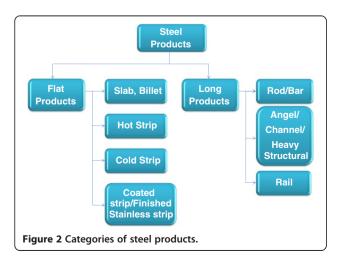
REVIEW Open Access

Review of vision-based steel surface inspection systems

= dy do = 1 " C = y y = - y y 1 x 0 1 = C y 2

Abstract

Review


1. Introduction: importance of steel surface and its automated inspection

150 150 12,000-150 150 12,000-1,

5. Categories of steel surfaces

- Slab/billet: both are produced by continuous casting process from liquid steel and have some similarity with respect to surface and internal conditions.
 Surface is scale covered and more grainy.
- Plates are produced by reheating a slab at about 1,250°C and rolled subsequently. The surface is oxidised and comparatively even with respect to that of slab.
- Hot strips are produced by reheating a slab at about 1,250°C and rolling in multiple rolling stands to

- reduce the thickness to desired value. The strip surface is oxidised. However, due to high rolling force, the surface granularity of hot strip is considerably reduced compared to slab.
- Cold strips are produced by rolling hot strips in cold rolling mill after pickling process (which removes the oxide layer and cleans the surface). Thus, the surface of cold strips is not oxidised, and the surface is quite smooth due to very high rolling forces used in cold deformation process.
- Coated strip (galvanised, tinned)/finished stainless strip surfaces are highly reflective in nature.

6. List of surface defects for steel products

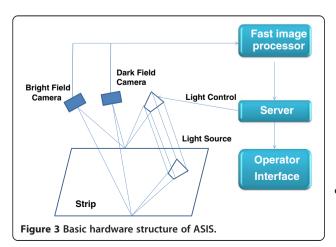
Slab: cracks (on surface and corner), pitting (pinhole and blowhole), scratch, scarfing defects.

Plate: crack scratch, seam.

Billet: corner crack, line defect, scratch.

Hot-rolled strip: hole, scratch, rolled in scale, crack, pits/scab, edge defect/coil break, shell, lamination, sliver.

Cold-rolled strip: roll marks, holes, scratches, dark/ black line, heat buckle, rust, sliver, scale, roll mark, oil spot, serrated edge, wrinkle, inclusion, shell, pimple, oxide scale, lamination.

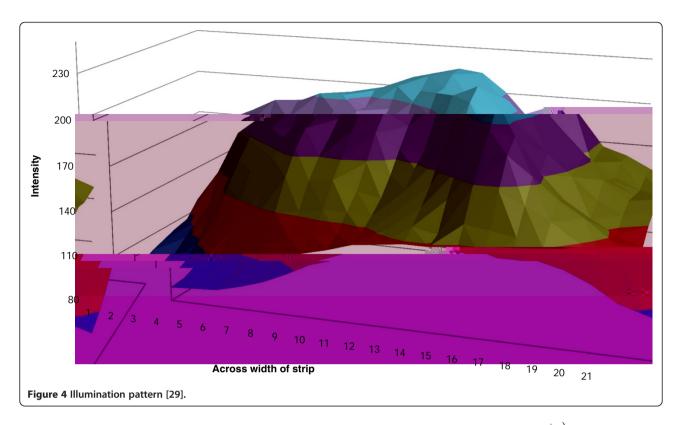

Stainless steel: holes, shells, inclusions, blowhole, scales, scratches, pimples, roll mark.

Wire rod/bar: crack, spot, dark line, laps, overfill, scratches, gorges, seams, slivers, roll mark.

7. Key elements of automatic surface inspection system hardware structure

i nasa wa nasa ga wa ana a ili a wana kan jina wa ana na jina jin (li kana la li ga kana kana kana ma

7.1 Image acquisition


i se com e se i 24 gero o se esso; jio emerie semon o esperantiste e non operaciones o esperantiste o el inspesso se espesivações

7.2 Source of light

7.3 Type of camera

7.4 Camera and image resolution

7.5 Image processing computer hardware

The state of the s

8. List of defect detection and classification methods

9. Comparative evaluation of defect detection systems

Discussions on defect detection methods.

