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Abstract

Steel is the material of choice for a large number and very diverse industrial applications. Surface qualities along
with other properties are the most important quality parameters, particularly for flat-rolled steel products. Traditional
manual surface inspection procedures are awfully inadequate to ensure guaranteed quality-free surface. To ensure
stringent requirements of customers, automated vision-based steel surface inspection techniques have been found
to be very effective and popular during the last two decades. Considering its importance, this paper attempts to
make the first formal review of state-of-art of vision-based defect detection and classification of steel surfaces as
they are produced from steel mills. It is observed that majority of research work has been undertaken for cold steel
strip surfaces which is most sensitive to customers' requirements. Work on surface defect detection of hot strips
and bars/rods has also shown signs of increase during the last 10 years. The review covers overall aspects of
automatic steel surface defect detection and classification systems using vision-based techniques. Attentions have
also been drawn to reported success rates along with issues related to real-time operational aspects.
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1. Introduction: importance of steel surface and its
automated inspection
Steel is probably the most important of all metals in terms
of its quantum and variety of use. Steel has contributed
immensely towards the development of industrial society.
In fact, consumption of steel is considered to be one of
the yardsticks to judge the developmental status of a
country. As per World Steel Association, production of
crude steel during 2013 was 1,582 million tons (Mt),
which is more than production figure of all other metals
put together. Today, there are more than 3,500 grades of
steel available out of which trade in flat steel products
accounts for about 50%.

An integrated iron and steel making plant produces
liquid iron in blast furnace with iron ore, coke, sinter
and flux as input. Liquid iron is converted to liquid steel
with specified constituent by primary and secondary steel
making processes. Liquid steel is continuously cast into
slabs and billets. Slabs are of rectangular cross-section
with dimension of a typical slab being 1,600-mm-wide,
250-mm-thick and 12,000-mm-long. Billets are normally of
square cross-section of about 150 × 150 mm and about
12,000-mm-long. Slabs are subsequently rolled into hot
strips and then to cold strips. Billets are rolled into struc-
tural of various dimensions. A simplified flow chart of steel
making processes is shown in Figure 1.

Importance of surface quality of steel products, par-
ticularly that of cold-rolled steel assumed importance
since 1980s primarily due to demands from automotive
car makers. In course of time, hot strip surface quality,
and in recent times, surface quality of structural products
like rods/bars have assumed significant importance.

Traditionally, surface quality of flat steel products,
which are in coil form, is judged manually by cutting
about 30 m of a random coil in a batch and inspected by
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reasonable degree of confidence and naturally, need for
automated surface inspection grew.

In a significant development [1], nine steel companies
and three aluminium companies in US started a research
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units and surface inspection equipment manufacturers. A
number of research works have been published jointly by
academic/research institutes and steel plants indicating
good collaborative partnership. During the last 10 years, a
significant percentage of published work on steel surface in-
spection systems came from China. This is commensurate
with China's dominant presence in steel manufacturing.

Some papers have been published with reported research
work mainly on defect classification aspects implemented
in commercially procured systems. While overall systems
and their benefits are well documented by reputed manu-
facturers, details of defect detection and classification tech-
niques are not elaborated, probably due to issues regarding
intellectual property rights.

5. Categories of steel surfaces
Types of steel surfaces studied for defect detection/classi-
fication are: slab, billet, plate, hot strip, cold strip, rod/bar.
They cover a large proportion of applications of steel as a
material. cold strips, and off late, rod/bars have received
more attention of researchers. This is mainly explained by
the fact that large proportions of these products are
finished product and quality requirements of customers
have become more stringent over time.

Broadly, steel surfaces can be categorised in flat and
long products (Figure 2).

Flat product surfaces can further be classified as
follows:

– Slab/billet: both are produced by continuous casting
process from liquid steel and have some similarity
with respect to surface and internal conditions.
Surface is scale covered and more grainy.

– Plates are produced by reheating a slab at about 1,250°C
and rolled subsequently. The surface is oxidised and
comparatively even with respect to that of slab.

– Hot strips are produced by reheating a slab at about
1,250°C and rolling in multiple rolling stands to
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Figure 2 Categories of steel products.
reduce the thickness to desired value. The strip
surface is oxidised. However, due to high rolling
force, the surface granularity of hot strip is
considerably reduced compared to slab.

– Cold strips are produced by rolling hot strips in cold
rolling mill after pickling process (which removes
the oxide layer and cleans the surface). Thus, the
surface of cold strips is not oxidised, and the surface
is quite smooth due to very high rolling forces used
in cold deformation process.

– Coated strip (galvanised, tinned)/finished stainless
strip surfaces are highly reflective in nature.

Long product surfaces can further be classified as
follows:
Rods/bars are produced from billet by hot rolling

process, and their surface is fairly oxidised. Further, the
surface is also not flat, and therefore, angle of reflection
varies towards the periphery thus producing nonuniform
image intensity.

Other long products like angles, channels, heavy struc-
tural, rails etc. are produced from billet/bloom. They are
of complex cross-section and require special lighting and
camera arrangements.

6. List of surface defects for steel products
There is a large variety of surface defects for different steel
products. Further, there is no agreed standard for defects.
There is also large ‘inter group similarity and intra group
diversity’ [17] for various classes of defects, which makes
defect classification difficult. Defect catalogues published
by Verlag Stahleisen GmbH, Germany [4] act as defacto
standards for this purpose.

An attempt has been made to list some of the main de-
fects which have been referred in the literature for surface
defect detection and classification during the last two and
a half decades. Defects have been listed vis-à-vis the
categories of steel surfaces mentioned above.

Slab: cracks (on surface and corner), pitting (pinhole
and blowhole), scratch, scarfing defects.
Plate: crack scratch, seam.
Billet: corner crack, line defect, scratch.
Hot-rolled strip: hole, scratch, rolled in scale, crack,
pits/scab, edge defect/coil break, shell, lamination,
sliver.
Cold-rolled strip: roll marks, holes, scratches, dark/
black line, heat buckle, rust, sliver, scale, roll mark, oil
spot, serrated edge, wrinkle, inclusion, shell, pimple,
oxide scale, lamination.
Stainless steel: holes, shells, inclusions, blowhole, scales,
scratches, pimples, roll mark.
Wire rod/bar: crack, spot, dark line, laps, overfill,
scratches, gorges, seams, slivers, roll mark.
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7. Key elements of automatic surface inspection system
hardware structure
Figure 3 shows the basic hardware structure of ASIS. It
consists of one or more light source, one or more camera
(bright field or both bright and dark field), fast image
processor, server and the operator interface.

