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Abstract

The probabilistic reliability approach is the most widely used method for reliability analysis. The recent research shows
that the reliabilities of structural systems strongly depend on the parameters of the probability model. It is possible that the
little error in the estimation of the parameters may lead to the remarkable error of the resulting probability. In this study,
we introduce the interval approach into the conventional reliability theory. We present a novel approach which allows us
to obtain the system failure probability interval from the statistical parameter intervals of the basic variables. This
approach is a combination of the two techniques, namely the classical reliability theory and the interval analysis. In the
end of this paper, we show the feasibility of the proposed approach through two examples of the truss systems.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Structural reliability analysis for systems plays an important role in the analysis and design of structures.
The main purpose of structural reliability analysis is to evaluate the structural probability of structural sur-
vival, or its complement, the probability of structural failure, taking into account the uncertainties involved
in the problem. The uncertainties are associated with physical quantities such as external loads, associated
with geometrical properties such as size of a structural member, and associated with theoretical model used
to predict external loads.

In their monograph, Gurov and Utkin (1999) addressed the following fact: ‘‘Due to the complexity of
systems the information about the functioning of its components has different sources. Part of the information
is obtained as a result of statistical experiments and has a probabilistic character. Another part is obtained by
the estimation of the experts and in most cases has an interval character. Information can be obtained as a
result of non-large amount of observations, prechiding construction of exact probabilistic estimates. There-
fore, the development of rigorous mathematical methods of combining the existing information for obtaining
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general estimates of the reliability of the entire system represents an actual problem.” (Utkin et al., 1997). Such
a combination of the probabilistic and non-probabilistic convex analysis was performed by Elishakoff and Li
(1999) to calculate the interval information (continuation) of the reliability function. The hybrid approach was
pioneered by Elishakoff and Colombi (1993, 1994). Monograph by Elishakoff et al. (1994) contained the appli-
cation of this hybrid approach to space shuttle systems. The combined approach was utilized in order to cal-
culate the mean values of the structure’s displacements. The contrast of probabilistic and non-probabilistic
approaches was conducted by Wu et al. (1990) and Elishakoff et al. (1994a,b). In a series of studies, Qiu
et al. (2001a,b, 2004) utilized non-probabilistic convex models in various contexts. Pantelides and Ganzerli
(2001) compared fuzzy sets and convex models. Fang et al. (1998) combined fuzzy sets-based method and con-
vex method. Mullen and Muhanna (1999) as well as Rao and Berke (1997) utilized interval methods to find the
bounds of structural responses.

In this study, we combine non-probabilistic interval analysis and probabilistic methodology, to determine
the bounds of system’s structural reliability by utilizing the method developed by Thoft-Christensen and
Murotsu (1986) for purely probabilistic treatments.

2. System structural reliability methods

Reliability analysis is to analytically formulate the failure given a failure criteria or failure mode. As a sim-
plification, it is assumed that all states of the structure are divided into two states: fail state and safe state. A
function g(X), called limit state function or failure function, is defined such that if g(X) > 0 the structure is in
the safe state, and if g(X) < 0 the structure is in the fail state. Given a limit state function g(X) and a joint
density function fX(x) of the random vector X = (X1, X2, . . ., Xn), the probability of failure is computed by:
P F ¼
Z

gðxÞ60

fX ðxÞdx ð1Þ
The reliability or probability of survival PS, is the complement of PF is computed as (1 � PF). In this paper, we
will use the FORM (First Order Reliability Method) to compute the multi-dimensional integral given by Eq.
(1). The method can be divided into three steps. In the first step, the vector of basic variables X = (X1,
X2, . . ., Xn) is transformed into an independent standard (zero mean and unit standard deviation) normal vec-
tor U = (U1, U2, . . ., Un) using a probability preserving transformation. In the second step, the failure surface
in the u-space is approximated as a linear surface. In the final step, the probability content of the u-space can
be exactly computed for the linear domain.

Before proceeding to the next section, we will discuss the two types of structure systems first, namely
‘parallel systems and series systems.