Table 1 List of defect detection methods

Method	Reference	Type of steel surface
175 A 10 10 10 10 10 10 10 10 10 10 10 10 10	35	८, अ
- bis all is y =1	36	/ ₂ =4
	37	٠٠٠ الم
₩ ~ ~ \ 1 \ • 1 (• •)	34	८्रअ
. It is the second of the seco	33,38-40	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	41	,
	42,43,31,1	€.4
	44	• <i>⊶</i> / _γ . •
	45	- W
~y = y = = • = 1.	40,46,47	, y •
	48,49,24,50	<i>i</i> , ∍(
	51,52,43,25,53-55,3,31,56,26,1,57	€.4
	58,44,59-61,2	• 🔑 , 🖈
• 1 10 G C Y 7 Y 7 70	62	€्री अ
	63	€.4
- , , , , , , , - • • • • • • • • • • •	64-66,33,67,29,38,68,69,39	, , , o
•	70,28,41	र्ग, ज
	71,17,72 ,	€, अ
	73-75,5,60	• J.y 1
- 1 5 1	63,76	€्रं अ

9.1 Pre-processing

Table 2 List of defect classification methods

Method	Reference	Type of steel surface
ا مرز ۱۹۶۸ وای ما تعد		
-• _{\(\sigma\)} • • • • • ()	1,	€ 4
	37	- W
~ ●	28,32,36	/ ₂ st
	77,54,63,31,78,79,72,80	€ =1
	59	• 🔑 , . •
٠ الجد	64,65,33,67,47	- · · · · · · · · · · · · · ·
	70,24	i jai
	81,82,25,83,84	€ =1
	85,44,5,2 ,	
	86	- 1
. y = - + , , , , , , , , , ,	80	€ 4
Colored to the	42,35	€.4
1. Same 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	25,87,76,88	€.4
ال مرزين وال و در		
→ - → → , , (N)	36	/ J .d
	43,34	€.4
• y : \$0 , . • y : . \$1 \$y : \$9 : \$(;)	62	1 get
	89	र्ज

9.2 Spatial domain-based methods

2,24,2,35,4,5,5,1, ...

2,44,4,5, ...

2,24,5, ...

2,24,5, ...

2,24,6, ...

2,24,7, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,8, ...

2,24,

Table 3 Comparison of defect detection systems

Paper	Method		Type of Sample	Features	Detection	Resolution	Speed of	Real-time	Remark	
	Detection	Classification	defects	size		accuracy (%)	(across \times along)	steel object (m/s)	operation	
67			<i>-</i> •6y⁴6.	7,110 🙀 🌶 🍃	7	94.08				(.d.) \$ {
29 -	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	• \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	• . •	1,764 ¬ _{\ \} , • ,	4 . (87.1	0.57 0.5			() s c
38•	<u>ر</u> را	ey set	. 6 . 4 6)4	1,568 • • •	4 . · • • · · · · · · · · · · · · · · · ·	97.6				() s c
54 - , - ,•	۵ پ. ۵ ه ۱ ه پاهند در پهنده ۱ م ۱ ه در	. الهجر	. 6 . 4 674	220-, γ ,● ,	12 / , , , , , , ,	97.8	0.25 Y	2	• موز کلیر	1.1. 95c
65 - γ•	1 - 1 + 0 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	، الهجر	-9y 6y6	10,459	12,• • -4 ,	84.83	0.5			1 . d. 9 5 c
41 - _Y •	6 4 5 V • KN),	γ 6 ,	563 • , _γ ,• ,		90.23				
24, , , ₩	% 6 15					>90	0.5 0.5	10	-1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	1

π	J
g	,
æ	,
V)
9	Ļ
_	۷.
V)

Table 3 Comparison of defect detection systems (Continued)