7.1 Image acquisition
To obtain satisfactory surface image quality, it is import-
ant to illuminate the surface adequately and uniformly. In
fact, high quality of illumination reduces computational
burden of image processing. Two types of illumination
techniques can be used for metallic surfaces: intensity im-
aging and range imaging. [18-22] have discussed various
aspects of illumination systems for metallic surfaces.
Research on imaging systems for cold strips has been well
documented in [23].

Range imaging provides height information thereby
making 3D defects prominent. Range imaging is not
competitive to intensity imaging. In general, use of range
imaging is not common in steel surface defect studies.

Intensity imaging is primarily of two types: bright field and
dark field. In bright field illumination, the sensor captures
most of the directly reflected light. The surface appears
bright, whereas the defect features appear darker. In dark
field illumination, the angle of the incident light rays to the
surface normal vector is very large. This results in a dark
appearance of the surface, but some defects appear bright in
the image. Dark field view requires more intense lighting.
Requirement of about eight times compared to bright field
lighting has been reported [21].

Unfortunately, all surface defects do not show up either
in bright field or in dark field alone. There are many
examples of the use of two sets of cameras covering both
the fields of view [24-26]. Use of 20 charge-coupled device
(CCD) area scan cameras which are used to capture
surface image of both sides of hot-rolled strips using both
bright field and dark field modes have been reported in an
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Figure 3 Basic hardware structure of ASIS.
iron and steel plant of China [24]. However, considering
maintenance issues and system complexity, most of the
systems place the cameras in between the bright field and
dark field locations.

7.2 Source of light
The light source is required to provide uniform ripple-free
light as far as possible. While ripple-free illumination calls
for special arrangement of light power supply [27], provid-
ing uniform intensity is not possible due to the use of
more than one light source in majority of the cases.
Figure 4 shows the variation of incident light intensity on
to a steel surface using two xeon lights [28]. Types of light
source which are used in general are: wide spectrum tung-
sten, fluorescent tubes, halogen, xeon and LED.

7.3 Type of camera
In general, high-resolution CCD cameras are used. Use of
both line scan and area scan cameras has been reported in
the literature. Line scan cameras have been widely used as
it is easier to realise a strong and even illumination to the
surface area to be inspected. The disadvantage with the line
scan cameras is that they do not generate a complete image
at once and requires an external hardware to build up
images from multiple line scans [7]. Most of the automatic
surface inspection system manufacturers use line scan cam-
era. For area scan cameras, the usage of transport encoder
is optional and the inspection resolution in both directions
is independent of the object (web) speed. However, while
using area scan camera, special attention is needed to
ensure even illumination of the total area under scan to the
extent possible. High-resolution video cameras are also
used as complimentary systems [30].

7.4 Camera and image resolution
Camera resolution. Line scan camera resolution is generally
1,024(cross web) × 1(down web) and 2,048 × 1 pixels.
Yazdchi et al. [31] reported the use of 4,096 × 1 pixel camera.
Manufacturers normally use 1,024/2,048/4,096 × 1 pixels.
For area scan: 600 × 400 pixels have been reported by [32].
In [33], 4,096 × 1,000 pixels have been used for slab.
Image resolution. Various dimensions of image resolu-

tions have been reported [24,26,31,33,34]. Cross web reso-
lutions vary from 0.17 mm to about 1 mm while reported
down-web resolutions vary from 0.25 to 1.25 mm.

7.5 Image processing computer hardware
Images captured by a CCD camera are transferred to some
form of fast, parallel processing system dedicated to the
camera and located close to it [24]. The parallel processing
system ensures real-time operation by processing bulk
image data and selecting and storing regions of interest
(RoIs). The parallel processing system could be a part of
the camera itself, or a FPGA processor or a general
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purpose processor with special hardware. This part of the
system is vitally important both from real-time operation
as well as accuracy of defect detection and classification.
Thereafter, a server with a large backup memory is used
for further processing and for operator's interface.

8. List of defect detection and classification methods
Various methods/techniques used for defect detection
and classification of steel surfaces are listed in the litera-
ture. Table 1 shows the list of different methods of de-
fect detection vis-à-vis references obtained for this
study. Types of steel surfaces have also been mentioned
in the table. Techniques followed may broadly be cate-
gorised as statistical, morphological, spatial domain
filtering, frequency domain analysis, joint spatial/spatial-
frequency analysis and fractal models. Spatial domain
filtering, morphological operations and joint spatial/fre-

quency domain filtering are found to be used extensively
for all types of surfaces.

Ultimate objective of surface inspection is to categorise
defects in specified classes using classification tech-
niques. As a process, classification starts after defects
are localised by segmentation. At this stage, generally a
number of features are extracted from regions of inter-
est. Ideally, different combinations of these features are
required to match uniquely with that of different types
of defects. The matching is normally done using adap-
tive learning methods such as neural network with back
propagation (NN-BP), support vector machine (SVM)
etc. Adaptive learning is of two types: a) supervised where
the network is provided with a large number of known in-
puts. Thereafter, the network produces the known outputs
as closely as possible based on training. b) In unsupervised
learning, the network is required to work out relationships
between various inputs without being told.

However, steel surface defects exhibit large ‘inter
group similarity and intra group diversity ’. Thus, finding
suitable features and identifying classifiers with low
computational cost are the major areas of research activ-
ity. Table 2 shows the list of classification methods with
respect to references and types of surface.

