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a b s t r a c t

Incentive schemes are increasingly used to motivate the supply of ecosystem services from

agro-ecosystems through changes in land use and management. Here, I synthesize the

complex effects of incentives on ecosystem services through their influence on land use and

management. Linkages between incentives and land use change, and between land use

change and ecosystem services can be one-to-many, many-to-one, and many-to-many.

Change in land use and management can affect multiple ecosystem services, with both co-

benefits and trade-offs. Incentives can motivate multiple changes in land use and manage-

ment and multiple incentives often interact with both synergies and tensions in their effect

upon ecosystem services. These vary over both space and time, and can be non-linear.

Depending on incentive design, changes in ecosystem service supply can also have a

feedback effect on incentive prices. I suggest that continued quantitative development is

required to further explore these linkages: in the influence of incentives on land use change;

in the impact of land use change on ecosystem services, and; in ecosystem service supply

feedbacks on incentive prices. Quantifying and understanding these linkages is essential to

progress more comprehensive analyses of the impact of incentives on ecosystem services,

and the design of incentives capable of realizing synergies and avoiding tensions.
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1. Introduction

Services from agro-ecosystems include a range of provisioning

(e.g., food, fresh water, and bioenergy), regulating (e.g.,

climate, erosion, and pests), supporting (e.g., biogeochemical

cycling, biodiversity/habitat), and cultural (e.g., recreation and

education) services (Power, 2010; Swinton et al., 2007).

Agricultural land use has degraded the soil, water, and

biological assets in agro-ecosystems to such an extent that

the restoration of natural capital and rehabilitation of

ecosystem services through changes in land use and manage-

ment is now a global priority (Ehrlich et al., 2012; Foley et al.,

2011; Millennium Ecosystem Assessment, 2005). A primary
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reason for this degradation is the failure of agricultural

commodity markets to internalize environmental costs

associated with land use and management decisions (Lant

et al., 2008). New market-based policy instruments – particu-

larly financial incentives such as payments for ecosystem

services – have emerged to redress these market failures

(Farley and Costanza, 2010). Whilst market-based incentives

remain one of the great hopes for the restoration of ecosystem

services (Daily et al., 2009; Pascual and Perrings, 2007), the

potential for inefficiencies and negative outcomes has also

been recognized (Frame, 2011; Kinzig et al., 2011).

In agro-ecosystems, incentives influence ecosystem ser-

vices through motivating changes in land use and manage-

ment (Fig. 1). This chain of influence is complex because
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Fig. 1 – A simple conceptual representation of the linkages between incentives, land use, and ecosystem services. Financial

incentives can have synergies (positive) and tensions (negative) in changing land use and management – which in turn

have a range of co-benefits (positive) and trade-offs (negative) across multiple ecosystem services. Relationships between

incentives and land use, and between land use and ecosystem services, vary across space and time and can be non-linear.

These relationships can also be many-to-one, one-to-many, and many-to-many. The bottom link represents the potential

dynamic effect of changes in supply of ecosystem services on incentive prices.
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incentives can cause multiple intended and unintended

changes in land use and management, each potentially

having co-benefits and trade-offs across multiple ecosystem

services (May and Spears, 2012). More often than not, multiple

incentives co-exist (Pittock, 2011; Schrobback et al., 2011).

These incentives interact, providing price signals for multiple

land use and management changes, thereby compounding the

effect on ecosystem services (Deal et al., 2012). Hence, the

linkages between incentives and land use, and between land

use and ecosystem services can be one-to-many, many-to-

one, or many-to-many. These effects are typically heteroge-

neous across both space and time, and can be non-linear

(Holland et al., 2011; Laterra et al., 2012). Changes in the supply

of ecosystem services may also have a dynamic feedback

effect on incentive prices, depending on instrument design.

Understanding these effects can lead to substantial gains in

the efficiency of policy and management in agro-ecosystems

(White et al., 2012) and avoid negative outcomes (Bryan and

Crossman, submitted for publication). Whilst many recent

studies have addressed individual components, none have

attempted the integrated assessment of incentive interactions

on land use and ecosystem services inclusive of all of the

linkages depicted in Fig. 1.