61, -, 1, √, , 1	iς ο − ο∮ο ∪∜ι ; πο υβς φωο υ ο∮υ − ίς	, 175 € • 	95.42	18.5
58 - A	10 y 5 y 4	● , , . • . ▼ , 408 + γ . ● , > • ↑ •	93.88 100	4.6
60 1	2, 1		97.5	بررې (سوتلد ۲۰۰۱) ۱۱.۱۱. ا
44 1 • L ₁ . 1	yle with service	2,444 42 • • • • • • • • • • • • • • • • •	96.9 0.3	18.5 × • • • • • • • • • • • • • • • • • •
2 • • · · · · · · · · · · · · · · · · ·	yde aoud sau og oda uda u	1,226	94.4	رو که او در ۱۵۵ مورد در ۱۵۵ در ۱۵۵ در ۱۵۵ در
5 (p/ _{1/2})	() -(/// ·)	2,080 wy 14 · · · · · · · · · · · · · · · · · ·	91.83 0.5	18
75 1 , , . 1	a (1) xc	⊕ ત્ર(જુ. 6, ત્ર) ૧•,>	100 0.5 γ . Γ.	18 yes
59 - 1		-4, 663-γ • , 12 • • -4, γ • , γ •	85.82 89	15

Table 4 Comparison of defect classification systems

Paper	Method		Type of defects	Sample size	Features	Classification	Resolution	•	Real-time
	Detection	Classification	-			accuracy (%)	(Across x along) (mm)	steel object	operation
46 -			yt, ogogydgyn at y tis eiti, proeen		17, • • • • • • • • • • • • • • • • • • •		0.076 1.27	4+, /, (36.6 / -,)	€ موزالد
70, , , , , , , , , , , , , , , , , , ,	· y(~)	i i .	24 • , (• y=,= y •)	1,432-, γ ,● ,	3 9 •• • - 5t _y .•• ,	93.8	1 1	20 /,	
36, , →	- 555 s. et ig - y .est	· · · · · · · · · · · · · · · · · · ·	Opposite in the committee copylights in	1,084 🙀 🌶 🍃	24 y 7 ,	√ 83.5			
62 , →	(6 \ 5 o to \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		γ\$, ± , , , , , , , , , , , , , , , , ,	485 - , _Y ,● ,	54 • (%)	84 93			
32 _, , ,		- L •	motor y till	255 4	4,• • ⊀	98.75		10 15 /	
31, - 🙀 👡 🛪	(~ · · · · · · · · · · · · · · · · · · ·	নিক্ৰাংক চিল্লা সাচ্চ ক্ৰিক্ৰাত্ ক্ৰিডিগ্ৰিপ্ প্ৰγ্নপূৰ্	2,300 - , _γ ,• ,,	924 32 6	- 6 : 97, . • . • . • . • . • . • 82	0.37		• سو آمد
76 - 👡 📢		u. \$		15 20	• - 4 ,	85 95		6 /,	€ مواحقه
26 - 👡 👡 🛪	(. •(,	Car of Car	ا به به په د د د د د د د اول های د د د د د د د د د د د د د د د د د د د	196 🍳 • 🍗 🍃		95.5	0.17 1.25	1,400 / •, (23 /,)	• سو آمد
89 - 📞 🔨	l	1	• 52 14 = 45 - 11 4 4 12646 61 16 62 1	135-√ , . • ,	17 • y s • (+11	68 96		5 /,	
63 - 🗸 💉	(. s → y (y	₹•	Sangari, no la sur sur sur sur sur en	2,300+, , , • ,	10 .• • - ≰,	97.9	0.37		
43, - 👡 👡 🛪	l d	(3,γ() . (1:50 (4.6)	V • • • • • • • • • • • • • • • • • • •	300+, , , • ,	6.	→• •• : 98.			
		• =N : • = = = = = = = = = = = = = = = = = =				• • : 77			
87, 👡 👡 🗝	ا يهاه و دره و هن ادا د هاد وره و دره درا	. S	1.4 sym = 5/5 /	212 - , y .• ,	4	95			
83 - 📞 🤝	Coolballo	- INC.	To prove your own yell	1,200+, γ ,● ,,	54.• • - 1 ,	92.4			
82 - 📞 🐳	ı	Non by	46 40 40 1/6/46 1/0 1/6/5/2 1 10 4/1 1/0 0/1	500 - , γ ,● _γ	• • • • · · · · · · · · · · · · · · · ·	94			
77, - 🕌 👡 अ	ı	· 6.6 (0	. y , . do . d . sy . o , - ay - , - , - , - , - , - , - , - , - , -	300		94.34			

Page 11 of 19

Table 4 Comparison of defect classification systems (Continued)

on the control of the

3,43 a cwa, 443 a cwa,

9.3 Wavelet-based methods

on the growth of the growth of

J.

and the second of the second o

9.4 Use of fractal model

and a supplemental state of the AW BOOLS OF THE way to the to the total and y is la ka croj o 🌘), g grander and appropriate 1, 4,0 g, 1 pg, 11 Man The same of the same of the 1 cm, cray - rearling p), to ording. or owing one just a stone of conjunction of the a 11 11 a a in large on with an (i) i for in large of the a for by some and a some to and factors of the arms of a sor was be enough except age with a con-% == *1.