9. Comparative evaluation of defect detection systems
In Table 3, some of the typical vision-based defect detec-
tion systems presented in the literature are highlighted.
Attention is drawn to broad methods followed, types of
defects, sample size and resolution of images used for
study and reported detection accuracy. Speed of steel
object and reported suitability for real-time operation are
also mentioned. In a number of studies, detection of a
single defect is achieved after elimination of pseudo
defects using a classifier ([29,38,67] etc.). These are shown
here instead of under classification table (Table 4).
Discussions on defect detection methods. Defect detec-

tion and classification in steel surfaces broadly follow
three steps: Localisation of candidate defects/regions of
interest (RoIs) by means of segmentation, extraction of
features from RoIs and finally, classification into defects



Table 1 List of defect detection methods

Method Reference Type of steel surface

Histogram properties [35] Cold strip

Co-occurrence matrix [36] Hot strip

[37] Misc

Local binary pattern (LBP) [34] Cold strip

Morphological operations [33,38-40] Slab, billet, plate

[41] Hot strip

[42,43,31,1] Cold strip

[44] Rod/bar

[45] Misc

Spatial domain filtering [40,46,47] Slab, plate

[48,49,24,50] Hot strip

[51,52,43,25,53-55,3,31,56,26,1,57] Cold strip

[58,44,59-61,2] Rod/bar

Frequency domain analysis [62] Hot strip

[63] Cold strip

Joint spatial/spatial-frequency analysis (Gabor, Haar, wavelet etc.) [64-66,33,67,29,38,68,69,39] Slab, billet, plate

[70,28,41] Hot strip

[71,17,72], Cold strip

[73-75,5,60] Rod/bar

Fractal models [63,76] Cold strip
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and pseudo defects. In a large number of instances
[3,35,41,42,56,58,61], it has been possible to localise RoIs
with a high degree of accuracy.

This is particularly true when occurrence of pseudo
defects is very limited as can be observed for many hot-
and cold-rolled strips. In such cases, detection itself
serves a very useful purpose of identifying a particular
product as defective in a continuous production line.
Appropriate action of segregating the defective product
follows naturally. However, without defect classification,
corrective actions cannot be taken to stop occurrence of
defects in future. Defect detection loses its significances
without classification in situations where pseudo defect
percentage is significant and/or variable. This is mostly
the case with slab, billet and rod/bar. Here, vision-based
inspection systems are useful only when features are
extracted from RoIs, and classification is achieved be-
tween defects and pseudo defects and then between the
defects themselves.

9.1 Pre-processing
Images of steel surfaces contain a lot of noise, and pre-
processing in most papers is devoted to noise reduction
and highlighting defective region from background. Noise
removal is more important in slab/billet/rod surfaces where
visual characteristics of defects (crack, seam) are similar to
that of pseudo defects (scale etc.). Averaging filter [58,61]
and Gaussian filter [59] are used routinely before process-
ing for defect detection. Interestingly, a Wiener filter, which
requires processing in frequency domain with information
on power spectrum of noise and un-degraded image, has
been used in a cold-rolled strip application [76] with real-
time suitability. [25,43] used homographic filtering to reduce
effect of variable illumination.

An important aspect of pre-processing in rod/bar is to
remove non-steel background from captured images.
Maximum diameter of rod/bars reported in this study is
about 46 mm. A camera normally covers more width to
allow for transverse movement of the bar (during roll-
ing) thus capturing useless background information. At
the beginning of image processing, bar image is recov-
ered from the background for better outcome of defect
segmentation [5,44,58,59]. This way memory utilisation
is also more efficient.

Surface flatness is very important due to its effect on
methods and processes followed for RoI identification.
Surface of slab, hot and cold strips is flat and wide as
against the surface of rod/bar which is circular in shape.
For uniform defect-free surfaces, intensities of reflected
light from a surface of flat strip are more or less uniform.

However, this is not the case with circular surface of
rod/bar as can be seen from uneven intensity plot in [61]
where the central region of the field of view is far brighter
than the peripheral region. This problem is reduced to



Table 2 List of defect classification methods

Method Reference Type of steel surface

Supervised classifier

K-nearest neighbour (KNN) [1] Cold strip

[37] Misc

NN-BP [28,32,36] Hot strip

[77,54,63,31,78,79,72,80] Cold strip

[59] Rod/bar

SVM [64,65,33,67,47] Slab, plate, billet

[70,24] Hot strip

[81,82,25,83,84] Cold strip

[85,44,5,2], Rod/bar

[86] Misc

Max-pooling convolutional NN [80] Cold strip

Discriminant function [42,35] Cold strip

Fuzzy logic-based classifier [25,87,76,88] Cold strip

Unsupervised classifier

Self-organising map (SOM) [36] Hot strip

[43,34] Cold strip

Learning vector quantiser (LVQ) [62] Hot strip

[89] Cold strip
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some extent by using more number of cameras than
strictly required as in [5,44] (five cameras) and [85] (four
cameras). Uneven intensity leads to varying response to
thresholding as well as gradient-based filtering. Thus,
spatial domain methods become more involved while
identifying RoIs.

9.2 Spatial domain-based methods
For defect detection/identification of RoI, gray level-based
spatial domain techniques (gradient filter, thresholding,
local contrast etc.) and joint spatial/frequency-based tech-
niques (various types of wavelets) have been used. Spatial
domain techniques are fast and easy to implement com-
pared to wavelet-based methods, and they have been used
in most of the papers where suitability for real-time oper-
ation have also been reported [2,24,26,35,46,58,59,61,76].

First-order gradient filter followed by thresholding is more
commonly used for edge localisation [2,44,46,59,76] due to
its noise immunity characteristics compared to Laplacian.
Region growing has been employed [2,24,59,76], particularly
after the use of gradient operators, to identify RoIs.

For detection of six types of defects in cold strip, [76]
first used a Wiener filter for noise reduction. Then,
rough locations of defects were extracted using Sobel
edge detector. Finally, object locations were identified by a
specially developed region growing method based on fuzzy
logic object membership function of a pixel. However, in
[2], the use of horizontal gradient operator for detection of
vertical edge of seam defects also simultaneously detected
equal number of pseudo defects. Based on seam defect
characteristics being very thin and darker than background,
seed points were identified and subsequent region growing
step provided RoIs.

Yun et al. [44]: To detect vertical scratch in rods, first-
order horizontal gradient filter was first used followed by an
edge pair search. Then, morphological dilation and erosion
was used to join edge pair. Thereafter, defect size (length)
less than a value was rejected to discard spurious defects.

