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Phospholipids (PLs), well known for their fundamental role in cellular structure, play critical signal-
ing roles via their derivatives and cleavage products acting as second messengers in signaling cas-
cades. Recent work has shown that intact PLs act as signaling molecules in their own right by
modulating the activity of nuclear hormone transcription factors responsible for tuning genes
involved in metabolism, lipid flux, steroid synthesis and inflammation. As such, PLs have been clas-
sified as novel hormones. This review highlights recent work in PL-driven gene regulation with a
focus on the unique structural features of phospholipid-sensing transcription factors and what sets
them apart from well known soluble phospholipid transporters.
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1. Introduction

1.1. Phospholipids

PLs are ubiquitous to all forms of life serving as the major con-
stituent of the membranes that isolate and protect cells from their
external environment, and segregate organelles from the greater
cellular milieu. PLs are composed of two hydrophobic tails, do-
nated by a diacylglycerol (DAG), and a hydrophilic head group con-
taining a phosphate, which is frequently conjugated to an
additional hydrophilic metabolite (Fig. 1). This amphipathic, bipar-
tite structure drives their spontaneous assembly into bilayers,
which compartmentalize the cell and harbor an assortment of pro-
teins, glycans, and other lipids that play critical roles in cell struc-
ture, function, metabolism, and signaling.

1.1.1. PLs as signaling molecules
Though best known for their role in membrane construction,

PLs play integral roles in a number of cellular signaling cascades
at and within the membrane bilayer [1]. Arguably the most famil-
iar of these are the IP3/DAG and Akt cascades. In the former, mem-
brane-bound PI-bisphosphate (PIP2) is cleaved by PLC to yield
inositol trisphosphate (IP3) and DAG; IP3 is released into the cyto-
plasm and triggers the release of Ca2+ from the endoplasmic retic-
ulum, while DAG remains in the plasma membrane and activates
PKC [2]. PI-trisphosphate (PIP3) is instrumental in recruiting Akt
to the plasma membrane, where it is activated by PDK-1 [3]. In
more recent years, additional PL derivatives have been implicated
in cell signaling. Lysophospholipids, single-chain PLs that include
sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA),
were found to bind and activate G protein coupled receptors
(GPCRs) upstream of Ras homolog gene family, member A (RhoA)
activation, affecting numerous signaling responses [4]. Further-
more, a family of tail-oxidized PLs are now known to play central
roles in the regulation of the plasma membrane and the innate im-
mune system [5]. PLs have therefore emerged as key players in the
signal cascades that control many vital biological processes.

1.1.2. PLs outside the membrane
A significant fraction of the cellular PL pool resides outside of

the membrane, particularly inside the nucleus. While some of this
subpopulation may have structural roles as part of chromatin or
the nuclear lamin [6], it is now evident that there is a PL signaling
system distinct from that which occurs within the membrane bi-
layer [7]. PIs again are at the core of the known nuclear lipid signal-
ing pathways [8], and while the nature of nuclear PLs remains
enigmatic, it is now understood that PI and PIPs have important
functions in the regulation of protein–chromatin interactions [9].
The close association of PLs with DNA [10] suggests that, in addi-
tion to their roles in cell structure and signal transduction, PLs play
a role in driving gene expression and regulation.

1.1.3. PLs are a new class of hormone
Ernest Starling coined the term ‘‘hormone’’ in 1905, long before

the isolation of the first nuclear receptor (NR) in 1958, to describe a
substance that is able to travel throughout an organism serving as
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a chemical messenger to alter cell behavior. PLs have long been
thought of as synthesis material for some hormones, but new evi-
dence suggests they are transmitting their own unique signals to
alter transcriptional patterns. The vast majority of evidence for di-
rect PL-mediated transcription is among the NR family of tran-
scription factors.