10. Comparative evaluation of defect classification systems

I had a fact and some for a some of a some of

Discussions on defect classification methods.

10.1 Neural network with back propagation (NN-BP)

com, and of more as as as as a way - a local control and some and 50), 11 a , w a (10 100) 1 - 1 2 24) of loss of the company of Cyy- oloo lu los as a s jas ; 5 9. 1 H. - 9. 1 in glacy. 1000 300.00 = 00 Variation and a second ા 😘 rywords (=) 1 en y grand on properties. त्रात्वक कर्ण अन्यक्ष क्षेत्रक है क्षेत्रक क्षेत्रक है कि स्व = 44 C M = - 1 a (%/ 3% · · · / a, To 1 00 400 1 100 400 400 400 400 400 % 1 %, 4 ... o ... My man log & caparage g i vomani i orini o La i ojni jamil jami I THE THE PARTY OF THE PROPERTY OF THE PARTY 1 day, by alg, .

1 31, 1 , α ,

(30 a m, m, 100);

4%.

a real second of the howard was all and how to

10.2 Support vector machine (SVM)

indication in the contraction of the contraction of ်စ္ကါက ႏွလစ္တရိုင္စိုင္း ေရးကေစာင္ျခာက္မွာ a as in the property of : - log ": Sand to a control of a sand of a control of - Section C . By C_{0} - Section C . If C , we set C_{1} , C_{2} and C_{3} , C . If C , are as a few or say that

2, 3, 5. 1 2, 1 do 2,

C= 4., C 399, A. C. 19, 1004 19, 440

en vinnen za e jenje a Qelij, 4%

1 / 2 / 5 A ay cap, wia. transfer out of court သင့်ရှိသော ရှင် ကား ကားလည်းနှင့်ကား ကာလက်လေး မြင့် သင်္ခာလေး ကြောင့် သို့လည်းကျွန်းကြောက်သောကျွန်း မြို့ကြသည်။ $(a_1, a_2, a_3, a_4, a_4) = (a_1, a_2, a_4) = (a_1, a_2, a_4) = (a_1, a_2, a_4) = (a_2, a_4) =$.) [4. 3 0 0 m g & 4. = - 1 4.4. 1

10.3 Unsupervised classifier

where the matter of the state of the property of the state of the sta magnification of the second and a soule of a soul of a

Table 5 Algorithm processing time - comparative table

Paper	Method	Max. speed of steel object (m/s)	Resolution (across × along)	Suitability for real-time operation (as reported)	Processing time per image: total
64 - , 🕶	. Φ , √ ¬ , ζ γ , Φ Φ ● t ₀	2	0.25 γ , τ • .	• سو-البد	93.7 (• • y 8.34 ,, (y.•• - 76.98 ,,
70 , -1	. • •	20	1 1	ر/ 5 / ₄	178 (• • - 38 , • , • , • -44.5
61 • • · · · · · · · · · · · · · · · · ·	• to the second of the se	18.5			8.33
58, -, 1 € γ, . 1	of to see our	4.6		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	13 , (• , • , • -2 , · • · • · • · • 3 , , • • • · • · • . • 3 , ,
2 1	٠ / ١٠٠٥ / ٢٠٠٠ / ١٠٠٠ / ١٠٠٠ / ١٠٠٠ / ١٠٠٠ / ١٠٠٠ / ١٠٠٠ / ١٠٠٠ / ١٠٠٠ / ١٠٠٠ / ١٠٠٠ / ١٠٠٠ / ١٠٠٠ / ١٠٠٠ / ١	. _y . 100			5.8 () 1 · 1 · 5.6 ,
75, 1 1	60 P2 126 229 2	18	0.5 y . T	ه موخ و	7.315 , A ,

11. Algorithm processing time

100 m/). a a a m, an \$ 5.5-1 3 1 0 0 1 1 0 **9.** () 0.25 ##. | 1 · 1 | 1 · 0 | 0 . j . - 0 A compared for a form encasa etter pras rejas a mest pr anna antas planas resident Trajens general engages