Laplacian gradient operator was successfully used by [61].
First, the original image was smoothened by using weighted
averaging filter. Then, Laplacian is first applied in x-axis
followed by two-level threshold. Subsequently, Laplacian
was applied in y-axis with a single threshold. Threshold
values were dynamically updated. Good defect detection
ratio (>95%) was obtained for three types of defects in rods
with only 8.331 ms processing time per image.

Background difference method has also found favour
with researchers [24,31,56]. In this method, it is assumed
that defect-free surface is more or less homogeneous and
slowly varying. A background (or a standard image) is gen-
erated from several consecutive images satisfying some cri-
terion of intensity variation at pixel level or by averaging.
Significant difference between an incoming image and
background is used to get RoIs. In [24], seed pixels for four
types of defects in hot strip surfaces were identified by ap-
plying one or more threshold values to differential gray



Table 3 Comparison of defect detection systems

Paper Method Type of
defects

Sample
size

Features Detection
accuracy
(%)

Resolution
(across ×
along)

Speed of
steel object
(m/s)

Real-time
operation

Remark

Detection Classification

[67] - slab Gabor filter, two-
level thresholding,
edge pair
detection

SVM Scratch 7,110 cases 7 histogram,
gradient

94.08 Classification
w.r.t. pseudo
defect

[29] - slab Gabor filter,
adaptive double-
thresholding

Feature-based
logic

Pinhole 1,764
images

4
morphological
features

87.1 0.57 ×
0.5 mm

Classification
w.r.t. pseudo
defect

[38] - billet DWT,
morphological

Feature
difference

Corner
crack

1,568
regions

4
Morphological

97.6 Classification
w.r.t. pseudo
defect

[64] - billet Wavelet
reconstruction,
double threshold

SVM Corner
crack

220 images 12 Histogram,
morphological

97.8 0.25 mm
along web

2 Suitable Classification
w.r.t. pseudo
defect

[65] - plate Gabor filter,
adaptive
thresholding

SVM Seam crack 10,459
images

12 geometric,
gray

84.83 0.5 mm Classification
w.r.t. pseudo
defect

[41] - plate UDWT
(undecimated WT),
morphology

Crack,
scratch

563 images 90.23

[24] - hot strip Background
difference, region
growing

Scar,
scratches,
pits, cracks.

8,037
defects

>90 0.5 ×
0.5 mm

10 Suitable Bright and
dark mode
cameras
used



Table 3 Comparison of defect detection systems (Continued)

[61] - rod/bar Edge preserving
filter, double
threshold

Crack, spot,
dark line

175 defects
(73 images)

95.42 18.5 Suitable

[58] - rod/bar Local annular
contrast

Pits, overfill,
scratch

408 images 93.88 to
100

4.6 Suitable

[60] - rod/bar Sobel edge
detector, snake
projection, DWT

T2 control
chart

Seam 400
subimages

7 to 9 97.5 Approximately
18

Suitable Classification
w.r.t. pseudo
defect

[44] - rod/bar Gradient filter,
double
thresholding,

SVM Vertical
scratch

2,444
images

42 geometric,
gray level

96.9 0.3 mm 18.5 Five cameras

Classification
w.r.t. pseudo
defect

[2] - rod/bar Gradient filter,
region growing,

SVM-RBF Seam 1,226
images

Geometric,
gray level

94.4 100 Suitable Classification
w.r.t. pseudo
defect

[5] - rod/bar UDWT-(Haar),
double threshold

SVM Scratch 2,080 data 14 geometric,
gray level

91.83 0.5 mm 18 Five cameras

Classification
w.r.t. pseudo
defect

[75] - rod/bar UDWT (Haar), DFT Periodic
defects

6 coils 100 0.5 mm
along web

18 Suitable Classification
w.r.t. pseudo
defect

[59] - rod/bar Special horizontal,
vertical, diagonal
edge filters

Seam,
scratch, roll
mark,
overfill

663 images 12 geometric,
gray level

85.82 to 89 15 Suitable
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Table 4 Comparison of defect classification systems

Paper Method Type of defects Sample size Features Classification
accuracy (%)

Resolution
(Across x
along)
(mm)

Speed of
steel
object

Real-time
operationDetection Classification

[46] - slab Robert edge filter, zonal
thresholding, edge
connectivity

Statistical tree classifier Crack, pits, tear, scab, rollmark, under fill,
bleeder

17 geometric 0.076 × 1.27 4 in./s
(36.6 m/
min)

Suitable

[70] - hot strip Five wavelets (feature
extraction)

VVRKFA, SVM 24 types (details in paper) 1,432 images 3 to 9
elements -
5 wavelets

93.8 1 × 1 20 m/s

[36] - hot strip Co-occurrence matrix NN-BP, GMDH, SOM RIS, bruise, rolled in bruise, scratch,
lamination

1,084 cases 24 spatial,
textural

NN-BP 83.5
(ave.)

[62] - hot strip FFT (feature extraction),
GA

LVQ Crack, pits, scar, rollmark, shell, cross 485 images 54 frequency
domain

84 to 93

texture, pseudo

[32] - hot strip NN-BP Shell, hole, pit/scab, residue scale, coil
break, slip mark, rust

255 samples 4 geometric 98.75 10 to
15 m/s

[31] - cold strip FFT (filtering), local
entropy, thresholding,
morphology

NN-BP, fuzzy logic Sticking, emulsion rust, under pickled,
dirty surface, anneal stain

2,300 images 9 statistical NN-BP: 97,
Fuzzy logic: 82

0.37 Suitable

[76] - cold strip Sobel edge detector,
region growing

Fuzzy logic Scaling, shrunken leaf, cusping, file mark,
cleavage crack, tear

15 to 20
defects/class

Geometric,
fractal

85 to 95 6 m/s Suitable

[26] - cold strip Thresholding (six types) Decision tree
discrimination logic

Scab, sliver, scale, gauge, scratch, roll
mark, oil spot

196 defects 95.5 0.17 × 1.25 1,400 m/
min
(23 m/s)

Suitable

[89] - cold strip LVQ Rust, lamination, rollmark, scratch, weld,
and stain

135 images 17 feature +11
reference

Approximately
68 to 96

5 m/s

[63] - cold strip Multifractal NN-BP Sticking, emulsion rust, under pickled,
dirty surface, anneal stain defect

2,300 images 10 geometric,
gray level

97.9 0.37

[43] - cold strip Morphological,
thresholding

Hough transform: line
defect

Welding, clamp, hole, oxidation,
waveform, exfoliation

300 images 6 components Line defect: 98.

