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Life expectancy in the world has increased dramatically during the last century; the number of older
adults is expected to rise while the number of youths will decline in the near future. This demo-
graphic shift has considerable public health and economic implications since aging is associated
with the development of serious chronic diseases. Calorie restriction (CR) is the most effective nutri-

tional intervention for slowing aging and preventing chronic disease in rodents. In non-human and
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human primates, CR with adequate nutrition protects against abdominal obesity, diabetes, hyper-
tension and cardiovascular diseases. Cancer morbidity and mortality are also diminished in CR mon-

keys, and data obtained from individuals practicing long-term CR show a reduction of metabolic
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and hormonal factors associated with increased cancer risk.
© 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

1. Introduction

In the last century life expectancy at birth has markedly in-
creased from about 45 years at the beginning of the 20th Century
to about 77 years today in many developed countries, including
Western Europe, USA, Canada, Japan, Australia, and New Zealand
[1]. This increase is due primarily to reduced infant mortality, bet-
ter hygiene, improved sanitation, the development of antibiotics
and vaccines, and better healthcare [2]. However, the overall in-
crease in average lifespan is far greater than that for healthy life-
span, as evidenced by the rising burden of chronic diseases,
including abdominal obesity, type 2 diabetes, chronic lower respi-
ratory disease, Alzheimer’s disease, heart and cerebrovascular dis-
eases, and malignant neoplasms [3]. Approximately 80% of older
adults (+65 years) have at least one of the above mentioned
chronic diseases, and 50% have at least two chronic diseases [4].
Major risk factors for the onset of some of the most prevalent
chronic diseases are the consumption of diets rich in empty calo-
ries and poor in nutrients (e.g., vitamins, phytochemicals), physical
inactivity and smoking; unless there are substantial reductions in
the underlying risk factors, the human and economic costs from
cardiovascular disease (CVD), cancer and diabetes are expected to
rise in the near future. In contrast to the detrimental effects of
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overeating energy-dense foods, a reduction in calorie intake with-
out malnutrition defined as calorie restriction (CR), has a wide
range of benefits. Moderate CR can prevent or reverse the damag-
ing effects of overweight/obesity, type 2 diabetes, hypertension,
chronic inflammation and other age-associated metabolic diseases.
Studies on rodents, monkeys, and preliminary studies on humans
have shown that more severe CR has additional benefits. The
purpose of this article is to review the current knowledge on the
effects of CR on disease risk and life expectancy in model organ-
isms and humans.