Here, I explore, clarify, and synthesize current understand-

ing of the complex and multifarious influence of market-based

incentives on land use and ecosystem services. I also discuss

the requirements for quantifying these interactions and

suggest directions for future work to support this important

task. Awareness of these linkages is necessary to realize the

benefits and avoid adverse outcomes for ecosystem services

from changes in land use and management motivated by

market-based incentives.
2. Incentives for ecosystem services

Ecosystem services contribute to human well-being

through a range of direct-use (e.g., food and recreation),

indirect-use (e.g., insurance and option), and non-use (e.g.,

existence, intrinsic and bequest) values (Pascual and

Perrings, 2007). Whether or not the value of ecosystem

services is reflected in markets depends on the rivalness of

the good/service consumption (whether their use precludes

use by others) and its excludability (whether access can be

restricted to those who pay) (Kemkes et al., 2010). Some

market goods, such as agricultural crops and livestock, are

rival and excludable, and are routinely valued and traded in

markets (Farley, 2008). Public goods (e.g., biodiversity), on the

other hand, are non-rival and non-excludable; common pool

resources (e.g., fisheries) are rival and non-excludable, and;

club goods (e.g., toll access to a nature park) are non-rival

and excludable (Kemkes et al., 2010). Markets for public

goods and common pool resources rarely emerge naturally

and, as farmers do not receive a price signal for these non-

market ecosystem services, they under-produce them

(Ribaudo et al., 2010).

Market-based incentives aim to correct this market failure

and manage the supply of public good and common-pool type

ecosystem services (Farley and Costanza, 2010). To be

effective, incentives need to be supported by a carefully

designed regulatory framework (e.g., safe minimum stan-

dards, quantifiable units of service provision, clearly defined

property rights, monitoring requirements, and contractual

arrangements) (Kroeger and Casey, 2007). Properly supported

by regulation, financial incentives can be used to motivate the



Fig. 2 – Complex influence of two land management

changes in a wheat cropping system – stubble residue

removal and nitrogen fertilizer application – on the soil

organic carbon (SOC) storage ecosystem service in

Australia’s wheat-growing regions (Zhao et al., submitted

for publication). This provides an example of the right

hand side linkages in Fig. 1. Rates of change in SOC are

median values across the region. SOC can maintained or

increased through the application of I�40 kg/ha of

nitrogen and =�35% removal of stubble residue.

Decreasing nitrogen application rates =�50 kg/ha result in

a sharp decrease in SOC at removal rates =�25%.

Increasing nitrogen application rates does little to improve

SOC at higher stubble removal rates.
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production of ecosystem services beyond critical levels by

private individuals (Farley, 2008).

There are many different types of incentives for ecosystem

services emerging at a range of scales (Farley and Costanza,

2010). These are commonly termed payments for ecosystem

services or agri-environment schemes, and can be implemented

through a range of instruments such as direct payments/

rewards, tax incentives, cap and trade markets, voluntary

markets, auctions, and certification programs (Pascual and

Perrings, 2007; Pirard, 2012; Shelley, 2011; Yang et al., 2010).

Globally, many such schemes have been implemented (Tallis

et al., 2008). In any given region, multiple incentives – from

global commodity markets to locally implemented incentives

for public good and common pool resources – may co-exist for

governing the production of ecosystem services.

3. Land use and ecosystem services

The type, intensity, and spatial arrangement of land use and

management critically affects the type and amount of

ecosystem services produced in agro-ecosystems (Goldstein

et al., 2012; Raudsepp-Hearne et al., 2010). Changes in land use

alter service provision (Dale and Polasky, 2007; Metzger et al.,

2006; Nelson et al., 2010) either directly, or indirectly through

effects on related services (Bennett et al., 2009). Multiple

changes in land use and management can interact and

influence individual ecosystem services. For example,

changes in fertilizer application rates and stubble residue

management in wheat cropping have been found to strongly

affect soil carbon (Zhao et al., submitted for publication)

(Fig. 2).