PCA-SOM: complex shape Complex
shape: 77

[87] - cold strip Sobel edge detector,
threshold, special filter

Fuzzy logic Large population of inclusions 212 images 4 95

[83] - cold strip Difference image SVM Line scab, pickle patch, hole, slip mark,
oil drop, pit

1,200 images 54 geometric,
gray level

92.4

[82] - cold strip Weak classifier Serrated edge, scratch, shell, inclusion,
weld, wrinkles.

500 images Extended Haar
rectangle
features

94

[77] - cold strip Modified NN BP Flash, roller moulage, oxidation skin,
hole, crack

300 94.34
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Table 4 Comparison of defect classification systems (Continued)

[59] - rod/bar Special horizontal,
vertical, diagonal edge
filters

Hierarchical Seam, scratch, roll mark, overfill 663 images 12 geometric,
gray level

NN BP: 90.66,
RVM: 91.21

15 m/s Suitable

NN BP, RVM

[85] - rod/bar Process knowledge-based
multiclass SVM (PK-MSVM)

Seams, longitudinal cracks, scales,
transverse mid-surface cracks and trans-
verse corner cracks

600 bars
(20,140
defects)

4 process
features +
image data set

81.4 to 93.9
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levels of background and an incoming image. Region grow-
ing method is then used for obtaining RoI. Cong et al. [56]
partitioned the difference of image in small (20 × 20) subi-
mages. Five types of defects in cold strips were identified by
characterising gray-level distribution in subimages.

Traditionally, Hough transform [3,43] is very success-
ful in demarcating well-defined shapes. Martins et al.
[43] used Hough transform to detect three geometrically
well-defined shapes: welding, clamp and identification
hole in cold-rolled strips. After homographic filtering to
remove illumination variation, Gaussian and morpho-
logical filters were applied to reduce noise. Segmentation
was realised by applying edge detection method and
thresholding. Hough transform was performed on the
binary image for line and circle detection. Three types of
defects- welding (diagonal line), clamp (multiple lines in
down-web direction) and identification hole (circle with
fixed radius in the middle of the strip)- were identified.

Local entropy has been used for defect identification
purpose in different ways in [25,31]. In [31], enhanced
quality of cold-rolled strip image was first obtained after
subtracting generated background image. Local entropy
of each pixel was calculated using a 9× 9 matrix and
then thresholding done on the resultant image by Otsu's
method. In order to eliminate nonrelated regions, mor-
phological dilation and erosion operations were done on
binary image. As against entropy which is a measure of
randomness, excess entropy is a measure of the struc-
ture of the system and was introduced in [25] as the
measure of image's spatial structure. After homographic
filtering, excess entropy was calculated and threshold
value for RoI segmentation was arrived at after finding
optimal parameters of fuzzy membership function (be-
tween background class and object class) for maximum
excess entropy.

Li et al. [58] developed a local annular contrast(LAC)
algorithm for RoI identification based on the fact that
pixels belonging to defect have a greater contrast with
respect to surrounding background and used it to detect
three types of defects in rod. A gray-level comparison
between the detection point and its surrounding pixels
at a certain distance was undertaken, and the threshold
value for segmentation was changed with the gray-level
variation of local annular background. As radius of LAC
is required to be greater than the size of defect, con-
straint is likely to be encountered with respect to the
size of a defect to be detected.

9.3 Wavelet-based methods
Wavelet-based methods have the advantage of better per-
formance against noise compared to spatial domain-based
methods. Further, wavelets can localise defects in spatial and
frequency domain unlike purely frequency domain methods.
Most of the applications of wavelet-based methods under
survey are for defects which are difficult to be identified
from pseudo defects like scale and other artefacts which are
frequently observed in surfaces of slab, billet, plate and rod.
[5,38,41,65,67,69] are some of the studies in this direction.
[41,69] used undecimated wavelet transform followed by
thresholding of correlation coefficients to arrive at identifica-
tion of defects. Yun et al. [69] used Haar wavelet with one-
level decomposition to detect two types of defects in billets
with 83% accuracy where as [41] used biorthogonal wavelet
with three-level decomposition followed by binarization,
morphological operation and radon transform for plates
with accuracy of 90%.

In [5], vertical detail coefficients of Haar undecimated
wavelet transform were thresholded to identify RoIs.
After obtaining 14 features from binary and gray images,
defects are classified from pseudo defects by using SVM
classifier with about 92% accuracy in rods.

Jeon et al. [38] used discrete wavelet transform to iso-
late defects from scales and variation in lighting condi-
tions. To generate candidate defects, negative values
were thresholded in wavelet-reconstructed image. Four
morphological features of binary image were used to
segregate corner crack defects in billets with more than
97% accuracy.

Real and imaginary parts of 2D Gabor filter can be used
as a blob detector and edge detector, respectively. [65,67]
respectively used real and imaginary part of Gabor filter
followed by two-level adaptive thresholding. Candidate
regions of scratch defects were selected by edge pair
detection in [67]. Further, to reduce influence of pseudo
defects, SVM was used with 12 geometric and gray-level
features in [65] and seven histogram and gradient-based
features in [67] as inputs to detect one type of defect in
plate and slab with 85% and 94% accuracy, respectively.

Lee et al. [72] (cold strip application) and [70] (hot strip
application) used wavelet-based methods to classify 8
types and 24 types of defects, respectively. Lee et al. [72]
used an adaptive wavelet (AWP) packet scheme to pro-
duce the optimum number of features through the sub-
band coding gain. Four entropy features in the images and
the energy features from the optimal quadtree in the
AWP algorithm were extracted. Three-layer NN-BP of ten
hidden nodes and eight output nodes (eight types of
defects) was use with standard back propagation algo-
rithm for classification with very high accuracy of 99%.