2. Calorie restriction in model organisms

CR remains the most robust non-genetic nutritional experimen-
tal intervention for life extension in many species, including yeast,
fruit flies, nematodes, fish, rats, mice, and dogs [5,6]. Invertebrate
model organisms (i.e., yeast, Caenorhabditis elegans, and Drosophila)
are well-suited for the analysis of the molecular anti-aging mech-
anisms of CR due to their relative simplicity and shorter time
needed to complete longevity studies, as discussed in more detail
elsewhere [7,8]. However, the metabolic, anatomical, physiological
and lifespan differences between these invertebrate model organ-
isms and the mammalian systems are enormous. Rodents provide
an extremely valuable and flexible animal model in which to deter-
mine the ability of CR to extend maximum lifespan and healthspan
in a mammalian system. In rodents, a 30-60% reduction in calorie
intake below usual ad libitum intake initiated early in life caused a
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proportionate 30-60% increase in maximum life span [5,6]. CR
started in adulthood (age 12 months) extended maximum life span
by only 10-20% [9]. To date, mice and rats are the only mammals in
which CR has clearly been shown to increase both average and
maximal lifespan, and to decelerate many age-dependent physio-
logical and structural changes in multiple organs and tissues. In
addition, data from studies with laboratory rodents found that
CR without malnutrition increases healthspan by preventing or
delaying the occurrence of a wide range of chronic diseases. In ro-
dents, cancer is the leading cause of death, accounting for 70-80%
of all deaths, and CR has been shown to inhibit spontaneous, chem-
ically-induced and radiation-induced tumors in several murine
models of cancer [10]. CR without malnutrition has also been
shown to prevent or delay the occurrence of chronic nephropathies
and cardiomyopathies, the second leading causes of death in ro-
dents [5,11]. Moreover, in ApoE knockout mice CR reduced the size
and progression of atherosclerotic lesions when compared to
ApoE—/— mice fed ad libitum, which developed more advanced
and fibrotic lesions [12]. Diabetes, autoimmune and respiratory
disease are also prevented by CR [5,6]. Finally, CR in mice decreases
neurodegeneration, B-amyloid deposition in the brain and en-
hances neurogenesis in animal models of Alzheimer disease, Par-
kinson disease, Huntington disease, and stroke [13,14]. However,
under certain conditions chronic CR may also potentially impair
some key functions, such as immunity and wound healing. For
example, the healing of skin wounds is reduced in long-term CR
mice, but is greatly accelerated by a short period of ad libitum
feeding before the wound is inflicted in CR animals [15]. In addi-
tion, accumulating data suggest that in mice housed in pathogen-
free facilities severe CR increases susceptibility to infections by
bacteria, virus and worms, even though CR has been shown to de-
lay the age-dependent decline in certain immune functions [16].
Considering the breadth of organisms that respond positively to
CR, should it be expected that non-human primates would likewise
show similar results? There are two active randomized, non-hu-
man primates studies testing the benefits of long-term CR on dis-
ease prevention and longevity in rhesus monkeys, one at the
University of Wisconsin at Madison and another at the National
Institute on Aging (NIA) [17,18]. Both trials have shown that
long-term, moderate (~30%) CR can be safely initiated and main-
tained in a primate species. The recent results reported by the Wis-
consin group are the first to show a significant CR-induced benefit
in reducing age-related mortality and disease in rhesus monkeys
[19]. However, when also deaths due to acute conditions (e.g.,
complications of anesthesia, gastric bloat, endometriosis, and in-
jury) were included, overall mortality was not significantly differ-
ent between the CR and control monkeys, even if the trend was still
in the anticipated direction (P = 0.16). Although the demonstrated
health and lifespan benefits are significant findings, a number of
previous studies have suggested the plausibility of this outcome.
Similar to rodents, CR in rhesus monkeys results in lower total
and abdominal adiposity, improved insulin sensitivity and lipid/
lipoprotein profile, decreased body temperature, decreased serum
triiodothyronine concentration and reduced inflammation
[20-23]. Despite the delay in knowing the final outcome of the full
longevity study, the positive outcomes of the available data merit
consideration. For example, CR resulted in a 50% reduction of
age-related diseases, when considering cancer and cardiovascular
disease [19]. The CR monkeys in the Wisconsin study were also
fully protected against the development of obesity and glucose
intolerance/type 2 diabetes [19]. Interestingly, even monkeys that
had glucose metabolism impairment prior to initiation of the CR
regimen, showed no impairment of glucose homeostasis years
later [19]. Sarcopenia, a serious health concern associated with
advancing aging, was also partially prevented in CR monkeys. In
the Wisconsin study, body weight adjusted skeletal muscle mass

declined more rapidly in the control than in the CR group [24]. Fi-
nally, CR monkeys showed improved T cell function and preserva-
tion of gray matter volume in several subcortical regions, including
the caudate, putamen, left insula, and in others key regions related
to motor function and aspects of executive function [19,25]. How-
ever, as rhesus monkeys have a maximum life span of 40 years, it
may be another 10 years before maximal life span data become
available on these primates.