Similarly, individual changes in land use and management

often affect multiple ecosystem services (Bennett et al., 2009;

Bullock et al., 2011). Ecosystem service changes may be

positively correlated such that changes in land use either

increases or decreases their provision (Raudsepp-Hearne

et al., 2010). Between these services, co-benefits can occur

and the potential for win–win outcomes is greatest, but lose-

lose outcomes are also possible (Tallis et al., 2008). However,

negative correlations in ecosystem service changes may also

occur (Raudsepp-Hearne et al., 2010). Trade-offs exist between

these services whereby land use change can increase provi-

sion of one service, but only at the expense of others. Co-

benefits and trade-offs can occur over multiple spatial and

temporal scales (Power, 2010; Rodriguez et al., 2006) and vary

over both space (Larsen et al., 2011) and time (Holland et al.,

2011). Several win–win outcomes have been reported (Fig. 3a

and b) (Dwyer et al., 2009), especially through the spatial

targeting of hotspots of ecosystem service provision (Cross-

man and Bryan, 2009; Nelson et al., 2009). However, win–win

opportunities are often hard to realize and trade-offs are the

norm (Hirsch et al., 2011; Tallis et al., 2008).

A typical trade-off in agro-ecosystems is the replacement

of many supporting, regulating, habitat, and cultural services

provided by natural ecosystems for food, fiber, and increas-

ingly, bio-energy services generated through agricultural

production (Bennett and Balvanera, 2007; Lant et al., 2008).

For example, specific trade-offs have been found between

agricultural production and other ecosystem services such as
sediment regulation (Swallow et al., 2009) and native species

persistence (Barraquand and Martinet, 2011). When changing

agricultural land use back to natural ecosystems through

restoration, trade-offs have been found between achieving

salinity and biodiversity objectives (Maron and Cockfield,

2008), and between carbon sequestration and a range of other

services including biodiversity (Crossman et al., 2011b; Nelson

et al., 2008), food (Nelson et al., 2010; Paterson and Bryan, 2012),

and water (Chisholm, 2010) objectives (Fig. 3d). When multiple

ecosystem services are considered, more efficient outcomes

can be achieved where the net gains of land use change are

maximized (Chen et al., 2010; Crossman and Bryan, 2009;

Nelson et al., 2008; Wainger et al., 2010).

4. Incentives, land use change, and ecosystem
services

Incentives are commonly designed to address a single

ecosystem service following the Tinbergen principle (Tinber-

gen, 1952). The rationale is that individual policy instruments

can rarely achieve multiple policy objectives efficiently (e.g.,



Fig. 3 – Australian examples of ecosystem services incentives with co-benefits and trade-offs. (a) Rice harvesting in the

Murrumbidgee Irrigation Area, near Griffith, New South Wales. Rice and other crops such as cotton are opportunistic crops

grown in wet seasons in Australia. By using surplus water to produce food and fiber services the trade-offs of reduced

environmental flows for riparian ecosystems are minimized (photograph courtesy Willem van Aken). (b) Fire is a regular

occurrence in the savannah ecosystems of northern Australia with implications for several ecosystem services dependent

upon the season and hence, intensity of fire. Prescribed burning is actively used to reintroduce low intensity fire to the

landscape which can enhance conservation values, protect property, improve cattle pasture, reduce carbon emissions, and

involve Aboriginal traditional owners (photograph courtesy CSIRO Ecosystem Sciences). (c) Barley crop growing near

Adelaide, South Australia. Natural ecosystems and the services they provide have been largely replaced by cereal cropping

and livestock grazing for the production of food and fiber in the agricultural regions of southern Australia (photograph

courtesy Christine Painter). (d) An ecological restoration project in bushland, Keilor, Victoria. With appropriate institutional

rules in place, a carbon market could encourage large areas of ecological restoration with co-benefits for both carbon

sequestration and biodiversity. Other benefits may include reduced erosion and sedimentation. However, caution is

required to avoid impacts on food and fresh water services (photograph courtesy Nick Pitsas). (e) Tasmanian blue gum