In an elaborate study [70], five different types of wave-
lets, namely, Haar, Daubechies2 (DB2), Daubechies 4
(DB4), biorthogonal spline (bior) and multiwavelet, were
used to extract features by decomposing the small blocks
(32 × 32) of surface images into different resolution levels.
The defect detection ability of these features was assessed
by two kernel classifiers, namely, the support vector ma-
chine (SVM) classifier and the vector-valued regularized
kernel function approximation (VVRKFA) method of
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classification. The central outcome of this paper, based on
test results on 24 types of defect classes, was that the
wavelet feature sets were better suited for steel surface de-
fect detection application compared to texture-based seg-
mentation or thresholding techniques. Further, three-level
Haar feature set is more promising compared to the Dau-
bechies, bior and multiwavelet features. With VVRKFA
classification accuracy of 94% was achieved.

9.4 Use of fractal model
FRACTAL geometry is the geometry associated with nat-
urally occurring objects that have repeating patterns at
different scales. A fractal geometric approach to computer
vision is important in the interpretation and recognition
of objects that are characterised by their texture and
therefore difficult to interpret using conventional machine
vision techniques [76].

Yazdchi et al. [63] evaluated multifractal dimension
based on morphology to determine the position of defects.
By eliminating details whose scale is less than that of the
structuring element (SE), an image can be observed and
measured at different scales. In this multifractal estimation
method, a series of SEs of different scales were used to
measure the image surface. A set of multifractal texture
descriptors, namely, the local morphological multifractal
exponents (LMME), were defined. For every pixel, the
multifractal features were computed in a slipping window
of size 11 × 11 centred on that point. The segmentation
was based on the fuzzy C-means (FCM) algorithm, which
was able to classify the pixels into a specified number of
regions by clustering those features. After multifractal-
based segmentation, morphological erosion and dilation
operations were done to remove spurious regions. Classifi-
cation of five types of defects in cold strips was achieved
with about 98% accuracy.

Blackledge et al. [76] used a combination of both
Euclidean and fractal geometric measures to arrive at
feature vector. The approach was focused on multiple
object location and classification using fractal geometry to
evaluate the texture as a set of features from an image
which was already segmented using gradient operator and
a novel region growing method. Subsequently, the system
used a fuzzy logic-based approach to classify six types of
defect. For classification of six types of defects in cold
strips, 85% to 95% of accuracy was claimed.

10. Comparative evaluation of defect classification
systems
In Table 4, some of the typical vision-based defect classifi-
cation systems are highlighted. Attention is drawn to
broad methods followed, types of defects, sample size and
resolution of images used for study and reported classifi-
cation accuracy. Speed of steel objects and reported suit-
ability for real-time operation are also mentioned.
Discussions on defect classification methods. Classifica-
tion of defects in steel surfaces is important for identifying
and subsequently correcting causative factors. It is also im-
portant from the point of view of product pricing. Geomet-
ric defects are mainly caused by abnormalities in rollers
and in rolling mills where as texture defects generally are of
metallurgical origin [70]. Therefore, nature of a particular
defect may lead to corrective action in diverse locations of
steel making production system. Most commonly used
classification methods for steel surfaces are: NN-BP and
SVM. Other supervised methods used for classification
purposes are K-nearest neighbour, fuzzy logic and discrim-
inant function-based methods. Among unsupervised classi-
fiers, self-organising map (SOM) and learning vector
quantiser (LVQ) have also been used.

10.1 Neural network with back propagation (NN-BP)
Steel surfaces exhibit many types of defects, and NN-
BP has been extensively used to classify such defects
[31,36,54,59,63,72,78,80]. Generally, NN-BP has been
used with one hidden layer. Large variation of number
of nodes used in input layer (feature space: 4 to more
than 50), hidden layer (10 to 100) and output layer (defect
class: 2 to 24) has been reported. Most of the applications
of NN-BP have been found to be for hot- and cold-rolled
strip surfaces presumably because of manifestation of
large number of important defect classes. Performance of
NN-BP has been compared with other classifiers in [31,36],
and NN-BP has been found to be performing better.

Caleb and Steuer [36] is an interesting paper where
experiments were conducted on relative performance of
multilayer perceptron (MLP) and group method of data
handling (GMDH) with same set of five classes of de-
fects and non-defect in hot strips. Classifiers were con-
structed to segregate i) defects as a class from non-
defects, ii) all six classes and iii) five classes of defects
within themselves. MLP consistently provided better
result than GMDH. Within three sets of trials, best re-
sult from MLP was obtained (97%/93% for training/test
set) during classification of defects from non-defects.
For classification between five defect classes, accuracy
reduced to 89% and 78%, respectively, for training and
test sets and further to 86% and 80% for all six classes. It
is suggested that simple problem decomposition on a class
level would involve cascading two networks, the first
network separating regions on defects/non-defect basis
and the second only dealing with the cases classified as
defects by the first.

In [31], two methods of classification, NN-BP and FIS,
were tried for five types of defects in cold-rolled strip. For
fuzzy inference system (FIS), fuzzy C-mean algorithm was
tried using a cost function. Accuracy obtained using FIS
was much lower at 82% compared to NN-BP (97%) using
seven statistical features.



Peng and Zhang [77] proposed a back propagation (BP)
algorithm based on modified error function to overcome a
major problem of long training time of the BP algorithm
and chance of falling into local minima. It was noted that
the delay of the convergence was caused by the derivative
of the activation function. A slightly modified error func-
tion of the back propagation algorithm resolved this short-
coming and accelerated convergence to a solution. For five
typical defects from cold-rolled strip samples, improved al-
gorithm was effective at getting rid of local minima problem
with less time (30 epochs as against 100) with an average
success rate of about 94%.