1.2. Nuclear receptors: lipid regulated transcription factors

1.2.1. Nuclear receptor structure and function
NRs are a family of ligand regulated transcription factors that

are activated by a diverse group of lipophilic ligands including fatty
acids, cholesterol derivatives, steroid hormones, vitamins, dietary
components, and xenobiotics [11–14]. These ligands, primarily de-
rived from lipids, act as messengers by transmitting chemical
information that reflects the body’s nutritional and endocrine
states [15]. This allows for the coordination of growth, reproduc-
tion, and homeostasis, and allows the body to appropriately re-
spond to events, such as eating a meal, exercise, or stress.

NRs share a highly conserved multi-domain architecture includ-
ing a variable N-terminal domain, often referred to as the activa-
tion function 1 (AF-1), a DNA binding domain (DBD), a flexible
linker region, and a ligand binding domain (LBD) that contains a li-
gand sensitive transcriptional switch, the AF-2 [12,13]. Ligand
dependent NR activation is centered on the LBD, a helical bundle
containing a lipophilic cavity that can accommodate ligands. The
hydrophobic pockets within NRs typically vary in size and shape
to match their cognate hormone [13,14]. A mobile ligand sensing
helix, termed the activation function helix (AF-H), responds to a
bound ligand by rotating and packing against the LBD. This reposi-
tioning completes the AF-2 surface, enabling interaction with coac-
tivator proteins contained in chromatin modifying complexes that
promote gene transcription



and cholesterol synthesis enzymes and transporters required in the
processes of lipid transport to the liver and elimination [25–32].
Recently, LRH-1 has been identified as a direct transcriptional reg-
ulator of glucokinase, responsible for glucose capture in the liver
[33]. Disruption of the LRH-1 gene in healthy livers not only dis-
rupted lipogenesis but resulted in reduced glycogen synthesis
and glycolysis in response to acute and prolonged glucose expo-
sure. Taken together, these studies demonstrate LRH-1’s influences
on metabolic homeostasis by linking PL levels to glucose and lipid
metabolism.

LRH-1 is also expressed in preadipocytes and adipocytes of
estrogen receptor positive breast cancer cells [24]. Here, in con-
junction with GATA and protein kinase A, LRH-1 drives the expres-
sion of CYP19 (aromatase), increasing the local estrogen
concentration to fuel tumor growth [24,34]. Additionally, LRH-1
appears to take part in a positive feedback loop with active estro-
gen receptor further enhancing these effects [35].

In the colon, LRH-1 plays a markedly different role in cancer
development and progression. Here, LRH-1 has been shown to syn-
ergize with the beta-catenin/TCF transcriptional complex to en-
hance the expression of cell proliferation, growth and survival
genes such as cyclin’s D1 and E1 [21]. Additionally, LRH-1 has also
been found to be overexpressed in gastric cancer [36].

2.1.1. Bound Escherichia coli PLs offer the first clue that LRH-1 may be
PL regulated

In 2003, the crystal structure of mouse LRH-1 was reported,
showing the receptor held in an active conformation in the absence
of a ligand or co-regulatory peptide [37]. This structure suggested
that LRH-1 may act in a ligand-independent manner, discouraging
efforts to pursue LRH-1 as a drug target despite its therapeutic po-
tential. In 2005, however, subsequent crystal structures of human
LRH-1 all revealed a large >1400 Å3 ligand binding pocket (LBP)
occupied by a diverse array of PLs including PG, PE, and a rare
phosphatidylglycerol–phosphoglycerol [38–40]. Mutations de-
signed to reduce PL binding showed decreased transcriptional
activity in reporter gene assays and a decrease in the ability to re-
cruit coregulators and coregulator fragments both in vitro and in
cells [39,41]. These exciting new findings showed for the first time
that LRH-1 may be regulated by PLs.

