Vzduch

směs plynů v zemské atmosféře

Vzduch je směs plynů tvořící plynný obal Zeměatmosféru – sahající až do výše asi 100 km. Ovlivňuje chemické reakce jak v neživé přírodě, tak i v živých organismech (většina živých organismů by bez kyslíku z ovzduší nemohla vůbec existovat). Má i své významné fyzikálně chemické vlastnosti, jedná se zejména o koloběh vodyovzduší. Kromě toho tepelná kapacita vzduchu udržuje na Zemi teplotu přijatelnou pro život. Je také důležitou průmyslovou surovinou. Mimo jiné vzduch (resp. kyslík v něm obsažený) také slouží k oxidaci paliva v běžných spalovacích motorech, k oxidaci paliva při výrobě elektrické energie v tepelných elektrárnách, dále při vytápění či ohřevu vody atd. Vzduch tedy slouží coby druhá (prakticky neviditelná) složka každého běžného fosilního paliva.

Vyšší procento vodních kapiček ve vzduchu dává vzniknout mlze

Složení vzduchu

editovat

Čistý vzduch v nižších vrstvách je homogenní směsí těchto plynů (nejsou uvedeny proměnlivé složky, především vodní pára, jejíž koncentrace se ve vzduchu podstatně mění):[1]

plyn objem [%] hmotnost [%]
dusík 78,084 75,518
kyslík 20,946 23,135
argon 0,93 1,288
oxid uhličitý 0,0407 (407 ppm) 0,059
neon 0,0018 (18,18 ppm) 0,0012
helium 0,000524 (5,24 ppm) 0,000072
metan 0,0002 (2 ppm) 0,0001
krypton 0,000114 (1,14 ppm) 0,0003
vodík 0,00005 (0,5 ppm) 0,000001
xenon 0,0000087 (87 ppb) 0,00004

Fyzikální vlastnosti vzduchu při 0 °C a 101 325 Pa

Vlastnost Symbol Jednotka Hodnota
Molární hmotnost Mm g/mol 28,96
Molární objem Vm dm³/mol 22,40
Plynová konstanta r J/kg/K[2] 287,10
Hustota ρ0 kg/m³ 1,29
Měrná tepelná kapacita (0 °C) c kJ/kg/K 1,01
Izoentropický exponent κ [-] 1,40
Teplota tání tt °C -213,4
Teplota varu tv °C −194,5

Uvedené plyny jsou až na výjimky (CO2, CH4, H2) relativně stálé a jejich koncentrace se nemění. Mimoto atmosférický vzduch obsahuje proměnlivé množství vodní páry a různých jiných plynů (CO, SO2, N2O, NO, NO2, NH3, O3) a tuhé aerosoly (prach, pyl a mikroorganismy). Vodní pára a oxid uhličitý jsou v atmosféře nejvíce zastoupené skleníkové plyny, díky kterým je na Zemi teplota asi o 33 stupňů Celsia vyšší, než by byla bez skleníkového efektu způsobeného těmito plyny (hodnota záleží na různých odhadech a modelech)[zdroj?].

Kapalný vzduch

editovat

Kapalný vzduch se v minulosti získával při průmyslovém pochodu, kdy se atmosférický vzduch zbaví prachu, CO2 a vlhkosti a stlačí až na 200násobek normálního tlaku. Následně se ochladí studenou vodou a pak se nechá rozepnout do prostoru na tlak 20 až 30násobek normálního tlaku. Tím jeho teplota silně klesne a takto ochlazeného vzduchu se použije k předchlazování dalšího vzduchu v protiproudném chladiči. Postupně se dosáhne tak nízké teploty, že vzduch zkapalní za 20 až 30násobku běžného tlaku. Celý proces chlazení byl tedy založen na Joule-Thomsonově jevu a je proto poměrně málo efektivní. Nový (účinnější) postup zařazuje za kompresi a chlazení namísto jednoduché expanze tzv. izoentropické škrcení. K expanzi vzduchu tedy dochází při jeho průchodu turbínou, kde je navíc odevzdána využitelná objemová práce a je dosaženo ještě nižších teplot při stejném rozdílu tlaků, resp. k dosažení stavu zkapalnění postačí i nižší tlak za první kompresí. Kapalný vzduch tvoří namodralou kapalinu o bodu varu −190 °C.

Průmyslově se z kapalného vzduchu destilací (přesněji rektifikací) získává kyslík, dusík, argon a helium. Nicméně je třeba podotknout, že existují i jiné postupy přípravy kyslíku a dusíku ze vzduchu a helium lze získávat i z některých zdrojů zemního plynu.

Stlačený vzduch

editovat

V průmyslu se stlačený vzduch používá zejména pro přenos energie pro pneumatické nástroje a zařízení. Příkladem budiž pneumatické kladivo či různé balicí stroje. Vzduch pro přenos energie je obvykle stlačen kompresorem, podle potřeby ochlazen, vysušen a zbaven oleje pocházejícího z kompresoru.

Stlačený vzduch se používá pro pohon a ovládání průběžných brzd vlaků. Pneumaticky jsou ovládány a poháněny i další mechanismy v dopravních prostředcích.

Stlačeným vzduchem se nafukují pneumatiky, zvedací vaky, nafukovací čluny, míče, hračky.

Stlačený vzduch je dále používán při potápění a práce pod vodou, obvykle do maximální hloubky 40 m.

Vzduch také slouží k dopravě – buď přímo, např. zemědělský fukar, nebo pro přepravu schránek např. v systému potrubní pošty. Rovněž se používá k instalaci optických kabelů, které by mechanické zasunování do potrubí poškodilo.

Stlačeným vzduchem lze pomocí Venturiho efektu vyrobit i podtlak, který se pak používá např. v přísavkách.

Dopravní medium

editovat

Vzduchem se pohybují všechna vozidla, hladinové lodě a všechna letadla. Vzduch v motorových letadlech s pevnými křídly letadlo nejenže pomáhá pohánět, ale nese jej i nad povrchem Země. Bezmotorová letadla (kluzáky, větroně a padáky) využívají všech vlastností vzduchu pro svůj přesně definovaný pohyb.

Vzduch klade všem dopravním prostředkům (s výjimkou kosmických lodí a ponorek) přirozený odpor, který stoupá úměrně s druhou mocninou jejich rychlosti. Vozidla tento odpor překonávají zvýšeným výkonem pohonného systému a čelí mu konstrukčním uspořádáním resp. svými aerodynamickými tvary. Zajímavý efekt lze dobře pozorovat kupř. u kolejových vozidel v tunelech (třeba v metru), kde se vozidlo v tunelu chová jako volný píst a vzduch před sebou tlačí tunelem dopředu.

Tělesa, která se velmi rychle pohybují v atmosféře (kupř. granáty, rakety, střely), bývají z důvodů stabilizace dráhy letu vzduchem udržována v přímém směru prostřednictvím setrvačného efektu.

Reference

editovat
  1. HAŠEK, Pavel. Tabulky pro tepelnou techniku. Ostrava: [s.n.], 1980. Dostupné online. 
  2. IBLER, Zbyněk et al. 2002, str. 70.

Literatura

editovat

Externí odkazy

editovat
  NODES
Idea 1
idea 1