(Eucalyptus globulus) plantations growing on farmland in south-western Australia (8 years-old). Around 1 million hectares

have been planted across southern Australia since 1998 following taxation incentives provided under the Managed

Investment Act. Plantations provide carbon sequestration, timber, and some biodiversity benefits but reduce

environmental flows and fresh water for human needs, and preclude agricultural production on the same land (photograph

courtesy T. Grove). (f) A stockman musters cattle on Belmont Station in central Queensland. Beef cattle are one of the main

agricultural industries across northern Australia, an industry strategically placed to service expanding markets in Asia. In

response to emerging carbon market, the trade-off – significant greenhouse gas (methane) emissions from cattle, are being

minimized through herd management and diet which is a focus of ongoing research (photograph courtesy CSIRO Livestock

Industries).
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Nelson et al., 2008). However, such interventions often have

unanticipated consequences beyond their primary objective

(Merton, 1936) (Fig. 4). The complexity of linkages makes this

especially acute in the context of incentives for ecosystem

services. As trade-offs between services in agro-ecosystems

are common over space and time (Rodriguez et al., 2006), the

failure to consider broad impacts in the design of incentives

often leads to outcomes that are to the detriment of society.

Unintended negative consequences of incentives for

ecosystem services have been reported many times

(Fig. 3e). For example, subsidies for motivating afforestation

of agricultural land have actually been found to reduce

carbon sequestration through shortening economically

optimal rotation times (Tassone et al., 2004). Gren et al.

(2010) found that whilst a single-objective payment for

biodiversity achieved near the maximum possible social

benefit over all services – when compensation was paid for

producing a single non-market service (scenic beauty), the

net social value produced across multiple services de-

creased. Biofuels markets have been found to generate

carbon and energy benefits at the expense of food and fiber

production (Bryan et al., 2010a).

Incentive design is increasingly seeking more efficient

outcomes through bundling payments for multiple ecosystem

services (Deal et al., 2012; Raudsepp-Hearne et al., 2010).

Crossman et al. (2011a) designed a benefits metric for a

conservation auction that included 23 landscape-scale and 14

site-scale indicators of natural capital. Wainger et al. (2010)

targeted invasive species management payments for efficient

production of habitat, property protection, forage, and

hunting services. Wunscher et al. (2008) demonstrated

substantial efficiency gains from targeting auction payments

for scenic beauty, biodiversity, and water services in Costa

Rica. Usually, services for which markets are more difficult to

create (e.g., public goods such as biodiversity) are bundled

with other more easily marketed services (e.g., carbon and

recreation) (Wendland et al., 2010). Bundling can create price

premiums for sellers but may increase transactions costs

associated with monitoring spatially varying services (Kemkes

et al., 2010). The bundling and supply of multiple ecosystem

services has been accepted as a general principle for

ecosystem service markets (Farley and Costanza, 2010).

Commonly, multiple incentives interact – and this affects

changes in land use and management with flow-on impacts for

ecosystem service provision (Fig. 5). Incentives for ecosystem

services such as carbon, water, biodiversity, soil health, and

bioenergy combine with established markets for agricultural

commodities. Each incentive provides a price signal for changes

in land use and management by landholders who make

decisions in response to the totality of economic opportunities

and risks (Fig. 3f). Landholders can take advantage of multiple

markets for ecosystem services by credit stacking – the sale of the

ecosystem services co-benefits generated through a single

change in land use and management into multiple ecosystem

services markets (Deal et al., 2012). However, incentive

interactions are much more complex than this. Often uncon-

sidered in credit stacking are the costs associated with

ecosystem services trade-offs. Thus, to use the example of

Deal et al. (2012), whilst a landholder restoring a hectare of

riparian forest may be able to produce, stack, and sell credits
simultaneously into water quality, carbon, and biodiversity

markets, costs may also accrue to account for adversely

impacted services such as a decrease in run-off.