2.1.2. LRH-1–PIP interactions
To identify plausible mammalian PL ligands, Krylova et al. as-

sessed binding of LRH-1 to immobilized PLs which revealed that
LRH-1 bound to a range of PLs, but bound most strongly to PIP2
and PIP3 species [40]. Lipid binding was confirmed through non-
denaturing mass spectrometry [40]. LBP mutations designed to
prevent lipid binding decreased the ability of LRH-1 to bind these
immobilized lipids [40]. Notably, this assay did not show PC bind-
ing for either LRH-1 or SF-1 [40], both of which were later shown to
be activated by PC in cells and bind PC in vitro [41,42].

2.1.3. DLPC
Recently, Lee et al. showed that both human and mouse LRH-1

are specifically activated by the exogenous medium chain phos-
phatidylcholine isoforms – diundecanoyl (DUPC, PC 11:0/11:0)
and dilauroyl (DLPC, PC 12:0/12:0) phosphatidylcholine [43]. These
medium chain PC agonists selectively activate the receptor in lucif-
erase assays, increase the ability of LRH-1 to interact with the coac-
tivators and increase the production of LRH-1 target genes [43].
Moreover, DLPC lowers serum lipid levels and reduces blood glu-
cose levels in diabetic mice in a LRH-1 dependent manner [43].
The X-ray crystal structure of the LRH-1–DLPC complex in combi-
nation with hydrogen–deuterium exchange assays confirmed that
DLPC interacts directly with LRH-1 and revealed the mechanism
dictating DLPC-driven transcriptional activation [41]. Unlike other
NRs that rely on intra-protein interactions to coordinate activation,
LRH-1 relies on intramolecular contacts between distal residues in
the LBP and the PL to sense and transmit ligand status to the AF-H
[41]. Additionally, generation and characterization of apo LRH-1,
showed that ligand free LRH-1 LBD has a highly destabilized struc-
ture that is profoundly stabilized by lipids [41]. DLPC simulta-
neously enhanced co-activator peptide recruitment while
disfavoring repressor peptide interaction [41]. These recent results
show for the first time that LRH-1 is able to dynamically respond to
a PL ligand.

2.2. SF-1

SF-1, another member of the Ftz-F1 NR5A subfamily, is a key
regulator of steroidogenesis and the development of steroidogenic
organs, such as the adrenal cortex and gonads [44]. It is expressed
primarily in these tissues, and in tissues along the steroid hormone
regulatory axes, including the hypothalamus and pituitary gland
[45,46]. Genes involved in nearly all stages of steroid biosynthesis
are regulated by SF-1, including those that encode HMG-CoA syn-
thase [47], cholesterol transporters [48–50], 3b steroid dehydroge-
nase, and many of the cytochrome P450 enzymes that catalyze the
conversion of cholesterol into steroid hormones [51].

Dysfunction of SF-1 has been linked to a number of human dis-
orders [52,53]. Mutations in SF-1 have been detected in patients
with disorders in sexual development [54–57], ovarian insuffi-
ciency [55], and adrenal failure [56], while SF-1 dysregulation
has been linked to endometriosis [58] and adrenocortical carci-
noma [59]. Like LRH-1, SF-1 makes an alluring drug target, yet a ro-
bust understanding of its ligand-binding properties is only now
emerging.

However, some headway has been made in identifying syn-
thetic compounds that act upon SF-1. In 2008, a number of inverse
agonists for SF-1 were identified [60–62]. Not only could these
compounds inhibit SF-1-dependent gene transcription in luciferase
assays, they also inhibited StAR expression in human adrenocorti-
cal cells [60], suggesting a possible therapeutic value in the treat-
ment of adrenocortical cancers. Isoquinolone-derived inverse
agonists were subsequently shown to inhibit the expression of
CYP21 and CYP17 mRNA in vitro, with a concurrent reduction in
the secretion of aldosterone, cortisol, and DHEA-S, and inhibition
of adrenocortical carcinoma cell proliferation [5,63]. These results
indicate that pharmacological modulation of SF-1 may be a viable
strategy in treating adrenocortical carcinomas, and possibly other
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negated by inhibiting the acid ceramidases that produce sphingo-
sine from ceramide, or by introducing mutations into the LBP that
abrogated sphingosine binding [65]. Subsequently, it was found
that PA activated SF-1-dependent CYP17 expression and transcrip-
tional activity, SF-1 heterocomplex assembly, and steroidogenesis.
These effects could be inhibited by sphingosine or by LBP muta-
tions [66].

