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Abstract

In this paper, a new class of generalized convex function is introduced, which is called the strongly
a-preinvex function. We study some properties of stronglgreinvex function. In particular, we
establish the equivalence among the stronrglyreinvex functions, stronglg-invex functions and
strongly an-monotonicity under some suitable conditions. As special cases, one can obtain several
new and previously known results ferpreinvex (invex) functions.
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1. Introduction

In recent years, the concept of convexity has been generalized and extended in several
directions using novel and innovative techniques. An important and significant generaliza-
tion of convex functions is the introduction of invex function, which was introduced by
Hanson [1]. This concept is particularly interesting from optimization view point, since it
provides a broader setting to study the optimization and mathematical programming prob-
lems. Ben-Israel and Mond [2] introduced a class of convex functions, which is called the

* Corresponding author.
E-mail addressesnoormaslam@hotmail.com (M.A. Noor), khalidanoor@hotmail.com (K.I. Noor).

0022-247X/$ — see front matted 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2005.05.014



698 M.A. Noor, K.I. Noor / J. Math. Anal. Appl. 316 (2006) 697—706

preinvex function. Itis known that the differentiable preinvex functions are invex functions,
but the converse is not true. However, Mohan and Neogy [3] have shown that the preinvex
functions and invex functions are equivalent under certain conditions. Weir and Mond [4]
and Noor [5] have shown that the preinvex functions preserve some nice properties that
convex functions have. Jeyakumar and Mond [6] introduced and studied another class of
generalized convex functions, which is known as strongiyvex function. It has been
shown [6,7] thatx-preinvex @-invex) have useful and important applications in general-
ized convex programming and multiobjective optimization. We note that the concept of the
strongly @)-invex function defined in [6,7] is misleading. Compare Definitions 2.9-2.11
with those of Jeyakumar [7] and Jeyakumar and Mond [6].

Motivated and inspired by the research going on in this fascinating field, we introduce
a new class of generalized functions, which is called strongpreinvex functions. We
also introduce several new concepts of stronglymonotonicities. We establish the re-
lationship among the strongly-preinvex, stronglyr-invex andan-monotonicities under
some suitable and appropriate conditions. We also give a necessary condition for strongly
an-pseudomonotone invex functions. As special cases, one can obtain several new and
correct versions of the previously known results for various classes of preinvex and invex
functions.

2. Preliminaries

Let K be a nonempty closed set in a real Hilbert sp&teWe denote by.,.) and
|l.II the inner product and norm respectively. LletK — H andn(.,.): K x K — R be
continuous functions. Let: K x K — R \ {0} be a bifunction. First of all, we recall the
following well-known results and concepts.

Definition 2.1. Letu € K. Then the seK is said to bex-invex atu with respect to(.,.)
anda(.,.), if, forall u,ve K, t €[0, 1],

u+ta(v,u)n(v,u) e K.

K is said to be ar-invex set with respect tp ande, if K isa-invex ateach € K. The
a-invex setk is also calledxn-connected set. Note that the convex set with, 1) = 1
andn(v, u) = v — u is an invex set, but the converse is not true.

Remark 2.1.

() If a(v,u) =1, then the seK is called the invexif-connected) set; see [4,6,7].
@ii) If n(v,u) =v—uand O< a(v, u) < 1, then the seK is called the star-shaped.
(iii) If a(v,u)=1andn(v,u)=v — u, then the seK is called the convex set.

From now onwardK is a nonempty closed-invex set inH with respect tax(.,.) and
n(.,.), unless otherwise specified.
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Definition 2.2. The functionF on thex-invex setK is said to bex-preinvex with respect
to«a andn, if

F(u + ta(v, u)n(v, u)) <A-0HFm)+tF@w), VYu,vek, tel01].

The functionF is said to bex-preconcave if and only if- F is a-preinvex. Note that
every convex function is a preinvex function, but the converse is not true. For example, the
function F (u) = —|u| is not a convex function, but it is a preinvex function with respect to
n anda (v, u) = 1, where

v—u, ifv<0, u<0andv>0, u=>0,
u—v, otherwise

n(,u) = {

For the applications in generalized convex programming and multiobjective optimiza-
tion see [6,7].

Definition 2.3. The functionF' on thex-invex setK is called quasi-preinvex with respect
to o andn, if

F(u+ta(, wn(,u)) <max{F@), F(v)}, Yu,vek, te[0,1].

Definition 2.4. The functionF on thea-invex setkK is said to be logarithmig-preinvex
with respect tax andy, if

F(u+ta(, uyn,0) < (Fw) " (F®), u,vek, re01],
whereF(.) > 0.
From the above definitions, we have

F(u+ta(u, w)n(v, u)) < (F(u))l"(F(v))’ <A —0Fu)+1F@)
<max{ F(u), F(v)} <max{F(u), F(v)}.