Thus, whilst some incentives pull together toward achiev-

ing a policy objective synergistically, other instruments pull

against each other, creating tensions. Several examples of

tensions between incentives have been reported. The US

federal Conservation Reserve Program paid people to retire

environmentally sensitive land from agriculture whilst other

federal farm subsidies sought to encourage agriculture. By

raising the profitability of cropland through subsidies, the

government directly competed with itself in providing

incentives for landowners to retire land (Lubowski et al.,

2008). A carbon price incentive was found to be less effective in

motivating land use change when the costs of water used by

reforested areas was accounted for (Chisholm, 2010). In the US,

federal flood control and drainage programs provided oppor-

tunities for large scale conversion of wetlands to agriculture,

working against wetland protection policies under the Clean

Water Act (Stavins and Jaffe, 1990). Bryan and Kandulu (2011)

documented a tension between taxation incentives that

encourage landholders to increase cattle stocking densities

and natural resource management payments aimed at

sustainable land management.

In an integrated assessment of multiple incentives, land

uses, and ecosystem services, Bryan and Crossman (submitted

for publication) found complex interaction effects. Incentives

for agricultural commodities, carbon, water, and biodiversity

displayed synergies and tensions in their effect on food and

fiber, carbon, water, and habitat services through their

influence on agriculture and reforestation land uses (Fig. 5).

The effects of incentive interactions across multiple ecosys-

tem services were found to include non-linearities, inter-

dependencies, and threshold effects (Bryan and Crossman,

submitted for publication) (Fig. 6). These impacts of incentive

interactions across multiple ecosystem services suggests that

full knowledge of these consequences is essential to efficiently

realize opportunities for synergies and minimize tensions.

Bryan and Crossman (submitted for publication) however, did

not assess feedbacks from changes in ecosystem service

supply on incentive pricing (Fig. 1).

5. Directions for quantifying the influence of
incentives on ecosystem services

To adequately quantify the complex influence of incentives on

ecosystem services via land use change, the linkages in Fig. 1

need to be specifically addressed. We need to address the

challenges of quantifying the influence of incentives on land

use change, quantifying the impact of land use change on

ecosystem services, and quantifying feedbacks from changes

in ecosystem service supply on incentive prices. Below I

discuss progress against these challenges and suggest priori-

ties for future research.

Modeling the impact of incentives on land use change is

based on the premise that regional patterns of land use change

in agro-ecosystems emerge from micro-level land-use deci-

sions by individual landholders. Incentives, with appropriate

institutional support (e.g., regulatory frameworks and



Fig. 4 – A synthesis of the production of multiple ecosystem services following land use change under various incentive

prices for agricultural commodities, carbon, water, and biodiversity in the 15 million hectare agricultural region of South

Australia as simulated under the median cost scenario of Bryan and Crossman (submitted for publication). The larger the

fan blades and the deeper their color, the more of the ecosystem service provided. The fan blade lengths are relative, being

linearly rescaled between the overall maximum and minimum values across 1875 scenarios, and include the minimum,

median, and maximum scores representing the variation in ecosystem service provision. In this case study, markets affect

the profitability and economic viability of three land uses – agriculture (wheat/sheep), carbon plantings, and environmental

plantings. The spatial distribution of the most profitable land uses changes under different incentive price levels for

agricultural commodities, carbon, water, and biodiversity – and this affects the provision of ecosystem services. An

increase in agricultural commodity prices decreases the amount of carbon sequestered and habitat restored whilst

increasing food production and fresh water provisioning. An increase in carbon price has the opposite effect. Increasing

water price has a weak influence on increasing provision of fresh water with negligible influence on the other services.

Likewise, increasing biodiversity price increases the provision of habitat services exclusively. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of the article.)
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Fig. 5 – Interactions between incentives and the effects on ecosystem services in the South Australian agricultural regions

summarized from Bryan and Crossman (submitted for publication).
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information), change the relative profitability of land uses and

provide a price signal for landholders to change land use (Irwin

and Geoghegan, 2001; Lewis et al., 2011; Lubowski et al., 2008).