These data suggest a model, wherein SF-1 is maintained in an
inactive conformation by sphingosine under basal conditions
[65,67] and is activated by the binding of PA, which is generated
subsequent to ACTH/cAMP signaling [66]. The two different lipid
species have opposing effects on the activity of SF-1, suggesting a
regulatory mechanism in which the levels of these two lipids con-
trol the expression of genes linked to SF-1.

2.2.3. PIP2 versus PIP3
While no structures of a SF-1–PI or SF-1–PIP complex have been

reported, modeling studies showed that phosphorylated PIs may
be stabilized by several histidine residues around the mouth of
the SF-1 LBP [68]. Mutations to these residues greatly impaired ex-
change of bacterial PG with PIP2 and PIP3 and diminished SF-1
transcriptional activity, suggesting that the binding of PIPs to SF-
1 is a biologically relevant interaction [68]. Indeed, IPMK phos-
phorylates PIP2 only when bound to SF-1, increasing downstream
gene transcription; likewise, PTEN cleaves PIP3 only when com-
plexed with SF-1, attenuating downstream activity [69]. Thus,
the PIP–SF-1 interaction appears to introduce a regulatory mecha-
nism not previously seen in NRs, in which the phosphorylation sta-
tus of a bound ligand dictates the activity of its receptor.

2.3. PPARs

The peroxisome proliferator-activated receptors (PPARs a, b/d,
and c) are members of the NR1C subfamily of NRs and play integral
roles in the regulation of lipid metabolism and inflammation [70–
72]. PPARs form heterodimers with the retinoid X receptor (RXR)
[73], and recognize an array of ligands, including fatty acids, eicos-
inoids, and oxidized lipid products [72].

2.3.1. PPARa and PC 16:0/18:1
PPARa is expressed in the heart, liver, kidney, muscle, and

brown adipose tissue [74]. As a fatty acid binding protein, PPARa
regulates the expression of many proteins involved in cellular fatty
acid homeostasis [75–77] and systemic lipid balance [78]. It has
been implicated in atherosclerosis and dyslipidemia, and pro-
longed activation has been linked to oxidative damage and liver
cancer [79]. As such, PPARa is an important pharmacological tar-
get. Fibrates, a class of drugs used to treat dyslipidemia, are phar-
macological agonists of PPARa, and exert their therapeutic effects
by lowering triglyceride levels [80].

PPARa is known to bind to many natural free fatty acids (FFAs)
and while these are likely physiological ligands, proving that these
are bona fide endogenous activators is technically challenging. Like
PLs, FFAs are typically insoluble, partitioning into droplets, mem-
branes and soluble lipid binding proteins making direct correla-
tions between binding affinity and activation difficult. It is clear,
however, that lM levels of exogenous FFAs (1–50 lM) activate
PPARs in vivo and in animals [81]. This is on par with PL-dependent
transactivation among NR5A receptors, which display EC50 values
ranging from 30 to 100 lM for activating PC and PE isoforms
[38,42]. This affinity for FFAs and PLs among nuclear receptors is
likely a result of their ‘‘generous’’ lipid binding pockets (see Sec-
tion 4) which allow binding to an array of lipid metabolites.

In 2009, mass spectrometry experiments identified PC 16:0/
18:1 as one of several lipids bound to PPARa isolated from murine
liver tissue, and the only one whose presence was dependent on
fatty acid synthase (FAS) [81]. Binding of this PC species was selec-
tive for PPARa over PPARd and PPARc, and could be enhanced
in vivo by FAS induction, and inhibited by treatment with a PPARa
agonist [81]. Additionally, PC 16:0/18:1 treatment stimulated
PPARa-dependent gene expression and decreased fatty liver symp-
toms in mice, lending further credence to its suggested role as an
endogenous PPARa agonist [81].