Masci et al. [80]: A convolutional neural network(CNN)
is a type of feed-forward artificial neural network where the
individual neurons respond to overlapping regions in the
visual field. In CNN, convolutional layer performs a 2D
filtering between input images, x and a bank of filters, w
producing another set of images, h. A nonlinear activation
function is applied to h just as for standard multilayer
networks. Pooling layer reduces the dimensionality of the
input by a constant factor and also undertakes feature
selection. The input images are tiled in nonoverlapping sub-
regions from which only one output value (max. or avg.) is
extracted. Subsequent, fully connected layer performs a
linear combination of the input vector with a weight matrix.
Max-pooling convolutional neural networks (MPCNNs) per-
form feature extraction and classification jointly. With 7%
error rate, MPCNN performed much better than SVM for
seven defects in cold strips. In CNN, the number of free
parameters does not grow proportionally with the input
dimensions and therefore performs better in terms of many
benchmarks.

10.2 Support vector machine (SVM)
Classically, SVM was designed to separate two classes. Thus,
it has been widely used for separation of defects from pseudo
defects in steel surfaces [2,5,44,47,65,67]. SVM has also been
extended to solve multiclass separation problem using
mainly one-versus-all and one-versus-one techniques. Multi-
class problem solution using SVM has been reported in
[25,70,81,83-85]. To apply multiclass classification problems,
a few binary classifiers are required to be trained. The most
common approach is the one-versus-all strategy where a
classifier is trained as positive label for one class and negative
label for all other classes. This strategy requires n binary
classifiers for n defect classes. In [81], four types of defects in
strips were classified using a voting strategy following a
series of binary classifiers.

Gaussian radial basis function (RBF) kernel function was
found to be routinely used for steel surface defect classifi-
cation [2,83,85]. In [2], defect detection was modelled as a
nonlinear classification problem using a SVM with RBF as
the kernel function. The result from the SVM learning was
a SVM model that includes kernel parameters γ and C,
support vectors, coefficients of the support vectors, the
target values of each support vector and the bias. These
values were arrived at using incremental SVM learning
algorithm. Subsequently, accuracy from SVM classifier was
found to be better than NN-BP classifier (94.4% against
90.8%) for a 306 test dataset for seam defect against pseudo
defect for rod surface.

Choi et al. [83]: 46 geometric features and 8 gray-level
features were extracted from segmented RoIs. Among
commonly used kernels such as linear, polynomial, RBF
and sigmoid, RBF was selected. Grid-search method was
used to arrive at RBF parameters (C and γ). Six defect
types from cold strips were correctly classified with 87%
to 94% accuracy.

Agarwal et al. [85]: The aim of this study was to integrate
the process knowledge residing with the plant engineers with
the image-based automatic inspection techniques and to
come up with a classification scheme. Three important char-
acteristics of the defects - their shape (length to width ratio),
longitudinal and transverse locations - were used for this
purpose. Another variable directly used from the camera
was the severity of the defect (scale 0 to 100). Based on these
features, a process knowledge-based multiclass SVM (PK-
MSVM) was developed for rods. PK-MSVM was shown to
perform better than other multiple SVM algorithms (one
against one, one against all and Hastie's algorithm). Further,
Hastie's algorithm was found to perform better than one
against one or one against all approach.
10.3 Unsupervised classifier
Use of unsupervised classifiers was also reported in several
research works. In an unsupervised training, the network
learns to form their own classifications of the training data
without external help. It is assumed that class membership
is broadly defined by the input patterns sharing common
features and that the network will be able to identify those
features across the range of input patterns. While SOM
was used in [34,36,43], LVQ was used in [62,89]. SOMs



Table 5 Algorithm processing time - comparative table

Paper Method Max. speed of
steel object (m/s)

Resolution
(across × along)

Suitability for real-time
operation (as reported)

Processing time per image: total

[64] - billet Segmentation, wavelet
reconstruction,
classification

2 0.25 mm along web Suitable 93.7 ms (segmentation - 8.34 ms, wavelet - 76.98 ms,
classification - 8.38 ms)

[70] - hot strip Thresholding,
segmentation,
classification

20 1 × 1 mm Suitable up to 5 m/s 178 ms (thresholding - 38 ms, segmentation - 44.5
ms, classification - 95.5 ms)

[61] - rod/bar Pre-processing, detection 18.5 Suitable 8.33 ms up to binarization: 3.4 ms, double
threshold: 4.93 ms

[58] - rod/bar Pre-processing, detection 4.6 Suitable 13 ms (segmentation - 2 ms, ave. filter - 3 ms,
detection - 8 ms)

[2] - rod/bar Feature extraction,
classification

Max. 100 Suitable 5.8 ms (feature extraction-5.6 ms, SVM
prediction-0.16 ms)

[75] - rod/bar Detection, identification 18 0.5 mm along web Suitable 7.315 ms/image - detection, 74.747
ms/histogram - identification
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on the SOM consist of visually similar objects irrespective
of the labelling. As a result, some of the apparent overlap
of classes can be attributed to an ambiguous manifestation
of the defect.

In [43], three defects of cold strips with complex geomet-
rical shape were studied using SOM network. Principal com-
ponent analysis (PCA) technique was used to extract the six
main components as features. Output map of 20× 20 rect-
angular shape was defined for SOM network. The system
using PCA and SOM achieved an overall classification rate
of 77% which requires improvement. [34] experimented with
SOM to classify cloudiness in hot-dip galvanised sheets with
about 97% accuracy.
11. Algorithm processing time
Steel manufacturing is a batch process. For example, dur-
ing rolling of a slab into hot strip, total rolling process
through multiple rolling stands, accelerated cooling and
coiling are to be completed irrespective of whether there
is any defect present in the strip or not. Defect detection
and classification algorithm processing time can broadly
be divided in two parts: a) time taken by the system from
capturing an image to identification of RoI and b) feature
extraction and classification of defect type from identified
RoI. The first part is considered to be a ‘Real-time’ process
meaning that for each image, this part of the processing
must be completed within a stipulated time depending on
the maximum speed at which the steel object can travel.
Once RoIs are identified, second part of processing for the
whole batch is required to be completed within the stipu-
lated batch process completion time. Thus, the second
part of the algorithm processing time is considered to be
‘Just in time’ process [57].

