the green vegetation cover or to the vegetation abundance, and is 

expressed by: NDVI = (RNIR − RRED)/ (RNIR + RRED), where RNIR is the near-infrared (NIR) 



reflectance and RRED is the red reflectance. The quality of the S10-products is directly related 

to the quality of the so-called P (physical) products. P products include corrections for 

atmospheric absorption and scattering, and correspond to top-of-atmosphere (TOA) 

conditions. The ten-day synthesis products (S10) are available at: http://free.vgt.vito.be/. 

c) ERS and ASCAT/METOP moisture products 

The ERS and ASCAT/METOP scatterometer radars (active microwave) operate in the 

C‐band (5.3 GHz), in the vertical polarization. The ERS mission was based on two 

European Remote Sensing Satellites ERS‐1 (1991–1996) and ERS‐2 (1995 up to 2011). 

The ASCAT radar is one of the 12 instruments carried by the European Space Agency’s 

METOP-A satellite (launched in 2006). Over land, the measured radar backscattering 

coefficient depends on the soil moisture, surface roughness, vegetation characteristics, and the 

incidence angle of the transmitted radar beam. Soil moisture data is retrieved from the 

backscattering coefficient, through the use of a change detection method developed by the 

microwave remote sensing team of the Vienna University of Technology (TU Wien), and 

described by Wagner et al. [1998].  

d) SRTM DTM data 

The Digital Terrain Model (DTM) provided by the Shuttle Radar Topography Mission 

(SRTM, http://srtm.usgs.gov/) was used to represent the studied area. The first step involved 

geo-referencing of the SRTM DTM. The DTM was then re-sampled to the same 1 km 

resolution as that provided by the radar and SPOT-VGT data. Local slopes were retrieved 

from the topographic data by computing a simple local derivative, between each pixel and its 

eight neighboring pixels, at a resolution of 90 m, following which a mean local slope map was 

computed with a resolution equal to 1 km. 

2.4 ASAR data processing 

Radar data processing was carried out in three steps: 

http://free.vgt.vito.be/
http://srtm.usgs.gov/


- Firstly, all images were geo-referenced using a single radar reference image, 

resulting in an RMS control point error of approximately 0.5 pixel. 

- Secondly, all of the images were re-sampled (averaged) to a 1 km resolution. 

This was needed, to allow the radar data to be compared with SPOT-VGT data, 

which has a 1 km resolution. A positive side effect of this spatial aggregation is 

the improved radiometric accuracy of the resulting images. 

A mask was developed, to allow cities and high terrain to be eliminated. The cities were 

retrieved from a classification of LANDSAT images covering the studied area.  

Methodology 

3.1 Incidence angle normalization 

In order to implement a change detection approach, the data must be normalized with respect 

to the incidence angle under which it is recorded. For the extrapolation of backscatter 

measurements to a reference angle of 30° a linear model as previously employed by [Wagner 

et al., 2008, Pathe et al, 2009, Van Doninck et al., 2012] is used: 

  30)()30( 00         (1) 

where  is the local incidence angle,  is the backscattering coefficient in dB, and  is a 

slope parameter used to normalize the data to a 30° incidence angle. This parameter is very 

sensitive to the vegetation's characteristics [Wagner et al., 1998, Van Doninck et al., 2012] 

and to the local topography. For each pixel (x,y) three possible normalizations were thus 

considered, depending on the vegetation density encountered in this pixel. The S10 SPOT-

VGT NDVI database was used to classify the vegetation into one of the following classes: 

- Class I, with NDVI<0.25, corresponding to bare soils and/or very sparse 

vegetation; 



- Class II, with 0.25<NDVI<0.5, corresponding to the vegetation encountered 

during the growing season in annual agricultural areas, and pastures during the 

wet season: 

- Class III, with NDVI>0.5, corresponding to dense vegetation (forests, 

agricultural areas at their maximum annual growth, …).  

These thresholds were selected on an empirical basis, through the analysis of temporal 

variations of the three dominant forms of vegetation cover (very sparse vegetation, pastures 

and forests or annual agriculture) over the last 13 years (1998-2011). 