2.3.2. PPARc and tail-oxidized PLs
PPARc, which regulates glucose and fatty acid metabolism, is an

important target in the treatment of type II diabetes, and is the
receptor upon which the thiazolidinedione class of drugs acts
[82]. In addition to metabolic regulation, PPARc is known to be
an important player in anti-inflammatory pathways [83]. Recently,
15-KETE- and 15-HETE PE, two oxidized PE species, were shown to
activate PPARc in vitro. Reporter gene assays showed a dose
dependent activation in HEK293 cells cotransfected with PPARc
and a PPRE-luciferase construct, and in macrophages harvested
from PPRE-EGFP transgenic mice. Furthermore, these oxidized
PEs induce the PPARc-dependent expression of CD36 in human
monocytes [84]. Unoxidized PE showed no PPARc activation, sug-
gesting that PPARc may specifically recognize oxidized PLs. While
the formation of oxidized PEs is not dependent on lipases, it re-
mains possible that phospholipase A (PLA) isoforms may liberate
oxidized fatty acids, which are also known PPAR activators. Earlier
work showed that oxidized PLs bind directly to the LBP, and PPARc
protects these oxidized PLs from phospholipase A1 mediated cleav-
age; however, this same work showed that PLA1 treated oxidized
PLs had a similar ability to stimulate PPARc transactivation relative
to untreated oxidized PLs [85]. For PPARa, however, PLA2 appears
to be required for activation by oxidized PLs [86].

2.4. USP

Ultraspiracle protein (USP) was identified as the Drosophila
homologue of mammalian RXR in 1990 [87,88]. Its major function
is to serve as a binding partner for the ecdysone receptor (EcR); this
heterodimer is a vital regulator of molting and metamorphosis,
which is triggered by the binding of 20-hydroxyecdysone (20E)
to the EcR subunit [89]. However, USP itself can bind to several
farnesoid insect juvenile hormones [90], and it is hypothesized to
be a ligand-activated NR in its own right [91].

2.4.1. E. coli PLs
Crystal structures of USP consistently show bacterially-derived

PL bound in the LBP [92–95], stabilizing the receptor in an antago-
nist conformation [93]. While most data implicate farnesoid deriv-
atives as the endogenous USP ligand, it is conceivable that insect
PLs may play a role in USP-mediated gene regulation, given the
emerging role of PLs in other NR pathways. Insects have coopted
PLs in the regulation of SREBP processing and nuclear translocation
and may have independently evolved PL sensitive NRs. A compar-
ison of the USP-PL crystal structures reveals a nearly identical
mode of PL binding versus LRH-1 and SF-1.

3. PL transport and PL dependent coactivation

3.1. PPAR and PC-TP

In addition to direct NR-mediated gene expression, PLs have
been shown to indirectly affect gene regulation through lipid shut-
tling proteins such as phosphatidylcholine transfer protein (PC-TP).
PC-TP is a member of the steroidogenic acute regulatory protein
(StAR)-related lipid transfer (START) domain superfamily that
shares a common fold for lipid binding [96,97]. PC-TP is exquisitely
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selective for PC’s [98], and was originally shown to catalyze both
one-for-one PC exchange, and net PC transfer between membranes
[99–101]. PC-TP has since been identified as an important meta-
bolic regulator, participating in hepatobiliary cholesterol, lipopro-
tein, glucose and fatty acid metabolism as well as brown fat-
mediated thermogenesis [102].

