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1. INTRODUCTION 

Let fo(x),f,(x),...,fm(x) be differentiable functions defined on a set 
C c E", and let J(X) denote the vector (f,(x),...,f,(x))‘. Consider the 
problem 

yj$ fo(x) (1.1) 

subject to f(x) < 0. (1.2) 

According to the Kuhn-Tucker theorem it is necessary, under certain 
constraint qualifications, that for X, to be minimal in this problem, there 
exists a vector u,, E E" such that 

and 

I?, > 0. (1.5) 

If all the functions fo(x),f,(x),...,f,(x) are convex on C then these 
conditions are also sufficient. 

Various classes of functions have been defined for the purpose of 
weakening this limitation of convexity in mathematical programming. 
Mangasarian [ 11 has speculated that pseudo-convexity of&(x) and quasi- 
convexity off(x) are the weakest conditions that can be imposed so that the 
above conditions are sufficient for optimality. It will be shown that there are 
other wide classes of functions for which the conditions are sufficient. 
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A dominant feature in the use of convexity is that local optimality implies 
global optimality; and consequently it may appear that the local nature of 
the differential calculus may be an inhibiting factor in generalizing too far 
away from convexity. Another much used property of convex functions is 
that they are always bounded on one side by their tangent hyperplanes at 
any point, which facilitates the use of linear bounds and approximations. 

The use of nonlinear bounds will be considered here. From the definition 
of a convex differentiable function 4(x) on C, 

#(x1) - 4(x*) > (XI - -5)’ “#(X2> for all x,, x2 E C, 

it is suggested by the generalization of Taylor’s expansion by Burmann 
]see 21 (being an expansion of a function in powers of another given 
function, rather than simply in powers of x) that we consider a class of 
functions, with prescribed nonlinear bounds, given by the following 
definition: 

4(x,) - 4(x,) > v’(x, ,x*> “#(x2> forall x,,x,EC, (1.6) 

for some arbitrary given vector function r](x,, x2) defined on C x C. Note 
that the sum of any number of funtions satisfying (1.6) also satisfies (1.6), a 
property that is lacking in quasi-convex and pseudo-convex functions, 

2. SUFFICIENCY 

THEOREM 2.1. Let &(x), f,(x),..., f,,,(x) be differentiable functions on 
C c E” satisfying (1.6) for some g(x, ,x2) on C x C. Zf there exist x0 E C 
and u0 E E” satisfying the Kuhn-Tucker conditions (1.3)-( 1.5) then f,,(xO) = 

minX,JfO(x) If(x) G 01. 

ProoJ For any x E C satisfying f (x) < 0 we have 

.hJ(x) - f&o> > v’h x0> “f&d 
= -r’(x, x0> “ubf(x,) by (1.3), 

> -G(f (x) -./Xx,)) by (1.6) and (1.5), 

= -?Jbf(x) by (1.4) 

>O by (1.2) and (1.5). 

So x0 is minimal, which proves the theorem. 
Note, more generally, that the proof of Theorem 2.1 requires that 

definition (1.6) apply only at the points (x, x,), where x is any point in C 
and x,, is the minimal point. 
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Consider the following example involving a mixture of trigonometric, 
linear, and quadratic functions: 

minimize 

subject to 

and C is the constraint 

&(x) = x, - sin x, 

f,(x)-sinx,-4sinx,<O, 

f,(x) = 2 sin x, + 7 sin x2 + x, - 6 < 0, 

fj(X) = 2x, + 2x, - 3 < 0, 

f,(x) = 4x: + 4x; - 9 < 0, 

f5(x) = -sin x, < 0, 

f,(x) = -sin x2 < 0, 

set defined by f(x) < 0. 
Note the non-convex nature of the constraint set and of the objective 

function. All of these functions satisfy definition (1.6) with 

sinx, - sin u, 

cos u, 
rl(x, u) = i I3 sin x, - sin u, 

cos l4* 

FIGURE 1 
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where 

and 

Here the Lagrangian function 15(x, v) F JO(x) + v/f(x) is 

L = x, - sin x, 

+v,(sinx, -4sinx,) 

+ v,(2 sin x, + 7 sin x2 +x, - 6) 

+ 0,(2x, + 2x, - 3) 

f t.J4xf + 4x; - 9) 

+ v,(-sin x,) 

+ c,(-sin x2), 

and it is easily verified that the Kuhn-Tucker conditions (1.3)-(1.5), are 
satisfied by 

and 

ug= [O, l/7,0,0, 10/7,0]‘, 

x, = 10, sin-‘(6/7) I’. 

Note that in order to apply Theorem 2.1 it is not necessary to know the 
function ~(x,, x1). It is sufficient to know that it exists. 

3. EXISTENCE OF THE FUNCTION q(xl,x,) 

It would be desirable to establish general criteria for determining in any 
given case whether there exists a function ~(x,, x2) satisfying the system of 
inequalities 

or, in matrix notation 

Arl<C, (3.1) 
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where A is the Jacobian matrix P.fx-%)l and C is the vector 

I.ml> - m2>1* 
From Gale’s theorem of the alternative [3] either the system Aq < C has a 

solution q, or the system A’y = 0, C’y = -1, y > 0, has a solution y, but not 
both. In a given situation one could in principle determine the existence of q 
in the former system by determining the nonexistence of y in the latter 
system. 

4. DUALITY 

We consider the following pair of problems defined on C: 

Primal Problem. 

minimize fO(x) (4.1) 

subject to f(x) < 0 (4.2) 

Dual Problem. 

and 

ma$,xiize&(u) + v’f(u) 

subject to V’O(~) + Vulf(u) = 0 

v>o 

(4.3) 

(4.4) 

(4.5) 

THEOREM 4.1. Under the conditions of the Kuhn-Tucker theorem, $x0 
is minimal in the primal problem, then (x0, vO) is maximal in the dual 
problem, where v,, is given by the Kuhn-Tucker conditions, andh(x), i = 0, 
1 ,..., m, satisfy (1.6); and the extremal values are equal in the two problems. 

Proof: Let (u, v) be any vector satisfying constraints (4.4) and (4.5) of 
the dual problem. 

Then, 

I.m,> + w-c41 - M3(u> + vY(u>l 
=.fxx,) - fo(u) - cm> by (I.4), 

2 V’@O> u> Yfofo(u> - v’f@> by (1.0 

= +(x0, u) [‘f(u) - v’f(u) by (4.4), 

= -v’f(x,) by (1.0 

20 by (4.2) and (4.5). 
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So (x,, 0,) is maximal in the dual problem, and since L&~-(X,) = 0, the 
extrema of the two problems are equal. 

5. FURTHER GENERALIZATION 

Corresponding to the definitions of quasi-convexity and pseudo-convexity 
we can define two more general classes of functions, respectively: 

for all x,,x,E C. 
It can readily be shown that in problem (l.l), (1.2), iff,(x) satisfies (5.2) 

and J(x), i = l,..., m, satisfy (5.1), the Kuhn-Tucker conditions are 
sufficient. 

Comment. It is apparent that the classes of functions introduced by 
definitions (1.6), (5.1), and (5.2) will replace convex and generalized convex 
functions in most of the theory and applications of mathematical 
programming and cognate topics in their more general ramifications. 
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