Carbon markets, in particular, can provide economic oppor-

tunities for landholders to convert agricultural land to tree-

based land uses (Alig et al., 2010; Bryan et al., 2008; Harper

et al., 2007). Alig et al. (2010) found that carbon-related

payments to landowners can have substantial impacts on
Fig. 6 – Interaction between a biodiversity payment and a

carbon price incentive and the effect on the supply of

habitat services, through motivating widespread adoption

of environmental plantings in the 15 million hectare

agricultural region of South Australia. At a low carbon

price (=20$/tCO2
Se), very high biodiversity payments were

required to induce adoption of environmental plantings in

high priority areas. At higher carbon prices, a biodiversity

payment is an economically effective tool for motivating

adoption.
future patterns of forestry and agricultural land use, levels of

terrestrial carbon sequestration, forest resource conditions,

agricultural production trends, and bioenergy production.

Conversely, reductions in agricultural prices can also lead to

the retirement of agricultural land and conversion to forest

(Vuichard et al., 2008). Profitability has been widely used to

evaluate the competitiveness of alternative land uses (Hunt,

2008; Maraseni and Cockfield, 2011; Wise and Cacho, 2011) and

to quantify the impact of incentives on ecosystem services

(Antle and Stoorvogel, 2006; Bryan et al., 2010b, 2008; Dymond

et al., 2012; Polasky et al., 2008; Townsend et al., 2012).

Variation in economic parameters including discount rates,

upfront establishment costs, and ongoing transactions and

maintenance costs are well known to affect economic returns

from land use (Bryan et al., 2008).

However, whilst profitability is known to be a major

driver of land use change and adoption of conservation

technologies (Lubowski et al., 2008), a range of other less-

well-known factors are also important. Uncertainty, risk,

and option values are important given the uncertainty and

irreversibility of investment in land use change, con-

straints on labor and capital, and a range of other

unmodeled costs and benefits all affect the magnitude

and rate of potential land use change (Lubowski et al., 2008;

Stavins, 1999). These factors can result in less land use

change than would be predicted by economic theory and

cause the undersupply of ecosystem services. However,

whilst most landholders may be unwilling to reforest their

land without financial incentives – for some, the level of

incentive required could be less than the net returns to

current agricultural activities on marginal agricultural land

(Shaikh et al., 2007), as they receive benefits from growing

trees that are not captured in market transactions. These

benefits relate to potential reductions in risk from assured

annual payments, and the provision of ecosystem services

particularly those that may help sustain agricultural

production, but also aesthetic benefits, bequest value,

and other benefits.

The many determinants of land use change make predict-

ing land use change decisions in response to incentives

extremely challenging. Previous studies have used a revealed

preference econometric approach based on data from
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programs such as the Conservation Reserve Program to

capture the effects of incentives on land use change and

ecosystem services (Busch et al., 2012; Lewis et al., 2011;

Lubowski et al., 2006; Nelson et al., 2008). The two great

advantages of the revealed preference approach lie in its

empirical basis and its inherent ability to capture the influence

of multiple drivers in projecting land use change. There are

however, two outstanding questions about its application.

Firstly, to what extent is the past able to predict the future? A

complex systems view of land use suggests that non-linear

effects such as surprises, dependencies, and threshold effects

may limit the predictability of past responses and demand

new approaches to land use change analyses (Briassoulis,

2008; Dawson et al., 2010; Parker et al., 2008; Parrott and Meyer,

2012). Secondly, for most regions, the data required to build

revealed preference models do not exist. To compensate for

this, minimum data methods have been developed. Compared

to revealed preference approaches, minimum data methods

can provide land use change models acceptable for use in

policy analysis (Antle and Valdivia, 2006). New methods

combining the strengths of complex systems and econometric

approaches are urgently required to support future assess-

ments of market impacts on land use and ecosystem services.