Consistent with PC-TP’s participation in metabolic processes, it
has been identified as a binding partner for multiple metabolic pro-
teins [103]. Arguably, the most interesting of these interactions is
with PPAR-a [104]. In addition to PPAR-a regulating the expression
of PC-TP, PC-TP was shown to upregulate the transcriptional activ-
ity of both PPAR-a and HNF-4a [104]. The mechanism of this effect
on the transcriptional activity of NRs is not currently understood.
Additionally, the context in which NRs bind to PL transporters is
also unclear. There is a possibility that in addition to its role in
the distribution of lipids in membranes, PC-TP may also deliver
PL ligands to PL-sensitive receptors.

4. Structural analysis of PL binding proteins

4.1. What does it take to bind to PLs as a ligand?

With a large aliphatic surface and significant conformational
freedom for the bulk of the molecular structure, PLs certainly do
not look like a traditional NR ligands (Fig. 1). Interaction with the
hydrophobic tails, while energetically favorable, does not permit
Fig. 2. Crystal structures of soluble PL signaling proteins. Proteins are depicted as ribb
Molecular surfaces are shown to highlight the ligand binding pockets. (A) LRH-1 (slate)
(yellow) bound to PC (magenta) [106], (D) CD-1 (pink) bound to PI (cyan) [107] showing
shuttling proteins, (E) PC-TP (light green) bound to PC (magenta) [98] and (F) PITP (alm
specificity by the usual suspects (e.g. H-bonds, salt bridges, cat-
ion–p interactions). Below, we discuss the distinction between sol-
uble PL transporters and proteins that utilize the information
contained in the PL headgroup to drive intermolecular signaling.

4.2. Shuttlers versus transcription factors

Structurally characterized soluble PL transport proteins such as
PC-TP and PITPa, fully engulf PLs, interacting substantially with
both the lipid tails and the headgroup (Fig. 2E and F) [98,105].
Headgroup specificity is generated via H-bonds, ionic interactions
and cation–p interactions via residues located at the core of the
protein. The lipid tails extend toward the protein surface but re-
main protected from bulk solvent. This binding mode is in stark
contrast to PL-binding NRs which bury PL tails and present the
headgroup at the protein surface (Fig. 2A). The average LBP volume
in PC-TP and PITPa is 2297 and 3000 Å3, respectively; this is nearly
twice as large as the LRH-1, SF-1 and USP LBPs. The molecular vol-
ume of their bound lipids, however, are 874 and 552 Å3, for PCTP
and PITPa, respectively. It is tempting to speculate the excess cav-
ity volume and ‘‘tails out’’ PL conformation may be due to the
requirement that transporters deliver their PL cargo to a target
membrane or PL binding receptor prohibiting tight molecular
interactions. Consistent with these observations, holo structures
of PC-TP and PITPa show that atomic disorder increases distally
from the headgroup suggesting less than optimal contacts are
ons with bound phospholipids represented as sticks (O, red; P, magenta; N, blue).
bound to DLPC (magenta) [41], (B) SFH-1 (tan) bound to PI (cyan) [110], (C) CD-1
the bound ligands with lipid head-groups exposed to solvent. In contrast, the lipid

ond) bound to PI (cyan) [114] completely engulf their lipid ligands.



Fig. 3. Phospholipid mediated transcription control. (A) In the absence of a phospholipid agonist NRs are bound to corepressor proteins and block transcription. (B) Activating
PLs from exogenous, membrane bound or cytoplasmic sources bind to NRs or are potentially delivered by PL transporter proteins. Once an activating PL is bound to the NR
coactivator complexes along with other general transcription factors (GTFs) and RNA polymerase initiate the transcription of genes. (C) NRs can also be bound to non-
activating lipids with lipid modifying enzymes alter the lipid in place to become an activating lipid.
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made with the PL tails which have vastly more potential energy to
contribute to the protein–ligand interaction.