12. Comparative studies

13. Steel surface automated inspection system: overview of commercial developments

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

(1, 2, 4)

Conclusions

- The second of th
 - a) Due to harsh environment of a steel mill, special attention is required for design of illumination and imaging systems. Steel surface images are reported to contain large amount of noise due to surface scale, vibration, improper/variable illumination, presence of pseudo defects etc. Surface defects are of irregular shape and their type and characteristics vary significantly from one mill to another. Characteristics of defects are also dependent on conditions of manufacturing.
 - b) Published literatures indicate that relatively more importance has been given to detection of defects for cold strip surfaces. Recently, attention is also focussed on surfaces of hot strips and bars/rods. A large variety of techniques, both in spatial and frequency domains, have been applied for defect detection. Often, combination of several techniques has provided useful results. With respect to defect classification, some form of neural network or support vector machine-based techniques have been

- found to be of use. Real-time operation of automated inspection system often demands very fast processing of images as mill speed is generally very high for flat and long steel products. This calls for dedicated hardware system with parallel processing capability for each camera.
- c) It is not prudent to compare outcome of different techniques due to lack of common standard with respect to images and experimental methods. This problem is further complicated due to lack of standard definition of defect types.
- d) Commercially produced automated vision-based inspection systems for web materials have reached a high level of maturity. However, they are required to be properly 'tuned' for a particular application. Also, continuous collaboration between designer and user is necessary to adapt the installed system to new varieties/characteristics of defects at the same installation site.

Abbreviations

Competing interests

10000

Received: 2 April 2014 Accepted: 16 October 2014 Published: 13 November 2014

References

y (2001) . \$, Visual inspection of metal surfaces, National Computer Conference, Surface Vision Inspection Systems for steel sheet (3, 4, 2010), . . . • . • , Standardizing Defect Detection for the Surface Inspection of . 6-189–192 28. Online Surface Inspection System for Hot Rolled flat surface, C, 2012) 29. N 50(26), 5122–5129 (2011) 20 ...06. 12
31. Detection and Classification of Surface Defects of Cold Rolling Mill Steel Using Morphology and Neural Network, . 1071−1076. 2008, **v** 2008₁, 2008

, Surface Quality Assessment with Advanced Texture Analysis Techniques (, 2006) , 2006) , Automated On-Line Fast Detection for Surface Defect of Steel Strip Based on Multivariate Discriminant

جرد معري هاد ... 4. 1, 103–108 (2000) , , Automated Inspection of Steel Structures, Recent Advances in Mechatronics (4 4 4 7 7 999), 468–480