Fort =1, Definitions 2.2 and 2.4 reduce to:

Condition A.

F(u+a@,un(,u)<F), VYuvek,

which plays an important part in studying the properties of dhpreinvex @-invex)
functions. Some properties of thepreinvex functions have been studied in [9,12]. For
a(v,u) =1, Condition A reduces to the following for preinvex functions.

Condition B.

F(u+n@,u)<F@), Yuvek.

For the applications of Condition B see [9,12].
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Definition 2.5. The functionF on thea-invex setK is said to be pseude-preinvex with
respect tax andn, if there exists a strictly positive functid(.,.) such that

Foy<Fu = F(u +ta(v, u)n(v, u)) <Fu)+t(@—1)b(u,v),
u,ve K, t€[0,1].

Lemma 2.1. If the functionF is «-preinvex function oK with respect taxr andn, thenF
is pseudax-preinvex function with respect toandr.

Proof. Without loss of generality, we assume thatv) < F(u), Yu,v € K. For every
t € [0, 1], we have

F(u+ta(,wn,u)) < Q—0Fw) +tF@) < Fu) +t(t —D{F@u) — F(v)}
=F(u)+t(@—Db(v,u),
whereb(v, u) = F(v) — F(u) > 0. Thus it follows that the functiof' is pseudaex-preinvex
function with respect tee andn, the required result. O
Definition 2.6. The differentiable functiorf’ on K is said to be am-invex function with
respect tax andn, if
F() — F(u) > (@, u)F'(u),n(v,u)), Vu,veKk,

whereF’(u) is the differential ofF atu € K. The concepts of the-invex ande-preinvex
functions have played very important role in the development of convex programming; see
[6,7]. Note that forx (v, u) = 1, Definition 2.6 is mainly due to Hanson [1].

Definition 2.7. An operatorT : K — H is said to be:

(i) stronglyan-monotone, iff, there exists a constant> 0 such that
(e, w)Tu, n(v, w)) + (e, v)Tv, n(u, v)) < —as{|n(v. u)||2 + | n(u. v) ||2}
Yu,veKk;
(i) an-monotone, iff,
(a(v, u)Tu,n(v, u)) + (a(u, v)Tv, n(u, v)) <0, Vu,veKk;
(iii) strictly an-monotone, iff,
<oc(v, u)Tu,n(v, u)) + (oz(u, v)Tv, n(u, v)) <0, Vu,veKk;
(iv) stronglyan-pseudomonotone, iff, there exists a constant0 such that
<a(v, w)Tu, n(v, u)) + v||n(v, u) H2 >0 = —(a(u, v)Tv, n(u, v)) >0,
Yu,veKkK;
(v) an-pseudomonotone, iff,

<oz(v,u)Tu,n(v,u))>O = (a(u,v)TU,n(u,v)><0, Yu,veK;
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(vi) quasian-monotone, iff,
<oz(v, u)Tu,n(v, u)) >0 = (a(u, V)T, n(u, v)) <0, Vu,vek;
(vii) strictly an-pseudomonotone, iff,
<a(v, w)Tu, n(v, u)) >0 = (a(u, V)T, n(u, v)) <0, Vu,vek.
Note that fora(v,u) = 1, Yu,v € K, the a-invex setK becomes an invex set. In
this case, Definition 2.7 is exactly the same as in [9,12]. In additiom(if «) = 1 and

n(v,u) = v — u, then thea-invex setk is the convex seK and consequently Defini-
tion 2.7 reduces to the one in [14,15] for the convexiget

We now define the concept of stronglypreinvex andr-invex functions on the-invex
setk.

Definition 2.8. A function F on the sefK is said to be strongly-preinvex, if there exists
a constanf > 0 such that

F(u + ta(v, iyn(v,0)) < (L= ) F () + tF(v) — t (L= Ope||n(w,0)[|?, Yu,v e K.
Note that foru = 0, strongly«a-preinvex functions reduces t@-preinvex functions as
defined in Definition 2.2.

Definition 2.9. A differentiable function on the seK is said to strongly-invex function
if there exists a constapt > 0 such that
F(v) = F(u) > (e, u)F'(u), n(v, w)) + | n (v, u)

where F’(u) is the differential of a function atu € K. Clearly Definition 2.8 includes
Definition 2.3 as a special case.

2

Yu,veKkK,

From Definition 2.9, we have the following concepts.

Definition 2.10. A differentiable functionF on K is said to be strongly pseudo;-invex
function, iff, there exists a constant> 0 such that

(a(v,u)F/(u),n(v,u))+u||n(u,v)||2>0 = F@) —Fu) >0 Vuvek.