4.3. Parallels in the immune system

Both exogenous and endogenous PLs have been implicated as li-
pid antigens capable of activating natural killer T cells when pre-
sented by CD1 proteins localized on human antigen presenting
cells [106,107]. CD1 proteins play a critical role in presenting both
pathogen derived lipids and glycoproteins to initiate cell-mediated
immunity [108]. Like NRs, CD1 glycocproteins bind PLs in a ‘‘tails-
first’’ orientation with the PL headgroup exposed to the protein
surface. The binding and presentation of both PC and PI by CD1b
and CD1d, respectively, is remarkably similar to the presentation
of PLs by NRs (Fig. 2A and C–D), whereby the lipid tails are buried
and the headgroup is exposed to solvent. Thus, PL headgroup pre-
sentation may be a hallmark of PL dependent signaling.

4.4. Comparison to the PL PI/PC transporter Sec14

Sec14, originally defined by its ability to promote the move-
ment of PC and PI between membranes, is now known as an
integrator of PL signaling at the membrane [109]. To accomplish
this, Sec14 senses both PC and PI levels to stimulate PI4-K medi-
ated PI phosphorylation – a process critical for vesicle biogenesis.
Interestingly, Sec14 requires both PC binding and PI binding for
activity [110], however, a PC/PI exchange model has been proposed
whereby PC binding facilities PI loading. While a direct interaction
between Sec14 and PI4-K has not been observed, presentation of PI
for decoration requires that the inositol moiety is accessible to pro-
tein surface (Fig. 2B). Indeed, while Sec14 completely buries the PC
headgroup, the inositol ring of PI requires only the movement of
few side chains to access the solvent. These observations parallel
what we know for LRH-1/SF-1; they both are capable of binding
PC and PI and presentation of the phosphorylated inositol head-
group is required for signaling (SF-1). Furthermore, since DLPC
binding has not yet been tested in vivo, it is possible that the PC
binding ability of LRH-1 and SF-1 may facilitate the loading of PI
in a similar exchange reaction.

4.5. PL presentation as a model for PL dependent signaling

Unlike widely prevalent PL binding domains such as PHD fin-
gers that recognize PLs in the context of a membrane [111], NRs
engulf PLs ‘‘tails first’’ making extensive hydrophobic contact with
more than 15 residues and up to three hydrogen bonds near the
surface of the receptor [112]. It is clear that most of the binding en-
ergy is derived from interaction with the aliphatic tails, which in all
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known structures, intertwine to fill large 1300–1750 Å3 binding
pocket that starts at the core of the protein and terminates at the
protein surface. Lipid tails occupy the very core of the receptor
greatly enhancing protein stability [41]. In this way, PLs act as fold-
ing nuclei much like the hormones in other NR family members
[113]. However, the vast diversity among PLs and the potential
for lipid modifications suggests that PL dependent transcription
factors may serve to integrate varying and complex signals to tune
gene expression. This represents an added layer of complexity on
the already complicated cistrome in which coregulators, DNA,
chromatin modifying enzymes and accessory proteins orchestrate
coordinated gene expression.

5. Closing remarks

Evolution has generated a highly complex system to control en-
ergy homeostasis, including allosteric mechanisms within key
metabolic enzymes, and the nutritional control of gene expression
via transcription factors. Lipids are a major source of energy for the
cell, and it is well known that the composition and availability of
these lipids plays a central role in regulating glycolysis. NR medi-
ated gene program alteration, whether by responding to cellular
PL content, PL delivery by transporters, or in place PL modification,
connects PL levels not only to glucose and lipid homeostasis but to
steroid synthesis, reproduction, inflammation, development and
cell differentiation (Fig. 3).

Given the molecular properties of PLs, it is no surprise that PL-
driven transcription factors have been largely recalcitrant to drug
design. Proteins with large hydrophobic pockets typically require
large ligands and the potential for specific interactions within core
of the LBP are slim. While there have been a few successes in
designing specific compounds targeting these receptors, improving
these compounds and predicting their binding modes remain chal-
lenging. Clearly, modulating PL-driven transcriptional pathways
remains an untapped therapeutic opportunity and advances in this
area of research are desperately needed.
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