3. Calorie restriction in humans

It is difficult to determine whether CR has beneficial effects on
intrinsic aging and maximal lifespan in humans, because there are
no validated biomarkers of aging and because it is impractical to
conduct randomized, diet-controlled, long-term survival studies
in normal-weight humans. Another potential problem is the inap-
propriate use of the term “calorie restriction” in clinical studies. In
animal studies, CR refers to a state in which the energy intake is re-
duced by 30-50% below the levels consumed by a control group of
animals that eats a chow diet “ad libitum”, and not a high fat or su-
crose diet that results in obesity. In addition, in some studies, food
intake in the control group is limited (i.e., 85-95% of the calories of
animals fed ad libitum) to avoid comparison of the CR group with
control animals that gain some weight with age [26]. In contrast, in
humans the term “CR” is often loosely used to describe any reduc-
tion in energy intake, even if the baseline energy intake is excessive
(i.e., overweight/obese individuals) and it is being reduced to lower
levels. We believe that this is misleading, because in the context of
the aging/longevity studies the term “CR” should refer only to a
state in which energy intake is sufficiently low to achieve or main-
tain a low-normal body weight status (i.e., body mass index
<21 kg/m?) without causing malnutrition (i.e., adequate intake of
proteins and micronutrients). However, for the purposes of dis-
cussing CR in this review, we will focus on the metabolic and phys-
iological effects of CR when applied to normal weight individuals,
and will not discuss the role of CR in treating the pathological state
of overweight/obesity.

Data from epidemiological studies suggest that CR has bene-
ficial effects on human longevity. These studies include natural
experiments, such as a study on the inhabitants of Okinawa (Ja-
pan) who were known to consume fewer calories than residents
of the main Japanese islands [27]. Until 1960, the reported daily
calorie intake of inhabitants of Okinawa Island was 1785 kcal/
day, ~15% and ~40% less than the average calorie intake of a
mainland Japanese (2068 kcal/day) and US (2980 kcal/day) resi-
dent, respectively [28]. In this older cohort of Okinawans (aged
65+) mortality from coronary heart disease and cancer was
markedly lower than in the average mainland Japanese and US
population [29]. As a consequence, Okinawa has approximately
50 centenarians per 100000 inhabitants, one of the highest
numbers of centenarians in the world [30]. Another category of
studies in humans includes more controlled demonstrations of
the effects of CR in normal-weight individuals, such as occurred
with Biosphere 2 which took place in a closed ecosystem in Ari-
zona from 1991 to 1993, involved four men and four women
who experienced a forced decrease in calorie intake for
18 months, because of an unanticipated decrease in food avail-
ability [31]. During the first 6 months, the biospherians con-
sumed ~30% less calories (from ~2500 to ~1784 kcal/day),
rising then to ~2000 kcal/day for the remaining 12 months,
while sustaining high levels of physical activity (~70-80 h of -
work/week) required by their daily duties. This combination of
reduced energy intake and increased physical activity resulted
in a reduction of many anthropometric and physiological param-
eters, including reductions in body weight, blood pressure, fast-
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ing blood glucose, insulin, cholesterol, triiodothyronine and
white blood cells [31].

Another series of metabolic and physiological studies have been
conducted in members of the Calorie Restriction Society, which is a
group that practices self-imposed CR in the belief that CR will ex-
tend their healthspan and lifespan. The CR group consists of lean
volunteers, who had been eating about 1800 kcal/day for an aver-
age of 6.5 years, which is ~30% less calories than age-matched and
sex-matched volunteers consuming a typical Western diet [32].
The CR society members eat a diet rich in nutrient-dense foods,
including a wide variety of vegetables, fruits, whole grains, nuts,
egg whites, fish, low-fat dairy products and lean meat, which sup-
plies more than 100% of the recommended daily intake (RDI) for all
essential nutrients. The decrease in energy intake resulted in a de-
crease in BMI from 23.7 kg/m? at the beginning of CR to a currently
steady BMI of 19.6 kg/m? [32]; total body fat averaged 6.7% in the
CR men and 22.4% in the comparison group men. The metabolic
and physiological data from members of the calorie restriction
society show that CR provides powerful protective effects against
overweight/obesity, type 2 diabetes, inflammation, and left ven-
tricular diastolic dysfunction that are similar to those that occur
in CR rodents and monkeys [33,34]. Serum total cholesterol, low-
density lipoprotein cholesterol, triglycerides, fasting glucose, fast-
ing insulin were all significantly lower, whereas HDL-C was higher,
in the CR group than in the US diet control group [34]. In particular,
the CR society members appear to have much lower levels of blood
pressure (both systolic and diastolic blood pressure) and inflam-
matory markers (i.e., C-reactive protein, tumor necrosis factor-a,
and interleukin-6) than healthy, age- and sex-matched controls
eating typical Western diets [33-35]. Based on a range of risk fac-
tors, it appears that long-term CR has a powerful protective effect
against atherosclerosis and hypertension. This interpretation is
supported by the finding of a low carotid artery intima media
thickness, which was ~40% less in the CR group than in the com-
parison group [34]. Currently, the only known direct evidence that
CR may influence intrinsic aging in humans is that CR society
members who have been on CR for an average of 6.5 years have
better left ventricular (LV) diastolic function than healthy age-
matched and sex-matched controls [33]. Aging results in progres-
sive increase in LV stiffness and impairment in diastolic function,
that involves a slowing of LV relaxation, with a decrease in the rate
of peak early, suction-mediated LV filling (E wave), whereas the
relative contribution of the atrial component of LV filling (A wave)
increases [36,37]. In the volunteers on CR, whose average age was
51 + 12 years, the left ventricular diastolic function was similar to
function in those who were approximately 16 years younger [33]
and is consistent with the beneficial cardiac effects of CR observed
in mice and rats [38].