2.1. Parallel system

The probability of failure of a parallel system with n components described by failure function gi, is given
by
P Fp ¼ P
\n
i¼1

giðuÞ 6 0

 !
ð2Þ
Using FORM, after linearization, each component gi can be written as
giðuÞ � aT
i uþ bi ð3Þ
Defining Zi ¼ aT
i u, where Zi is a standard normal variable, PFp can be approximated as
P Fp � P
\n
i¼1

Zi 6 �bi

 !
¼ Unð�b; qÞ ð4Þ
where Un is the n-dimensional standard normal cumulative distribution function, b is the vector of bi’s, and q

is the matrix of correlation coefficients qij defined by
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qij ¼ aT
i aj ð5Þ
The evaluation of the failure probability is then reduced to the evaluation of the multi-normal integral.

2.2. Series system

The probability of failure of a series system with n components described by failure function gi, is given by
P Fs ¼ P
[n
i¼1

giðuÞ 6 0

 !
ð6Þ
The procedure to estimate the probability of failure of series system is similar to the one described for the
parallel system. The probability of the union of n components is expressed in terms of the intersection of the
complementary events as shown below
P Fs ¼ 1� P
\n
i¼1

giðuÞ > 0

 !
ð7Þ
Each failure surface gi(u) is approximated by a hyperplane (3) using FORM. P F S is then computed by the
multi-normal cumulative distribution function
P Fs � 1� Unðb; qÞ ð8Þ
3. Failure probability interval of parallel systems and series systems

Based on interval mathematics, the failure probability interval of the parallel system and series system can
be obtained from Eqs. (4) and (7)
P I
Fp � P

\n
i¼1

ZI
i 6 �bI

i

 !
¼ Unð�bI ; qIÞ ¼ ½Un; �Un� ð9Þ

P I
Fs � P

[n
i¼1

ZI
i 6 0

 !
¼ 1� UnðbI ; qIÞ ¼ 1� ½Un; �Un� ð10Þ
where bI ¼ ðbI
1; b

I
2; . . . ; bI

nÞ
T is an interval column vector associated with the reliability indices of these compo-

nents. The components of qI ¼ ½qI
ij� are qI

ij ¼ ðaT
i Þ

I
aI

j. Un is the n-dimension standard normal distribution
function.

4. Interval model for component structural reliability with uncertain probabilistic characteristics

In this section, the intervals of the structural reliability indices and the probability of failure of the struc-
ture’s i-th component will be computed.

Define the state function that represents the working state of the i-th component as
Mi ¼ giðuÞ ¼ Ri � Si ð11Þ
where Ri is the resistance, and Si is the stress resultant caused by the various external loads of the i component
structure. Using FORM, the component structural reliability can be calculated as
P Fi ¼ PfMi < 0g ¼ P ðgiðuÞ < 0Þ � Pðaiui < �biÞ ¼ Uð�biÞ ð12Þ
in which bi is structural reliability index
bi ¼
lMi

rMi
¼ lri � lsiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
ri þ r2

si

p ð13Þ
where lri and lsi are the mean values of Ri and Si, rri and rsi are the standard variances of Ri and Si.
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The one-to-one relationship between bi and PFi is given by the following equation
P Fi ¼ Uð�biÞ or bi ¼ �UðP FiÞ ð14Þ
Let us assume that the mean values and standard variances of Ri and Si change within the following
intervals
lri 6 lri 6 �lri; lsi 6 lsi 6 �lsi; rri 6 rri 6 �rri; rsi 6 rsi 6 �rsi ð15Þ
In Eq. (15), �lri; �lsi and lri, lsi are, respectively, the upper and lower bounds of the mean values lri and
lsi; �rri; �rsi and rri, rsi are, respectively, the upper and lower bounds of the standard variances rri and rsi.
The probabilistic reliability of the structure with bounded probabilistic characteristics will become a set as
follows
C ¼ P Fi : Uð�biÞ ¼ U � lri � lsiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

ri þ r2
si

p
 !