For each pixel (x,y), a maximum of three possible radar signal groups, corresponding to the 

three vegetation classes listed above, are identified in each of the 160 images. For some 

pixels, for example in forested areas, just one group corresponding to class III was identified. 

For the other pixels, two or three groups could be identified. For each pixel (x,y), each group 

includes data belonging to the same vegetation class, but is characterized by different 

incidence angles from one radar image to the next. This information can then be used to 

normalize the data with respect to the incidence angle under which it was recorded. In order to 

ensure good normalization quality, a certain volume of data is needed in each group. 

Empirically, this quantity was found to be a minimum of 30 data points in each group. 

On each radar image, each pixel (x,y) is normalized by the corresponding slope 

which depends on the vegetation density retrieved from the corresponding 

SPOT-VGT image. Figure 3 shows the mapping of slopes and , corresponding to the 

three vegetation classes I, II and III, computed for the entire studied site. Because of spatial 

vegetation dynamic variations over the site, the three slopes were not computed for all points 

on the studied site. The presence of 1 estimations (black pixels) is limited in the north, since 

the vegetation is generally dense in this area.  Conversely, the values of  corresponding to 

dense vegetation were not computed in the south, and the  slope was estimated mainly in 



the central area. It should be noted that the lowest slope values correspond to the highest 

vegetation densities observed in the north (approximately 0.05 dB/°), whereas the highest  

values (approximately 0.69 dB/°) were retrieved from bare soil in the south. These results are 

coherent with the trends predicted by bare soil and vegetation backscattering models. It is 

important to note that, in general, the slope of each pixel is characterized by temporal 

variability. In fact, the vegetation class of the majority of pixels changes over time, such that 

the normalized slope  varies throughout the vegetation cycle. For example, for a given pixel, 

1 could be applied during the dry summer season, whereas 2 or 3 could be applied at the 

time of vegetation growth during the rainy season. 

Figure 4 illustrates, for the cases of two different pixels, the normalization of multi-incidence 

data, for different vegetation classes. The first pixel is located in central Tunisia, at a time of 

the year when there are sparse and medium density vegetation covers, and the second pixel is 

located in the north, where there are medium and dense vegetation covers. On the first pixel, 

the slope of the linear fit can be seen to decrease  from 0.23dB/° to 0.18dB/°, when the NDVI 

increases from Class I to Class II , and on the second pixel, the slope also decreases, from 

0.19dB/° to 0.16dB/°, when the NDVI increases from Class II  to Class III . 

3.2 Development of a surface moisture index 

A change detection approach, similar to that described in other scientific studies [Wagner et 

al., 2008, Van Doninck et al., 2012], is proposed here: a relative surface soil moisture index, 

ranging between 0 and 1 (0 for the driest conditions, 1 for the wettest conditions) is defined 

for each pixel (x,y) by: 

     yxS

yxyx
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In the above expression,  yxd r y
i ,  is the dry reference backscattered signal in dB, at pixel 

(x,y), for the ith vegetation class (where i = I, II or III). This parameter is defined as the 

average value of the 5% lowest backscatter coefficients in the Class I time series, and 

corresponds to the driest conditions for this pixel. 

 yxw e t
i ,  is the wet reference backscattered signal in dB, at pixel (x,y), for the ith vegetation 

class (where i = I, II, or III). This parameter is defined as the average value of the 5% highest 

backscatter coefficients in the Class I time series, and corresponds to the wettest conditions 

for this pixel. By using these average values for the dry and wet radar signals, any noise, 

which could have a strong influence on the accuracy of moisture estimations, is reduced. 

Using 1 km resolution SRTM-processed data, a mask is defined in order to remove from the 

surface moisture map any areas having local slopes greater than an offset Slmax. In these areas, 

the moisture estimations could be affected by significant errors, from one image to another, 

resulting from changes in the satellite's relative viewing angle, and for which it would be 

difficult to normalize the data with respect to the incidence angle. In order to estimate the 

most appropriate value for this threshold, the 5% driest images (all of which were recorded 

during the summer season), corresponding to the lowest backscatter coefficients, were 

considered. From these images, empirical evaluations showed that all artifacts produced by 

the slope of the terrain could be eliminated, by applying an offset Slmax equal to approximately 

20%. 