Although research on CRin humans is still at an early stage, avail-
able information suggests that CR induces a number of the same
adaptive response that occurs in laboratory animals. For example,
CR results in some of the same hormonal adaptations related to lon-
gevity in CR rodents, including lower circulating concentrations of
triiodothyronine, testosterone, and estradiol, and increased adipo-
nectin and steroid hormone binding protein concentrations
[35,39,40]. However, key differences in the metabolic effects of CR
exist between mice and humans. In rodents, CR without protein
restriction induces a 20-40% reduction in the level of insulin-like
growth factor-1 (IGF-1), an important growth factor that mediates
proliferation and inhibits apoptosis [41]. In contrast, in humans,
severe CR does not reduce serum IGF-1 and IGF-1/IGFBP-3 concen-
trations, unless protein intake is also reduced [42]. In addition, ad
libitum fed vegans consuming a mildly restricted protein diet
(~0.75 g of protein/kg body weight/day; ~10% calories from
protein) display significantly lower serum IGF-1 concentrations
than CR individuals eating a relatively high protein diet

(1.73 g of protein/kg/day; ~24% calories from protein) and seden-
tary individuals eating a typical Western diet (1.24 g of protein/kg/
day; ~16% calories from protein), further suggesting that protein in-
take is more important than calorie intake in modulating circulating
IGF-1 levels in humans [42]. This is important because the median
protein requirement of the healthy adult population is 0.65 g/kg/
day and the recommended daily allowance (covering the entire pop-
ulation)is 0.83 g of protein/kg of body weight/day [43]. This is close
to the average protein intake of individuals eating a vegan diet. In
contrast, in many developed and developing countries people are
eating >1.2 g of protein/kg of body weight/day, that is >30%
protein than the RDA recommended intake [44], which is presently
considered to be harmless or even beneficial against the develop-
ment of obesity, sarcopenia, osteoporosis. However, data supporting
a protective role of high-protein diets against these diseases are lim-
ited and controversial, whereas there is considerable evidence that a
reduction in IGF-1 or IGF-1 signaling plays a key role in modulating
cancer and aging in rodents and humans [45-48]. More studies are
urgently needed to understand the metabolic and clinical implica-
tions of consuming high protein diets on serum IGF-1 and IGFBPs
concentrations, and on cancer biology, especially in sedentary adults
with a positive family history for prostate, breast (pre-menopausal)
and colon cancer.