Definition 2.11. A differentiable functionF on K is said to be strongly quasai-invex, if
there exists a constapt> 0 such that

FW<Fu = (oz(v,u)F'(u),n(v,u))—i—u”n(v,u)”z<O, Yu,vek.

Definition 2.12. The functionF on thea-invex setK is said to be pseuden-invex, if
(@@, w)F'(w),n(v,u)) >0 = F)>Fu), Yuvek.

Note that, ifa(v, u) = 1, then thex-invex setK is exactly the invex seK and con-
sequently Definitions 2.10-2.12 are exactly the same as in [9]. In particulgly,ifi) =
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—n(v,u), Vu, v € K, that is, the functiom(.,.) is skew-symmetric and (v, u) = 1, then
Definitions 2.8—2.12 reduces to the ones in [10,12]. This shows that the concepts introduced
in this paper represent an improvement of the previously known ones. All the concepts de-
fined above play important and fundamental part in the mathematical programming and
optimization problems; see [6,7].

We also need the following assumption regarding the functigns) ande(.,.).

Condition C. Letn(.,.): K x K — H andua(.,.) : K x K — R\ {0} satisfy the assumptions

n(u, u+ta(v, u)n(v, u)) =—tn(v,u),

n(v,u+ta(,u)n(v,u)) =1 -0n(,u), VYu,vek, te[0,1]
Clearly forr = 0, we havey(u, u) =0, Vu € K. One can easily show [12] that

n(u + ta(v,u)n(v, u), u) =tn(,u), VYu,veKk.

Note that fora (v, u) = 1, Condition C collapses to the following condition, which is
due to Mohan and Neogy [3].

Condition D. Let 5(.,.): K x K — H satisfy the assumptions

n(u,u+tn,u)) =—im,u),
n(v, u—+tnv, u)) =A-0n(,u), VYu,vek,te[01].
For the applications of Condition D see [7,12,13].

3. Main results

In this section, we consider some basic properties of stramglyeinvex functions on
the-invex setk .

Theorem 3.1. Let F be a differentiable function on theinvex setk . Let ConditionC hold
anda(u, z) =a(v, z), Vu, v, z € K. Then the functiorF is a stronglya-preinvex function
if and only if F is a stronglya-invex function.

Proof. Let F be a stronglyx-preinvex function on the-invex setK. Then,Vu, v € K,
te[0,1], vy =u+ta(v,u)n(v,u) € K and

F(u+ te(, u)n(v.0)) < A= F@) +1F©) — 11— 0| nw.w)]?,
which can be written as

F) - Fuy > 2ol u)?(v’ D) =P 41— . w2

Lettingr — 0 in the above inequality, we have

Yu,v ek,

F) = F(u) > e, u)F' (), n(v, 1)) + | n v, w)|?,
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which implies thatF' is a stronglyx-invex functions.
Conversely, lef” be a strongly-invex function on thex-invex functionk . Then, using
Condition C, we have

F(v) = F(o) = (@, v)F' (), n(v, v)) + 1| 0w, v)|)?
= (1= D, v)[F (), n(, w) + p(L = 2|, w)]?. (3.1)

In a similar way, we have

Fu) — F(oy) > (o, v) F'(ur), (. o)) + e, v) |
= —ta(u, v)(F' (), (v, ) + 2 v, )|, (3.2)

Multiplying (3.1) byt and (3.2) by(1 — r) and adding the resultant, we have
F(u+ta(v, uyn(v, 1)) < (L—0)F(u) + 1 F(v) — pt (L= )| n(v, w])?,

showing thatF is a stronglyx-preinvex function. O

Theorem 3.2. Let F be differentiable function on the-invex setX . If the functionF is a
stronglya-invex function, then its differentidl’ (1) is stronglyan-monotone. Conversely,
if the functiona (v, u) is a symmetric function, that is,(v, u) = a(u, v), Vu, v € K, then
F is a stronglyx-invex function provided Conditions and C hold.

Proof. Let F be a stronglyx-invex function on thex-invex setk . Then

F(v)—F(u)2<a(v,u)F’(u),n(v,u))—i—u”n(v,u) 2, Yu,veKkK. (3.3)
Changing the role o andv in (3.3), we have
F(u)—F(v)>(a(u,v)F/(v),n(u,v))—i—u”n(u,v) 2, Yu,vek. (3.4)

