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Rescue of a telomere length defect of Nijmegen breakage
syndrome cells requires NBS and telomerase catalytic subunit
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Nijmegen breakage syndrome (NBS) is a rare human Results and discussion
We investigated whether the vulnerability of Nijmegendisease displaying chromosome instability,

radiosensitivity, cancer predisposition, breakage syndrome (NBS) cells to chromosome instability
could be associated with altered telomere dynamics.immunodeficiency, and other defects [1, 2]. NBS is

complexed with MRE11 and RAD50 in a DNA repair Bloodmononuclear cellDNAswere isolated from affected
patients and their family members for the typical 657del5complex [3–5] and is localized to telomere ends in

association with TRF proteins [6, 7]. We show that NBS frameshift mutation [8] and from unaffected fami-
lies. These samples were analyzed by restriction enzymeblood cells from NBS patients have shortened

telomere DNA ends. Likewise, cultured NBS digestion, fractionation by gel electrophoresis, and in gel
hybridization to telomere repeats using a telomere-spe-fibroblasts that exhibit a premature growth

cessation were observed with correspondingly cific probe as previously described [9]. We examined sam-
ples from NBS patients with an age ranging from 7 to 18shortened telomeres. Introduction of the catalytic

subunit of telomerase, TERT, was alone sufficient to years and unaffected individuals ranging from 9 to 46
years of age. Quantitation of the Terminal Restrictionincrease the proliferative capacity of NBS

fibroblasts. However, NBS, but not TERT, restores Fragment (TRF) differences indicated that the telomeric
DNA for NBS patients was significantly shorter. NBSthe capacity of NBS cells to survive � irradiation

damage. Strikingly, NBS promotes telomere patients yielded a mean TRF of 7.77 kb compared with
10.32 kb for normal patients (p � 0.0032; Figure 1a). NBSelongation in conjunction with TERT in NBS

fibroblasts. These results suggest that NBS is a heterozygotes were not significantly different from the
TRF values for the unaffected patients; although, therequired accessory protein for telomere extension.

Since NBS patients have shortened telomeres, these data was insufficient to monitor TRF as a function of age
(data not shown). These results are suggestive of a strongdefects may contribute to the chromosome

instability and disease associated with NBS patients. correspondence between reduced telomere length and
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increased proliferative capacity. Yet, at �25 PD (popula-
tion doubling), 880823H cells yielded shorter TRF and
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Figure 1

Decreased telomere length and poor
proliferation in Nijmegen breakage syndrome
cells. (a) Peripheral blood mononuclear cell
genomic DNA was isolated, and telomere
lengths were assessed by in gel hybridization
using a radiolabeled telomere repeat probe,
(C3TA2)3. A comparison of mean Terminal
Restriction Fragment (TRF) from NBS
patients and unaffected individuals (NBS�/�)
is shown. (b) Primary fibroblasts from three
NBS patients and an unaffected individual
were compared for population doubling over
time. The three NBS cultures (GM07166,
780816J, and 880823H) had poorer growth
properties than the control culture (IMR90).
(c) Cell cultures at early and late passage
were compared for telomere TRF by in gel
hybridization.

reduced the proliferative capacity, in contrast to wild-type absence of NBS did not alter in vitro telomerase activity
scored with the TRAP assay (data not shown).fibroblasts, IMR90 (Figure 1b). Therefore, 880823H cells

also reveal an NBS-related defect after extended passag-
ing. For early passage of GM07166 and 880823H cultures, NBS cells are hypersensitive to gamma irradiation (�R)
the doubling times were equivalent to that of IMR90 [1], reflective of DNA repair or DNA damage signaling
cells, indicating that the NBS cells had not undergone defects. We observed that NBS�/TERT� cells derived
more cell divisions (data not shown). We conclude that from GM07166 or 780816J fibroblasts had significantly
NBS fibroblasts have evidence of premature telomere elevated the �R cell survival properties (Figure 2a). In
malfunction. Thus, it is possible that the observed reduc- contrast, TERT� cells from either patient source re-
tion in telomeric DNA for NBS mononuclear blood cells mained radiosensitive. GM07166 NBS�/TERT� cells
may contribute to the poor proliferative immune re- were also found to reconstitute normal survival following
sponses of these patients [14]. �R, but 780816J NBS�/TERT� cells could not be estab-

lished (data not shown). Therefore, restoration of NBS
expression reconstitutes the DNA repair and damage sig-The absence of NBS may hamper telomere metabolism
naling defects of NBS cells.in diverse ways. NBS-containing complexes and DNA