For each pixel (x,y),  yxSi ,
 
is the sensitivity of the backscatter coefficient to soil moisture 

variations, for each vegetation class (I, II or III). The sensitivity is defined as the difference 

between ),( yxd r y
i  

and ),( yxw e t
i . 

As for the slope maps, the sensitivities were not computed for all pixels on the studied site. S1 

was computed mainly in the south, which is characterized by sparse vegetation. S3 was 



estimated mainly in the north, which is characterized by the presence of forests and dense 

annual agriculture. For 6% of the pixels, the sensitivity was computed for all three classes, for 

71% of the pixels, the sensitivity was computed for two classes, and for 23% of the pixels, the 

sensitivity was computed for only one class. 

As could be expected, the highest values of sensitivity are observed for bare soils and low 

dispersion vegetation, and the lowest values of sensitivity are observed for high vegetation 

densities, with values ranging between 2.8 dB and 14 dB. The proposed semi-arid site is 

characterized by extremely high variations in soil moisture, i.e. ranging from parched to very 

wet soil, even during the rainy season. This is mainly due to the frequent occurrence of 

drought events, which are a climatic characteristic of the Mediterranean climate. In this study, 

approximately 160 images were considered, distributed over all months of the year, as shown 

in Table 1. Accurate values of Si can a priori be retrieved, with a limited risk of under-

estimation. In the case of humid or extremely dry regions, the soil moisture variations are not 

necessaril y sufficient to cover all of the scenarios encountered in a limited database. For bare 

soils in the south, S1 generally lies in the range from 10-14dB. In the case of the forests in the 

west and the north, the attenuation resulting from the vegetation cover in these areas leads to 

the smallest S3 values, i.e. approximately 4-5dB. This is the case for which the soil moisture is 

estimated with the lowest accuracy.  

3.3 Validation of retrieved soil moistures  

a) Validation through ground measurements  

As described in section 2, ground soil moisture measurements are made only in the Kairouan 

plain in central Tunisia, such that this is the only part of the studied site for which ground 

measurement validations could be considered. In order to compare the relative soil moisture 

index with ground volumetric moisture measurements, the ground measurements were 

converted to a moisture index through the use of the 90% confidence interval of a Gaussian 



distribution [Pellarin et al., 2006], given by   1.65*, where  and  are respectively the 

mean and standard deviation of the thetaprobe ground data: 

  )/ ()()( m i nm a xm i n   ttIm        (3) 

where (t) is the soil moisture content at time t [m3m-3], Im(t) is the surface soil moisture 

index at time t, max is the maximum wetness value [m3m-3], equal to (  + 1.65 *  ), and min 

is the minimum wetness value [m3m-3], equal to (  - 1.65 * ).  

Fig. 5 illustrates the ground surface moisture and precipitation measurements recorded during 

the study period, from 2009 to 2011, showing high moisture values after heavy rainfall events. 

The soil moisture can be seen to be highly dynamic, even during the rainy season, due to the 

high levels of evaporation encountered in this area. 

Figure 6 compares the ground measurements acquired using two thetaprobes during the 

period from 2009 to 2011 with the proposed inversions over two local areas in central 

Tunisia. Each point on this chart corresponds to a single date, on which ASAR data and 

ground measurements are compared. The data plotted in Figure 6 is reasonably well 

correlated (R2=0.49), and has an RMS error equal to 0.13 (approximately 3.5% as volumetric 

moisture). Simultaneous satellite acquisitions and ground measurements were recorded on 

only a small number (27) of dates. The highest value of soil moisture, for which a strong 

discrepancy was observed between the value retrieved from ASAR (0.91) and that measured 

on the ground (0.62), was preceded by a small rainfall event some hours before the radar 

acquisition. This rainfall event would have been sufficient to strongly increase the soil 

moisture down to a depth of a few millimeters, or perhaps down to one to even two 

centimeters, but not to the greatest depth of the thetaprobe measurements, which are made 

between approximately 3 and 7 cm. This discrepancy could thus be explained by the fact that 



the C band has a limited penetration depth under wet conditions. This type of scenario arises 

frequently in semi-arid conditions, as a result of the frequent occurrence of brief rainfall 

events, combined with a high rate of evaporation, which limits the depth to which the 

rainwater can infiltrate.  