The Mechatronics (4 4 4 7 999), 468–480

The Mechatronics (4 4 4 7 999), 468–480

The Mechatronics (4 4 4 7 999), 468–480

The Mechatronics (4 4 4 7 999), 468–480

The Mechatronics (4 4 4 7 999), 468–480

The Mechatronics (4 4 4 7 999), 468–480

The Mechatronics (4 4 4 7 999), 468–480

The Mechatronics (4 4 4 7 999), 468–480

The Mechatronics (4 4 4 7 999), 468–480

The Mechatronics (4 4 4 4 7 999), 468–480

The Mechatronics (4 4 4 4 7 999), 468–480

The Mechatronics (4 4 4 4 7 999), 468–480

The Mechatronics (4 4 4 4 7 999), 468–480

The Mechatronics (4 4 4 4 7 999), 468–480

The Mechatronics (4 4 4 4 999), 468–480

The Mechatronics (4 4 9 999), 468–480

The Conference, 2009, . 2769-2773 Using Optimized Gabor Filters. 10 , , , Defects Detection of Billet Surface 17 , , , , 2008), . .77–82 41. V 4- , Application of Undecimated Wavelet Transform to Surface Defect Detection of Hot Rolled Steel Plates (γ γ γ • • , , 2008), . 528–532 239(2), 159–166 (2010) N. √. + ,, . . • , , . • . • 🔩 , Automatic detection of surface defects on rolled steel using Computer Vision and Artificial Neural Networks, IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society, 2010, . 1081–1086 44. for High-speed Scale-covered Steel BIC (Bar in Coil). . (, 2010), . 342–345 • . PAMI-5(6), 563–572 (1983) \mathbf{v}_{\bullet} \mathbf{v}_{\bullet} Strip Image Segmentation Based on Local Gray Information (• • • • , •••, , , , , , , , , , , , 1–4. Steel (Proceedings of Image and Vision Computing (, , , , , , , , , , , , , , , , ,) , , , , , , , , , , , , 2007), . 158–163 15 . 15, 392–397 (1976) , Defects Detection of Cold-roll Steel Surface Based on MATLAB, IEEE Third International Conference on Measuring Technology and Mechatronics Automation, 2011, . 827–830 、、、、、、、、、、、、、、、、、、、、Strip Surface Defect Detection Algorithm Based 53. Strip Surface Defect Detection Algorithm Ba. on Background Difference (), 2010), 23–26

54. Surface Inspection System of Steel Strip Based on Machine Vision (), 2009), 359–362

55. J., Development of Defect Detection Algorithm in Cold Rolling (), 2008), 1729–1733

58. V = 1. (2010). =:10.1016/...

129, 926–933 (2007) **25**, 66–70 (2007) and its application to Surface Defect Recognition of Hot Rolled Strips (6 10 2 2 2 2007), 2007), 2069–2074. -:10.1109/ 2007.4338916 Segmentation Based on Multifractal Dimension (C→y y • • • , 2009), . 346–350 31(2), 227–237 (2014) 65. 6, 1456–1459 (2012)
66. 6, 1525–1528 (2012)
67. 7. Detection of Scratch Defects on Slab
Surface, 1th International Conference on Control, Automation and Systems, 2011, . 1274–1278 , s γ γ γ , 2008), . 1725–1728 Evaluation System of Steel Strip Based on Computer Vision (, 2009), 32-, Feature Extraction Algorithm Based on Adaptive Wavelet Packet for Surface Defect Classification, Image . 32-35 (Rochester, N.Y.) (, • • **•** , , , 1996), . 673–676. • 📢 🧸 🧳 73. (1.4) (1 Steelmaking Process (• 🐧 - , other in the steel of the ✓ , (•**﴿** , 2010), . 319–323 (***) 1, -10 (2010). 017202 40 4 62 6 0 8 74 700 3(2), 76–89 (2008) 3(2), 76–89 (2008) , Classification Technology for Automatic Surface Defects Detection of Steel Strip Based on Improved BP Algorithm (• (• , 2009), .110-114 , , , Surface defects inspection of cold rolled strips based on neural , 2005), . . 18–21 , Design of a Binary Decision Tree Using the Genetic Algorithm and K-Means Algorithm for Recognition of the Defect

γ • \$\sqrt{2012} = \cdot \cdo

6(2), 168–170 (2012)

Classification Method Based on Weak Classifier Adaptive Enhancement, IEEE

- Third International Conference on Measuring Technology and Mechatronics Automation, 2011, . 958-961

- **38**, 7251–7262 (2011)
- , , , , . , Surface Inspection of hot Rolled Seamless Tube, Journals-Chernye Metally (Ferrous Metals), 2009. #4
- 88. , (), 2010), .1–6 88. , Fuzzy Inference Systems Applied to Image Classification in the Industrial Field, Fuzzy Inference System Theory and
- Image Classification in the Industrial Field, Fuzzy Inference System Theory and Applications, 2012. 978-953-51-0525-1

 N
 40(2), 1443–1448 (1993)

 Surface quality inspection and quality data application for Hot strip coil, 1/4 (1) 1/24

 1415

 '2012

 '2012

 Jag, 557–564 (2004)

 Imaging-based In-Line Surface Defect Inspection
- for Bar Rolling, AIST Iron & Steel Conference and Exposition (, Imaging-based In-Line Surface Defect Inspection y, 2004)
- Surface Inspection Systems (, , 2012). . . .
- Strip Surface Inspection System Based on Machine Vision ()
- Assurance for hot Rolled Steel Bars, DOE Sensors & Automation. ● (¬ ● , • t , 2005, . 1–19

doi:10.1186/1687-5281-2014-50

Cite this article as: • • et al.: Review of vision-based steel surface inspection systems. EURASIP Journal on Image and Video Processing 2014 2014:50.

Submit your manuscript to a SpringerOpen® journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com