;
lri 6 lri 6 �lri; lsi 6 lsi 6 �lsi

rri 6 rri 6 �rri; rsi 6 rsi 6 �rsi

( )
: ð16Þ
Based on Eq. (14) and the monotonicity of Eq. (12), the extremum problem of the probability of failure of
Eq. (16) can be rewritten as the following extremum problem of the structural reliability index
C ¼ bi : bi ¼
lri � lsiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

ri þ r2
si

p ;
lri 6 lri 6 �lri; lsi 6 lsi 6 �lsi

rri 6 rri 6 �rri; rs 6 rsi 6 �rsi

( )
ð17Þ
We should stress that C may be generally complicated geometric shape so it is usually impractical to try to
solve the extremum problem of Eq. (17). Instead, in this study, we are interested in the interval containing the
structural reliability index with uncertain but bounded probabilistic parameters. Therefore, it is instructive to
seek the interval of the reliability index
bI
i ¼ ½bi;

�bi� ¼ ½ðbiÞmin; ðbiÞmax� ð18Þ
where
bi ¼ ðbiÞmin;
�bi ¼ ðbiÞmax ð19Þ
Under the condition that lMi and rMi are not random quantities and hence statistically independent, let us
consider the extreme value problem of the structural reliability index bi. Clearly, the maximum value and the
minimum value can be, respectively, expressed as
ðbiÞmax ¼
ðlMiÞmax

ðrMiÞmin

; ðbiÞmin ¼
ðlMiÞmin

ðrMiÞmax

ð20Þ
For the problem at hand we are looking for an
extremum lMi ¼ lri � lsi ð21Þ
such that
lri 6 lri 6 �lri; lsi 6 lsi 6 �lsi ð22Þ
Since lMi is a linear function of variables lri and lsi, the maximum value and the minimum value of lMi can be
easily obtained as
ðlMiÞmax ¼ ðlriÞmax � ðlsiÞmin ¼ �lri � lsi; ðlMiÞmin ¼ ðlriÞmin � ðlsiÞmax ¼ lri � �lsi ð23Þ
we are also looking for the solution by finding
extremum rMi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

ri þ r2
si

q
ð24Þ
with the constraints
rri 6 rri 6 �rri; rsi 6 rsi 6 �rsi ð25Þ
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Because rMi is a monotonously increasing function of the variables rri and rsi, the maximum value and the
minimum value of rMi can be directly determined as
ðrMiÞmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrriÞ2max þ ðrsiÞ2max

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�rriÞ2 þ ð�rsiÞ2

q
ð26Þ

ðrMiÞmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrriÞ2min þ ðrsiÞ2min

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrriÞ2 þ ðrsiÞ2

q
ð27Þ
Thus, in terms of Eqs. (23), (26), (27), (20) can be rewritten as
ðbiÞmax ¼
ðlMiÞmax

ðrMiÞmin

¼ ðlriÞmax � ðlsiÞminffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrriÞ2min þ ðrsiÞ2min

q ¼
�lri � lsiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrriÞ2 þ ðrsiÞ2

q ð28Þ

ðbiÞmin ¼
ðlMiÞmin

ðrMiÞmax

¼ ðlriÞmin � ðlsiÞmaxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrriÞ2max þ ðrsiÞ2max

q ¼
lri � �lsiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�rriÞ2 þ ð�rsiÞ2

q ð29Þ
Consequently, according to the Eq. (14), the best possible value (or the upper bound) and the worst possible
value (or the lower bound) of the structural reliability can be calculated, respectively, as
P Fi ¼ Uð��biÞ ð30Þ

and
P Fi ¼ Uð�biÞ ð31Þ
5. Numerical examples

Example 1. Consider a 14-bar 2D truss structure as shown in Fig. 1. The elastic moduli and cross-sectional
areas for all members are the same, which are 70 GPa and 0.004 m2, respectively. The data of loads and
resistances of the components are listed in Table 1. The mean value and the standard deviation of the
quantities Ri and Si are uncertain and changing within the following intervals, respectively,
lri ¼ ½lrið1� a1Þ; lrið1þ a1Þ�; lsi ¼ ½lsið1� a2Þ; lsið1þ a2Þ� ð32Þ
rri ¼ ½rrið1� a3Þ; rrið1þ a3Þ�; rsi ¼ ½rsið1� a4Þ; rsið1þ a4Þ� ð33Þ
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Fig. 1. 14-bar 2D truss structure.