In modeling the impact of changes in land use and

management on ecosystem services, substantial recent

advances have been made and this is where the science

underpinning the linkages in Fig. 1 is most developed. Several

studies have measured, mapped, and modeled the spatial

distribution of ecosystem services produced from various land

uses and these efforts have recently increased in sophistica-

tion. For example, biophysical process models have been

commonly used to map provisioning and regulating services

such as food, bioenergy, water, and carbon (Crossman and

Bryan, 2009; Crossman et al., 2011b; Paterson and Bryan, 2012;

Stoms et al., 2012). Recent calls have been made for advances

in the mapping of cultural services (Chan et al., 2012; Daniel

et al., 2012). More sophisticated spatial properties such as

supply, demand, flow, beneficiaries, and benefits transfer have

been incorporated into the mapping of ecosystem services and

quantifying their benefits and costs (Burkhard et al., 2012;

Crossman et al., submitted for publication; Eigenbrod et al.,

2010; Fisher et al., 2011; Syrbe and Walz, 2012). More focused

progress in mapping the impact of land use change on

ecosystem services is required for the accurate and meaning-

ful assessment of the impact of market-based policy incen-

tives.

To complement these advances, we also need to capture

the dynamic feedback relationships between ecosystem

service supply and incentive prices. This is where the science

required to underpin the linkages in Fig. 1 is least developed.

Prices for marketed services such as agricultural commodi-

ties are dynamic, responding to relative changes in supply

and demand (Fig. 1). For example, given a constant demand, a

decrease in the supply of wheat production through land use

change such as the reforestation of agricultural land will

place upward pressure on wheat prices (Wright, 2012).

Incentives for non-marketed services can be also designed

with flexible (or elastic) prices (e.g., as cap and trade

instruments) that respond to changes in supply and demand

of ecosystem services (Sterner, 2003). To apply the same
economic principles to non-marketed services – in a water

market for example, water prices should respond to the

scarcity of the resource. Prices should increase in times of

drought, thereby discouraging use and encouraging efficiency

in irrigated agriculture, and ensuring flows for the continued

production of other services from water-dependent ecosys-

tems. Conversely, in wet periods, falling water prices signal

increased availability of fresh water services for irrigation

and other human uses. Such price elasticities in water

markets have been reported in Australia’s Goulburn–Murray

district (Wheeler et al., 2008) and the US Rio Grande (De

Mouche et al., 2011). Working efficiently, the theoretical

outcome of these market forces will be a socially optimal

supply of ecosystem services. However, this often fails in

practice due to many factors including thin markets,

differences in scale, levels of information, price volatility

and risk, leakage, and institutional design (De Mouche et al.,

2011; Sovacool, 2011). Incentive price dynamics, feedbacks,

and market behavior needs to be quantified using partial and

general equilibrium models (van der Werf and Peterson, 2009)

for a complete understanding of the influence of incentives

on land use and ecosystem services. This is a frontier of

ecosystem services science.

6. Conclusion

Market-based incentives are widely used to govern the supply

of ecosystem services from agro-ecosystems. In particular,

incentives such as payments for ecosystem services are

increasingly used to rebalance the supply of non-marketed

services. The influence of incentives on ecosystem services is

indirect, occurring through their ability to motivate changes

in land use and management. I have shown that the

relationships between incentives and land use, and between

land use and ecosystem services are complex. These relation-

ships may be one-to-many, many-to-one, or many-to-many.

These relationships can be non-linear and vary across both

space and time. Multiple incentives interact, with synergies

and tensions in their influence on multiple ecosystem

services. Depending on incentive design, there may also be

a dynamic feedback on price through changes in the supply of

ecosystem services. Whilst many studies have addressed

individual components, no studies have attempted an

integrated assessment of the interactions between multiple

incentives, land uses, and ecosystem services. I discussed the

need for continued advancement in three areas: quantifying

the link between incentives and land use change decisions;

quantifying the impact of land use change on ecosystem

services, and; quantifying the dynamic incentive price feed-

backs from changes in ecosystem service supply. These

developments are badly needed to support the design of

incentives that can capture the synergistic effects and avoid

tensions between incentives in their influence on ecosystem

services.
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