4. Metabolic and molecular mechanism of CR

Since 1935, many mechanisms have been proposed as the
biological basis of the life-prolonging and anti-aging actions of
CR; none is strongly supported by available evidence, but it is
entirely possible that the actions of CR involve a combination
of metabolic, physiological and cellular adaptations to CR itself
[49,50]. It is well established that nutrient-sensing pathways
are key modulators of the aging process; different nutrients
can activate different pathways directly or indirectly [7]. For
example in mice, CR down-regulates the insulin/IGF-1/mTOR
pathways, which, in turn, activates other anti-aging pathways
in various mammalian cells [51,52]. Mutations that cause a
down-regulation of the insulin/Igf-1/mTOR signaling pathways
can substantially increase healthspan and lifespan in mice
[7,53]. For example, Ames dwarf mice that carry a loss-of-func-
tion mutation in the gene Prop19 that leads to abnormally low
expression of GH, TSH and prolactin [54], live >50% longer than
their normal siblings [55]. Growth hormone (GH)-deficient and
GH receptor-deficient mice, which have also low circulating
IGF-1 levels, live substantially longer than wild type mice.
GHR-BP knockout and GH-deficient mice have lower incidence
and delayed occurrence of tumors, increased insulin sensitivity,
and a reduction in age-dependent cognitive-impairment
[53,56-58]. In addition, decreased IGF-1 signaling is involved in
the delayed aging phenotype of IGF-1 receptor-deficient mice,
klotho transgenic mice, and pregnancy-associated plasma protein
A (PAPP-A) knock-out mice [59-61]. In contrast, mice over-
expressing the GH receptor have very high concentrations of
IGF-1, larger body size, shorter lifespan, and an increased inci-
dence of cancer, kidney and neurodegenerative disease [62]. In
addition to alteration in IGF-1 signaling, alterations of the insulin
and mTOR pathways appear to contribute to the effect of CR on
longevity. For example, loss-of-function mutations in the insulin
receptor in adipose tissue, and in insulin receptor substrates 1,
and 2 in the brain all promote longevity in mice [63-65]. Inhibi-
tion of the mTOR pathway by genetic deletion of the ribosomal
S6 protein kinase 1 (S6K1) increases maximal lifespan of female
mice only, and reduces the incidence of several age-associated
disease [66]. In addition, supplementation with rapamycin (a
drug that inhibits mTOR), but not resveratrol or simvastatin, sig-



1540 D. Omodei, L. Fontana/FEBS Letters 585 (2011) 1537-1542

nificantly increases maximum lifespan of both female and male
mice [67,68].

Other important CR-mediated neuroendocrine adaptations, that
have been hypothesized to play an important role in mediating the
anti-aging effects of CR, are: (1) reduced levels of hormones that
regulate thermogenesis and cellular metabolism (e.g., thyroid hor-
mones, cathecolamines), (2) reduced levels of anabolic hormones
(e.g., testosterone, estradiol, insulin, leptin), and (3) increased lev-
els of hormones that suppress inflammation (e.g., glucocorticoids,
adiponectin, ghrelin) [69]. For example, it has been shown that
maximal lifespan can also be extended by mutations of genes
encoding proteins along pathways regulating hormonal and mito-
genic signals (e.g., p66shc, type 5 adenylyl cyclase, angiotensin II
type 1 receptor) [70-72]. In addition, ad libitum-fed transgenic
mice overexpressing the uncoupling protein 2 in hypocretin neu-
rons (Hcrt-UCP2) have lower core body temperature, and a 16%
greater life expectancy than wild type animals, independently of
caloric intake [73].