Table 1
The statistic data of loads and resistance of the 14-bar 2D truss structure

R1 (MPa) R2 (MPa) R3 (MPa) R4 (MPa) R5 (MPa) S1 (KN) S2 (KN)

Mean value ±288 ±216 ±180 ±360 ±540 125 20
Coefficient of variance 0.15 0.15 0.15 0.15 0.15 0.2 0.2
Components 1, 2, 3 4, 5 6, 8 7, 9, 10, 11 12, 13, 14 – –
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where a1, a2, a3 and a4 are coefficients in the range of a, which is 0–0.1. We will limit ourselves by discussing
the case ai = a(i = 1, 2, 3, 4) in this study. Assume that the stiffness and the loads have normal distributions,
and all components are independent. The buckling effects of the compressed components are neglected. The
failure probability interval of the system is our goal of calculation.

According to the Branch-Bound Method (BBM), the 14 main failure modes of the system can be obtained.
The search tree of this method is shown in Fig. 2, which gives the failure paths of main failure modes. For
example, u ? rdescribes one of the failure paths, and uand r, respectively, denotes the numbering of the
failure components. The lower bounds and the upper bounds of the reliability index and failure probability
corresponding to the 14 main failure modes are shown in Table 2. For this reason, the nominal value of the
component failure probability is used to search the main failure modes in the BBM. The failure probabilities
of the failure modes which are changing with the parameter a are shown from Figs. 3–5. From Figs. 3–5, we
can see that the failure probability intervals of the main failure modes are all increasing as the parameter a
increases, as we expected.
Example 2. Consider a 32-bar 3D truss structure as shown in Fig. 6. The elastic modulus of bars is 70 GPa.
The cross-sectional areas of bars are, respectively, 0.15 m2 for 1st–16th bars and 0.08 m2 for 17th–32th bars.
The data of resistances and loads of the components are listed in Table 3. The uncertain parameters are the
same with Example 1 and the same range of the uncertain coefficients a. Using the BBM, we get the 15 failure
modes of the system. The search tree is shown in Fig. 7. The lower bounds and upper bounds of the reliability
indices and the failure probability are listed in the Table 4. The failure probabilities of the failure modes which
vary with the parameter a are shown from Figs. 8–10. The result of Example 2 is similar to Example 1. The
two examples have shown the feasibility of the proposed probability interval reliability of structure system.
6. Conclusions

The typical reliability theory is based on the statistic theory. Because of the requirement of the probability
theory, the probability reliability method needs a large amount of statistic data. On the other hand, we know
that we can get or estimate the approximate ranges for some parameters with little errors. For these reasons,
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Fig. 2. Search tree of the main failure modes for the 14-bar 2D truss structure.
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Table 2
The lower and upper bounds of the reliability index and the failure probability of the main failure modes the 14-bar 2D truss structure
(a = 0.1)