b) Inter-comparison with ERS/ASCAT products 

The low resolution ERS and ASCAT products proposed by the Vienna University were 

validated in Central Tunisia (Kairouan plain) through the use of ground thetaprobe 

measurements and surface models [Amri et al., 2012, Zribi et al., 2010]. (Amri et al., 2012) 

showed that there is a good agreement between the satellite and ground estimations acquired 

over the three-year period from 2009 to 2011, with an rms error equal to 0.043 m3/m3 and a 

correlation coefficient equal to 0.5.  

An inter-comparison between the retrieved indices and the scatterometer products (ASCAT 

and ERS/WSC) was carried out in the present study, for two scatterometer pixels situated in 

the Kairouan plain. For the ASAR products, a mean value was calculated for each 

scatterometer pixel. The comparisons were made for dates common to two different types of 

measurement, thereby limiting the number of illustrated points. Figure 7 shows that the data is 

in excellent agreement for the two pixels, with a correlation coefficient respectively equal to 

0.8 and 0.81, an RMS error equal to 0.13 and 0.087 (approximately 3.5% and 2.3% in terms 

of volumetric moisture). Only a small difference is observed between the soil moisture 

algorithms used with the scatterometer and the ASAR WS data, providing complementary 

confirmation of the product's robustness. 

c) Coherence with precipitation levels 

In the Kairouan plane, a strong correlation is observed between high moisture values and 

rainfall, since in 88% of cases for which the retrieved moisture index is higher than 0.4 

(corresponding to 14% volumetric moisture), a precipitation event was observed in the five 



preceding days. This percentage increases if the number of days preceding the moisture 

estimation is increased to ten. In approximately 20% of cases for which the moisture index is 

lower than 0.2 (corresponding to ~7% volumetric moisture), a precipitation event was 

observed in the five preceding days. This percentage reduces to just 2.5% when precipitation 

events occurring only two days prior to the moisture estimation are taken into account. These 

results clearly show that our algorithm reveals a strong correlation between rainfall and the 

retrieved moisture dynamics. 

In the case of the second location, situated near to Béja city in Northwest Tunisia, a strong 

correlation is also observed between rainfall and the retrieved soil moisture values. In 100% 

of cases for which the retrieved moisture index was higher than 0.4, a rainfall event had 

occurred in the five preceding days. Less than 15% of the estimated moisture index values 

were lower than 0.2, when a rainfall event had occurred in the five preceding days.  

d) Analysis of spatio-temporal variations of SM products 

Figure 8 shows 1 km resolution soil moisture maps, corresponding to six different dates, 

indicating generally low values in summer and higher values in winter, which is coherent with 

the known precipitation trends over this site. These figures are characterized by a high spatial 

variability of the soil moisture, varying quite strongly from one date to another, as a 

consequence of localized rainfall events. For example, on 03/11/2010 an increase in soil 

moisture was observed in the north. This is found to be very well matched with local 

precipitation events of around 7-10 mm, recorded on the same day, and 5 mm recorded the 

previous day, whereas no precipitation was recorded in the southern part of the site. The map 

retrieved for 01/06/2011 indicates a high level of soil moisture in central Tunisia, which is 

well correlated with two local precipitation events: approximately 8 mm of rain fell the same 

day, and 1 mm fell the previous day. The map retrieved for 13/01/2009 is also well correlated 



with a strong precipitation event (between 14 and 30 mm of rain), which covered the entire 

studied site on the same day. 

4- Conclusions 

In this paper, a change detection approach, based on the interpretation of 160 Envisat ASAR 

WS radar images, is proposed for the operational retrieval of soil moisture over a semi-arid 

region in North Africa. The backscattered signal, normalized to a 30° incidence angle, was 

scaled between the lowest and highest values of the studied database. The influence of 

vegetation, which in these semi-arid regions is characterized by high temporal variations 

associated with seasonal influences and periods of drought, is taken into account by ranking 

the radar pixels according to three vegetation classes, through the use of empirical thresholds 

defined by: NDVI < 0.25, 0.25 < NDVI < 0.5 and NDVI > 0.5. The proposed moisture index 

was validated firstly through the use of ground measurements recorded in central Tunisia. 