In Table 5, details of algorithm processing time provided
by some of the reviewed papers are given. It is observed
that there is very large variation of speed of steel objects
(2 to 100 m/s). Generally, very high speed of about 100 m/s
is observed in rolling of 5.5-mm-diameter wire rods. Speed
of around 20 m/s is observed for hot strip and cold strip
processing while speeds from 4 m/s to a maximum of
20 m/s are required for bars. From Tables 3 and 4, it is
noted that pixel resolution varies from 0.25 to 1.25 mm/
pixel along the web. If we consider a pixel resolution of say
0.5 mm along the web and an image frame of 500 pixels in
the same direction, then for a speed of 20 m/s, we have to
process a minimum of 80 image frames per second
(12.5 ms/image) to achieve real-time operation. Thus,
development of real-time defect detection systems for
thin sections of wire rods is the most challenging. Even
though speed of slabs and billets are the lowest, their
surface contains heavy scale which creates serious
bottleneck in defect detection process. Thus, algo-
rithms tend to be complicated for such applications.
12. Comparative studies
There are a few comparative studies, presumably, on
identical data sets. Caleb and Steuer [36] have experi-
mented with NN-BP and the SOM as an unsupervised
learning system for classification of five types of defects.
Details have been reported under Sections 10.1 and 10.3.

Yichi et al. [52]: In an interesting experiment, six
(Sobel, Prewitt, Kirsch, Canny, Laplacian and Laplacian
of Gaussian (LoG)) gradient operators in spatial domain,
using MATLAB, have been tried and compared for a set
of images of cold-rolled strips. LoG with sigma =2 pro-
vided better segmentation result.

Yunhui et al. [82]: To study the problem of achieving
classification accuracy at the cost of complexity of algo-
rithm, a cascaded weak classifier composed of several
weak classifiers (based on extended Haar rectangle fea-
tures) has been compared with KNN, NN-BP and SVM
for cold-rolled strips. With each weak classifier filtering
out the most negative samples, a large number of nega-
tive samples are eliminated after T-classifiers by a small
amount of computation. Superiority of weak classifier
(best overall result 94%) is documented for six types of
defects in cold strips.

Yazdchi et al. [63] and Yazdchi et al. [31]: For the same
set of five defects in cold-rolled strips, two different
approaches were used in two papers by Yazdchi et. al. In
[63], pre-processing for background noise removal con-
sists of temporal discrete Fourier transform (DFT), high
pass filter and inverse DFT. Thereafter, multifractal
based on morphology has been used to identify defective
segments. Ten features have been used for classification
using three-layer NN-BP. Ninety-eight percent accuracy
in classification has been achieved. In [31], background
image has been obtained using median value of pixels of
a set of randomly selected images. To identify defect in
difference images, the local entropy of the pixels is
calculated using 9 × 9 matrix and an adaptive threshold.
Thereafter, morphological erosion, thresholding and
dilation identify defect areas. With nine features, feed-
forward neural network is used for classification with
accuracy of 97%.

13. Steel surface automated inspection system: overview
of commercial developments
As technicalities of defect detection and classification of
commercially developed surface inspection systems are
not disclosed, a brief overview of image processing based
commercially developed systems for surface defect detec-
tion of web material is presented here.

During the International Surface Inspection Summit
(ISIS12, India), various manufacturers of surface inspec-
tion systems showcased their products. It is noted that
surface inspection systems are commercially available
from 1970s (ABB HDI800 Surface imaging-3BFI 802000



Neogi et al. EURASIP Journal on Image and Video Processing 2014, 2014:50 Page 17 of 19
http://jivp.eurasipjournals.com/content/2014/1/50
R0301/03.02.2010). Since 1990s, commercially available
systems were being used for steel surface inspection in
good numbers particularly in cold rolling mills. Today,
there are many reputed manufacturers of surface inspection
systems notably ISRA-Parsytec, ABB, Siemens, Cognex
among others.

Key hardware of the systems involves high-resolution
(1 K, 2 K, 4 K) CCD camera; extensive, programmable
logic devices/arrays for fast pre-processing of camera
signals to identify defect candidates in real-time; trainable
classification systems based on NN or SVM, user friendly
man–machine interface (MMI) and extensive archival fa-
cility. All the systems have facility for good connectivity to
plant-wide network. Usefulness and application of a com-
mercial installation are elaborated in [90]. Technical
details of a commercial system for use in high-speed bar
rolling are given in [91,92]. Issues related to appropriate
use of ASIS, maintenance issues, expectations of users and
how they can be addressed are well explained in a paper
by Tivolle et al. [93]. Yang et al. [94] reviewed two com-
mercially developed systems and identified issues to be
addressed to make automated visual inspection systems
better.

Using alternate detection technology, energy saving of
5,800,000 MMBTU/year by the year 2020 has been
envisaged in [95].

Conclusions
This paper dealt with review of automated inspection
methods for steel surfaces using image processing tech-
niques. Review of publications over two and a half decades
has provided an idea of recent advances that have taken
place in this field. Main observations are as follows:

a) Due to harsh environment of a steel mill, special
attention is required for design of illumination and
imaging systems. Steel surface images are reported
to contain large amount of noise due to surface
scale, vibration, improper/variable illumination,
presence of pseudo defects etc. Surface defects are
of irregular shape and their type and characteristics
vary significantly from one mill to another.
Characteristics of defects are also dependent on
conditions of manufacturing.

b) Published literatures indicate that relatively more
importance has been given to detection of defects
for cold strip surfaces. Recently, attention is also
focussed on surfaces of hot strips and bars/rods.
A large variety of techniques, both in spatial and
frequency domains, have been applied for defect
detection. Often, combination of several techniques
has provided useful results. With respect to defect
classification, some form of neural network or
support vector machine-based techniques have been
found to be of use. Real-time operation of automated
inspection system often demands very fast processing
of images as mill speed is generally very high for flat
and long steel products. This calls for dedicated
hardware system with parallel processing capability
for each camera.

c) It is not prudent to compare outcome of different
techniques due to lack of common standard with
respect to images and experimental methods. This
problem is further complicated due to lack of
standard definition of defect types.

d) Commercially produced automated vision-based
inspection systems for web materials have reached a
high level of maturity. However, they are required to
be properly ‘tuned’ for a particular application. Also,
continuous collaboration between designer and user
is necessary to adapt the installed system to new
varieties/characteristics of defects at the same
installation site.
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