Sequence number of the failure mode Failure path bi
�bi Pfl P fl

1 8–1 3.896 6.489 4.890 � 10�5 4.324 � 10�11

2 8–5–11 3.896 6.489 4.890 � 10�5 4.324 � 10�11

3 8–5–3–2–6 3.896 6.489 4.890 � 10�5 4.324 � 10�11

4 8–5–3–2–7 3.896 6.489 4.890 � 10�5 4.324 � 10�11

5 8–5–3–2–13 4.135 6.755 1.771 � 10�5 7.163 � 10�12

6 8–5–3–2–10 4.304 6.940 8.387 � 10�6 1.967 � 10�12

7 8–5–3–2–12 4.541 7.197 2.799 � 10�6 3.086 � 10�13

8 8–5–3–2–4 4.570 7.228 2.438 � 10�6 2.453 � 10�13

9 8–5–3–7–2 3.950 6.548 3.920 � 10�5 2.912 � 10�11

10 8–5–3–7–13 4.524 7.179 3.031 � 10�6 3.523 � 10�13

11 8–5–3–13–2 4.6322 7.295 1.809 � 10�6 1.498 � 10�13

12 8–5–4 4.073 6.686 2.320 � 10�6 1.150 � 10�11

13 4–5 4.339 6.978 7.159 � 10�6 1.151 � 10�12

14 4–1 4.339 6.978 7.159 � 10�6 1.151 � 10�12

15 4–10 4.532 7.187 2.922 � 10�6 3.314 � 10�13
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Fig. 6. 32-bar 3D truss structure.

Table 3
The statistic data of resistance and loads of the 32-bar 3D truss structure

Resistance R (MPa) Load S (MN)

Mean value ±325.0 30.0
Coefficient of variance 0.15 0.15
Components
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4.2

4.6

5.0

5.4

5.8

6.2

6.6

7.0
β

14

β
14

β

α
0.00 0.02 0.04 0.06 0.08 0.10
0

1

2

3

4

5

6

7

8

×Pfl (   10   )-6

Pfl14

Pfl14

α

4-1

Fig. 5. The reliability index (a) and the failure probability; (b) intervals of the 14-bar 2D truss structure of the main failure mode (14)
increasing with a.
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researchers want to develop a new reliability analysis approach which can avoid the shortage of probability
method and make use of the approximate ranges of parameters.

The probability interval reliability presented in this article is based on this idea. It avoids the require-
ment of a large mount of data and inherits the developed theory and method of the classical probability



Fig. 7. Search tree of the main failure modes for the 32-bar 3D truss structure.

Table 4
The lower and upper bounds of the reliability indices and the failure probability of the main failure modes for the 32-bar 3D truss structure
(a = 0.1)

Sequence number of the failure mode Failure path bi
�bi Pfl P fl

1 13–18 1.4056 3.7407 9.176 � 10�5 7.993 � 10�2

2 13–27 1.4056 3.7407 9.176 � 10�5 7.993 � 10�2

3 13–5–16 1.4056 3.7407 9.176 � 10�5 7.993 � 10�2

4 13–5–15–18 1.4056 3.7407 9.176 � 10�5 7.993 � 10�2

5 14–6–7–13 1.4088 3.7444 9.041 � 10�5 7.945 � 10�2

6 15–7–6–13 1.4088 3.7444 9.041 � 10�5 7.945 � 10�2

7 16–8–28–14 1.4128 3.7491 8.875 � 10�5 7.886 � 10�2

8 16–25–3–6 1.4271 3.7657 8.306 � 10�5 7.677 � 10�2

9 13–16–7–26 1.4471 3.7887 7.571 � 10�5 7.394 � 10�2

10 15–7–11–20 1.7329 4.1182 1.909 � 10�5 4.155 � 10�2

11 16–8–20–14 2.0022 4.4263 4.792 � 10�6 2.263 � 10�2

12 16–13–8–14 2.1021 4.5401 2.812 � 10�6 1.777 � 10�2

13 16–22–15 2.2003 4.6516 1.647 � 10�6 1.389 � 10�2

14 16–22–23–4 2.3123 4.7785 8.833 � 10�7 1.038 � 10�2

15 14–22–11–5 2.5916 5.0929 1.763 � 10�7 4.777 � 10�3
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approach. The uncertain parameters are described as interval variables in this approach. In terms of the
theory and method of the interval mathematics, the expressions of reliability index, series system failure
probability, parallel system failure probability are obtained in the form of intervals. The method devel-
oped in this paper is the combination of probability reliability theory and interval analysis theory. It
can solve the reliability problem when there is no sufficient data to perform the probability reliability
approach. In the examples of this paper, we can see that the result of the interval reliability is perfect
when the intervals of the parameters are in the appropriate ranges. From the two examples, we can
see the feasibility of this new method.
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