repair subunits of the DNA-dependent protein kinase
have been shown to localize to telomeres, and NBS is NBS fibroblasts with added TERT and/or NBSwere next

evaluated for telomere extension. The presence of NBScapable of interactingwith telomere-asssociatedTRFpro-
teins [6, 7]. Likewise, patients with ataxia telangiectasia, or TERT alone had no restorative effect on telomere

length (Figure 2b). Strikingly, the coexpression of NBSATM, exhibit telomeric repeat shortening in blood cells
[15], and NBS is regulated by ATM protein kinase and TERT generated telomere lengths significantly

greater than the parental values for three independentphosphorylation in DNA damage responses [16, 17]. As
telomerase is likely to function coordinately with other infections for the two cell lines (Figure 2b). For the

GM07166 TERT� cells, TRF values were increased fromproteins, NBS may positively facilitate the telomere-
lengthening process in steps such as t-loop formation and 7.35 to 11.71 (p � �0.015) by the addition of NBS. Like-

wise, TRF values were as follows for 780816J (7.9 kb),function or cell cycle-specific associations [6]. Therefore,
to study the role of NBS in telomere regulation, we intro- 780816J TERT� (11.5 kb), 780816J TERT� WZL (11.9

kb), and 780816J NBS�/TERT� (16.6 kb). NBS or WZLduced the NBS gene into NBS fibroblasts via retroviral
transduction as previously described [17, 18] (see Supple- denotes the infection of 780816J TERT�with eitherNBS

or control retrovirus (see Materials and methods). Differ-mentary material available with this article online). As
these cells do not express telomerase activity, TERT was ences between TERT� and NBS�/TERT� cells were

highly significant (p � �0.0001). Thus, NBS promotesdelivered on a second retroviral vector. Thus, the four
resulting NBS cell lines with the following expression telomere elongation in conjunction with telomerase.

Equal loading of DNAs was shown by ethidium bromideprofiles could be compared (NBS�/TERT�, NBS�/
TERT�, NBS�/TERT�, and NBS�/TERT�) at similar staining. Quantitation of terminal repeats using a PNA/

telomere repeat probe and Flow-FISH [19] (data notpassage doublings. IMR90 cells were also transduced with
TERT or a control virus (pBABEneo). The presence or shown) indicated the development of longer telomeres
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Figure 2

NBS is necessary for a telomere-lengthening function. (a) A clonogenic cells derived from NBS fibroblasts were analyzed for telomere length.
cell survival assay following �R was performed for GM07166 TERT�, NBS-A, -B, and -C denote NBS virus introduced into GM07166
GM07166 NBS�/TERT�, 780816J TERT�, 780816J NBS�/TERT�, TERT�, and NBS-D, -E, and -F are three independent viral
and IMR90 cells. The fraction of cells surviving is calculated by transductions into 780816J TERT�, respectively. In gel hybridization
comparison with the colony-forming efficiency of cells without with the telomere repeat probe and ethidium bromide staining of the
irradiation. (b) NBS�/TERT�, NBS�/TERT�, and NBS�/TERT� gels prior to drying are shown.

in GM07166 NBS�/TERT� cells (Relative Fluorescence was readily evident for late passage GM07166 NBS�/
TERT� and NBS�/TERT� cells (day 60; Figure 3b,c).Intensity, RFI, 13.3) compared to GM07166 (RFI, 5.8),

GM07166 TERT�, or GM07166 NBS� cells. Growth of In striking contrast, both NBS�/TERT� and TERT�

cells returned the parental NBS cells to normal growththe NBS�/TERT� or TERT�-only cells for extended
passaging did not further alter telomere lengths, indicat- and showed no senescence (Figure 3d,e). Also, these cells

propagated continuously without evidence of an increaseing an ability of TERT expression to stabilize telomere
length, as noted for wild-type cells previously (data not in a subpopulation that was undergoing apoptosis. Prolif-

eration was greatest for NBS�/TERT� compared withshown). Taken together, these findings demonstrate that
NBS contributes to telomere extension. TERT� cells. Therefore, an ability to maintain telomere

length, rather than an absolute requirement for NBS or
telomerase, influences the senescence checkpoint in NBSOne control limiting the replicative potential of normal

cells is telomere length, since the entry into senescence cells.
and/or induction of apoptosis is correlated with the ero-
sion of telomere repeats [20]. Therefore, we investi- Mammalian proteins that function positively and in tan-

dem with telomerase have not previously been reported.gated whether the introduction of NBS and/or TERT
influences the replicative capacity of NBS fibro- Whereas deficiencies in theKu double-strand break repair