Accretion of oxidative damage with time has been hypothesized
to play a central role in the biology of aging and age-associated dis-
eases (Harman theory of aging) [74]. Oxidative damage to macro-
molecules (i.e., DNA/RNA, proteins and lipids) in cells and tissues
exponentially increases with aging. Long-term CR reduces the
age-associated accumulation of oxidative damage to proteins, lipids
and DNA [75]. This attenuation of the accumulation of oxidative
damage can be due to either a decreased rate of generation of reac-
tive oxygen molecules, or to increased efficiency of protective pro-
cesses, or to an increase in repair activity, or to a combination of
these processes. However, most of the evidence in support of the
Harman theory of aging is just associative, and accumulating data
do not support a key and independent role of oxidative stress in
modulating aging in mammals [76]. Indeed, supplementation with
several combinations of antioxidants does not increase lifespan in
laboratory rodents [77-79]. In humans, several sizeable long-term
randomized clinical trials of supplementation with antioxidant
vitamins have shown no reduction in cardiovascular or cancer mor-
bidity/mortality [79-,81]. Moreover, rodents with genetic deletion
of several antioxidant enzymes (e.g., Sod2+/—, Prxd1+/—, and
Sod1+/— mice) do not have a shorter lifespan, despite having ele-
vated oxidative stress markers and cancer incidence [82,83]. Over-
expression of major antioxidant enzymes (i.e., CuZnSOD, Mn
superoxide dismutase, and catalase overexpression; combinations
of CuZnSOD and catalase or CuZnSOD and MnSOD overexpression),
which are known to scavenge cytosolic and mitochondrial superox-
ide and hydrogen peroxide, does not extend lifespan or reduce the
incidence of age-related disease in these mice [84,85]. The only
experimental study showing an anti-aging role of endogenous anti-
oxidant enzymes was done by the Rabinovitch’s group. This study
showed that transgenic mice overexpressing catalase targeted to
mitochondria increased maximal lifespan, suggesting that in-
creased antioxidant defense system in the mitochondrial compart-
ment may be involved in promoting longevity [86]. Thus, whether
CR’s ability to reduce oxidative damage plays a major role in its
life-extending action, still remains an open question. It is possible
that the reduction in oxidative damage in CR mice, p66shc knock-
out, klotho transgenic mice and IGF-1 signaling deficient mice is
just an epiphenomenon rather than the causal link.

Another mechanism that has been proposed to play a role in
mediating some of the anti-aging effects of chronic CR is hormesis,
referring to the phenomenon whereby, a usually detrimental envi-
ronmental agent (e.g., radiation, chemical substance) changes its
role to provide beneficial effects when administered at low inten-
sities or concentrations. CR has been hypothesized to be a low-
intensity stressor that provokes a survival response in the organ-
ism, helping it to tolerate adversity by activating longevity path-
ways [87]. Indeed CR leads to a modest increase in the daily peak

concentration of plasma free corticosterone in rats and mice; this
chronic increase would be expected to have a significant anti-
inflammatory and anti-cancer action [88]. At the cellular and
molecular level CR may induce an increase in the activity of genes
that protect cells from the damaging action of harmful agents. In-
deed, CR has been shown to increase the induction of hepatic
Hsp70, one of these scavenging proteins, in response to heat stress
[89]. Moreover, CR has been shown to enhance autophagy and DNA
repair systems, and up-regulate endogenous enzymatic and non-
enzymatic antioxidative defense mechanisms [90-92].

5. Conclusions

The prevention of age-associated chronic disease and the pro-
motion of healthy aging are key issues in the challenge to improve
health, delay the onset of frailty and dependency, and reduce
healthcare costs. Data from epidemiological and clinical studies
show that many metabolic alterations and age-associated illnesses
can be prevented or reversed, with the implementation of healthy
lifestyle interventions [93-95]. Data are accumulating on the ef-
fects of CR in non-human and human primates. We know that in
both non-human and human primates CR without malnutrition re-
sults in many of the same metabolic, hormonal and physiological
adaptations related to longevity in CR rodents. We also know that
in both monkeys and humans, CR with adequate nutrition, protects
against abdominal obesity, type 2 diabetes, and cardiovascular dis-
eases, which are leading causes of morbidity and mortality. Cancer
incidence and mortality are also reduced in CR monkeys, and stud-
ies of CR humans show a reduction of a series of metabolic and hor-
monal factors associated with increased cancer risk. Moreover, a
moderate restriction of protein intake may have additional benefi-
cial effects in preventing cancer. Nonetheless, nothing is known
about the long-term effects of CR on wound healing, on the risk
of developing infections and cognitive impairment, and on the rate
of aging in non-human and human primates. More studies are
needed to elucidate the molecular mechanisms underlying the
beneficial effects of CR in non-human and human primates, so that
we can develop new markers/targets of aging/longevity.
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