This comparison revealed an RMS error equal to 0.13 and a correlation coefficient equal to 

0.49. The proposed index was then compared with the ERS and ASCAT scatterometer 

products covering the same area, developed by the Vienna Technical University. The results 

show that these models are in good agreement, with an RMSE lower than 0.13 and a 

correlation coefficient equal to 0.8 for two studied pixels. In qualitative terms, there is a high 

degree of coherence between the estimated moisture dynamics and the observed levels of 

precipitation, associated with high moisture values. In central Tunisia for example, more than 

88% of the estimations with moisture index greater than 0.4 correspond to a precipitation 

event having occurred in the five previous days. Soil evaporation, an essential parameter in 

the analysis of the water cycle in semi-arid regions, is estimated using a semi-empirical 

approach taking soil moisture and the vegetation cover fraction into account. These analyses 

clearly demonstrate the potential of SENTINE-1 data, when combined with optical data 

(Sentinel-2 or other products), for the development of operational soil moisture products at a 



medium resolution and a high temporal frequency. Such products could be assimilated into 

various process models and used, in particular, for the development of global 

evapotranspiration mapping applications. 
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Table 1: Seasonal distribution of the radar image database 

Figure 1: Map of the studied site and its corresponding DTM 

Figure 2: Land use map 

Figure 3: Maps of the 1, 2 and 3 slopes, used to normalize the backscattering coefficients 

for the three vegetation classes: (a) 1 for NDVI<0.25, (b) 2 for 0.25<NDVI<0.5, c) 3 for 

NDVI>0.5 

Figure 4: Examples of radar data normalization for two different pixels: a) central Tunisia, 

characterized by class I and class II vegetation covers, and b) northern Tunisia, characterized 

by class II and class III vegetation covers. 

Figure 5:  In situ surface soil moisture measurements and precipitation recorded during the 

2009-2011 period, on the Kairouan plain site. 

Figure 6: Inter-comparison between the estimated soil moisture indexes proposed for ASAR 

WS data and ground moisture measurements 

Figure 7: Inter-comparison between the ASAR WS index and the ASCAT/METOP (Vienna 

University) and ERS indexes, determined over the Kairouan plane. 

Figure 8: Soil moisture index maps determined for different dates: a) 10/01/2006, b) 

13/01/2009, c) 01/10/2009, d) 03/11/2010, e) 01/06/2011, f) 31/07/2011 

 

 

  



Month Number of ASAR 
images 

January 22 
February 12 
March 15 
April 15 
May 5 
June 10 
July 14 

August 11 
September 10 
October 16 

November 13 
December 8 

Table 1: Seasonal distribution of the radar image database  

  



 

  

Figure 1: Map of the studied site and its corresponding DTM 

 

 

  



 

 

Figure 2: land use map 

  



 

Figure 3: Maps of the 1, 2 and 3 slopes, used to normalize the backscattering coefficients 

for the three vegetation classes: (a) 1 for NDVI<0.25, (b) 2 for 0.25<NDVI<0.5, c) 3 for 

NDVI>0.5 

  



 

 

 

 

Figure 4: Examples of radar data normalization for two different pixels: a) central Tunisia, 

characterized by class I and class II vegetation covers, and b) northern Tunisia, characterized 

by class I and class III vegetation covers. 
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 Figure 5:  In situ surface soil moisture measurements and precipitation recorded during the 

2009-2011 period, on the Kairouan plain site. 
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Figure 6: Inter-comparison between the estimated soil moisture indexes proposed for ASAR 
WS data and ground moisture measurements 
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Figure 7: Inter-comparison between the ASAR WS index and the ASCAT/METOP (Vienna 

University) and ERS indexes, determined over the Kairouan plane, a) a pixel in the north of 

Kairouan plane, (b) a pixel in the south of Kairouan plane 
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Figure 8: Soil moisture index maps determined for different dates: a) 10/01/2006, b) 
13/01/2009, c) 01/10/2009, d) 03/11/2010, e) 01/06/2011, f) 31/07/2011 