and DNA binding complex yield telomere shortening inblasts. GM07166 NBS�/TERT�, NBS�/TERT�, NBS�/
TERT�, and NBS�/TERT� cells were cultured in paral- yeast, the KU and telomerase (EST2) mutations are not

epistatic [22, 23]. DNA-PK associates with mammalianlel through repeated passages. The addition of NBS alone
failed to extend the proliferative lifespan, as the division telomeres [24, 25], but a functional role has yet to be

defined. TRF1 and TRF2 negatively regulate telomererate of NBS�/TERT� cells was significantly slowed after
limited passaging (Figure 3a). Similarly, NBS�/TERT� metabolism, and their dysregulation can lead to telomere

errors and p53-dependent apoptosis [26–28]. These pro-cells arrested cell proliferation by day 50 in culture. The
cells in these two cultures were heterogeneous, displaying teins bind to the telomeric repeats but are not known to

directly regulate telomerase activity. NBS complexes maya high proportion of enlarged and distended cells, sugges-
tive of senescence. Furthermore, an induction of the se- override negative controls to telomere length imparted

by TRF proteins [6].nescence-associated acidic �-galactosidase activity [21]



Brief Communication 965

Figure 3

Replicative capacity and senescence is influenced by NBS and Determination of senescent cells was assessed at day 60 in the
telomerase. (a) GM07166 fibroblasts transduced with NBS and/ passaging experiments of (a) by staining for acidic �-galactosidase
or TERT retroviruses were serially cultured at 2 � 104 cells per 60 activity [21]. The fraction of blue cells per culture were calculated: (b)
mm well for a period of 2–4 months. A minus sign indicates the GM07166 (0.4), (c) NBS/� (0.39), (d) �/TERT (�0.01), and (e)
infection of control retroviral vectors, pBABEneo or pWZL. (b–e) NBS/TERT (�0.01).

NBS associates with MRE11 and RAD50 and controls the effects. Telomere metabolism errors may confer many of
the pleotropic defects and cancer in NBS patients. Asnuclease activity of MRE11 in vitro [3–5]. Saccharomyces

cerevisiae mutations of these genes lead to cells with short- failure to allow telomere elongation may lead to an in-
creased incidence of tumors in animal models [36, 37],ened telomeres [29], double-strand break repair defi-

ciency, and meiotic defects, arguing that the effects we this study defines a plausible role of NBS as a tumor
suppressor manifested through a requirement in telomerehave observed with mammalian NBS reflect evolution-

arily conserved pathways. NBS/MRE11/RAD50 com- extension.
plexes may facilitate telomerase by modifying telomere
DNA ends, opening up the t-loop [6], or altering chroma-

Materials and methodstin structure and need not be directly associated with a
Cell lines and retroviral transductiontelomerase complex.
Low-passage NBS fibroblasts were obtained from Coriell Human Gene
Mutant Cell Repository (GM07166) and Dr. Patrick ConcannonATMandNBS patients have similar immunodeficiencies, (780816J, 880823H). Normal diploid fibroblasts (IMR90) were pur-

predispositions to cancer, and cellular defects including chased from ATCC. Retroviral transductions were conducted following
cloning of full-length NBS and TERT cDNAs into pWZL, modified withradiosensitivity and chromosome instability [30]. The
a blasticidin-resistance gene and/or pBABEneo, using pseudotypingATM protein kinase is activated by genotoxic agents [31,
with VSV-G envelope protein [17, 18, 38]. Drug selections were either32] and thus may be a transducer of DNA damage signals, with G418 (100 	g/ml) or blasticidin (2 	g/ml). Approximately 8–10

possibly including signals at telomeres. Deficiency of PD was required to establish a stably infected cell culture. Population
doubling was adjusted to 0 following the establishment of a 1–100 mmATM and the related yeast kinases, TEL1 and MEC1,
plate for each viral transduced cell culture. To determine replicativeshow that telomere length decreases [12, 33, 34, 35]. It
potential, cells of different transduced genotypes were grown in parallelis possible that the requirement for ATM in telomere
by passaging 2 � 104 cells/well of 6-well plates every 6 days, in duplicate.

controls is also mediated through NBS. Alterations in The passaging experiment was completed twice.
telomere architecture induce an ATM- and p53-depen-
dent apoptic response in tumor cell lines and primary

Supplementary materiallymphocytes [28]. The loss of NBS/MRE11/RAD50 cell Additional information about NBS protein expression and telomere length
proliferation properties may be a principal driving force determinations is available at http://images.cellpress.com/supmat/

supmatin.htm.in the increase of chromosome anomalies via telomere
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