Adding (3.3) and (3.4), we have

(o, w)F'(u), n(v, w)) + e (u, v) F' (v), n(u, v))
<=uffn@ o[+ o ]}, (35)

which shows thaf” is stronglyaen-monotone.
Conversely, let the differentidl’ («) be stronglyen-monotone. Then

o, ) F' (), n(u, v)) < —{or (e, v) F' (), n(o,w)) — {0, w)]|? + |, v) [},

which can be written as

(F'(), n(u, v)) < —=(F' ), n(w, ) — @{ [n(, ) | >+ | nw, v||?}, (3.6)

sincea (v, u) is a symmetric function and = u/a (v, u).
SinceK is ana-invex setVu,v e K, t € [0,1], v, = u + ta(v, u)n(v,u) € K. Taking
v = v, in (3.6) and using Condition C, we have
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(F' (), 0, v)) < =(F' @), n(or, ) — i |0 v, )] > + [0, v) |}
= —t{F (), n(v,w)) — 22| n (v, w) | %,

which implies that
(F'(p), n(w, w)) = (F' @), n(v, w)) + 24t | n(v, w) . (3.7)
Let
gt)= F(u + ta(v, u)n(v, u)), Yu,ve K, t €[0,1].
Then from (3.7), we have
g0 ={a@,u)F'(u+1m(v,u),n(,u)
> (o, ) F' (), n(v, )+ 2jia(v, )it [ n(v, u) ||
= (a(v, u) F'(u), n(v, w)) + 2ut |n (v, u)||2. (3.8)

Integrating (3.8) between 0 and 1, we have
2

g(1) — g(0) = (a(v, w)F'(u), n(v, )+ u|n(v, u)
that is,

F(u + a(v, u)n(v, u)) —Fu) > (oc(v, W F' (u), n(v, u)) + /L”r;(v, u) ||2
By using Condition A, we have

F) = F@) > (@, u) F' @), n(, w)) + p|n @, w) |,

which shows that the functioR is a strongly invex function on the invex st O

Note that ifa (v, u) = 1, then Theorem 3.2 collapses to the following result for strongly
invex (preinvex) functions.

Theorem 3.3. Let ConditionB and D hold. The differentiable functiof on the invex set
K is invex(preinvey function if and only if its differentiaF’ is n-monotone.

For « = 0, Theorem 3.2 reduces to the following result for drénvex (x-preinvex)
functions.

Theorem 3.4. Let F be a differentiable function and let ConditioBsandA hold. If« (v, u)
is asymmetric function, then the functidnis «-invex(«-preinvey function if and only if
its differential F’ is an-monotone.

We now give a necessary condition for strongly psemglonvex function, which is also
a generalization and refinement of results proved in [10,12].

Theorem 3.5. Let the differentialF’ (1) of a functionF (1) be stronglyxn-pseudomonotone.
If ConditionsA and C hold, then the functio is strongly pseudan-invex function.
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Proof. Let F’(u) be stronglyen-pseudomonotone. Theviy, v € K,
(e (v, ) F' (), (v, 1) + | nw, w)]|?) > 0,
implies that
—<a(M,U)F/(U), 77(”»”))20 (39)

SinceK is ana-invex setVu,v e K, t € [0,1], v, =u + tan(v,u) € K. Takingv = v; in
(3.9) and using Condition C, we have

(F'(v)). n(w,uw)) >0. (3.10)
Let

g(t)=F(v)=F(u+ta,un@,u), Yu,vek,re[01].
Then, using (3.10), we have

g'(0) ={a(, u)F'(v;), n(v,u)) > 0.
Integrating the above relation between 0 andvé have

g(1) —g(0) =0,
that is,

F(v;) — F(u) 20,
which implies, using Condition A,

F(v)—F(u) >0,

showing thatF is strongly pseudan-invex function. O
As special cases of Theorem 3.5, we have the following:

Corollary 3.1. Let the differentialF’ () of a functionF (1) on thea-invex setk be an-
pseudomonotone. If ConditioAsand C hold, thenF is pseudaxn-invex function.

Corollary 3.2. Let the differentialF’ (1) of a functionF (1) on thex-invex setk be strongly
n-pseudomonotone. If Conditiodsand C hold, thenF is strongly pseudg-invex func-
tion.

Corollary 3.3. Let the differentialF’(u) of a functionF () on the invex sek be strongly
n-pseudomonotone. If ConditioBsand D hold, thenF is strongly pseudg-invex func-
tion.

Corollary 3.4. Let the differentialF’ («) of a functionF () on the invex sek be n-pseu-
domonotone. If ConditionB and D hold, thenF is pseudo invex function.
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4. Conclusions

In this paper, we have defined some new concepts of stranglseinvex -invex)
functions and stronglywn-monotone operators. We have established some new relation-
ships among various concepts of preinvex (invex) functions. As special cases, one can
obtain several refined and correct versions of the previously known results [6,7,10,12,13].
For the applications in variational inequalities and equilibrium problems, see [8,10-13]
and the references therein.
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