Descartesův list

algebraická křivka třetího řádu

Descartesův list je kubika - algebraická křivka třetího stupně, která má v kartézské soustavě souřadnic rovnici:

Descartesův list

.

Parametr je definován jako úhlopříčka čtverce, jehož strana se rovná délce největší tětivy smyčky.

Křivka tvoří smyčku v prvním kvadrantu s uzlem - dvojitým bodem v počátku a připomíná tvar listu po kterém byla pojmenována.

Její osou symetrie je přímka o rovnici: .

Bod A se nazývá vrchol, má souřadnice .

Její asymptota má rovnici .

Obsah vnitřní oblasti listu (mezi oblouky a ) je

Obsah plochy mezi asymptotou a křivkou se rovná obsahu vnitřku smyčky .

Historie

editovat

Poprvé byla rovnice křivky studována R. Descartem v roce 1638, ale vytvořil smyčku pouze v prvním kvadrantu, kde   a   jsou kladné hodnoty. Descartes věřil, že smyčka se opakuje symetricky ve všech čtyřech kvadrantech, ve formě čtyř okvětních lístků. V té době byla tato křivka nazývána jasmínovým květem.

Ve své moderní podobě byla tato křivka poprvé představena Ch. Huygensem v roce 1692 .

Rovnice

editovat
 
  .
  • Parametrická rovnice v kartézském systému:
  kde   .
 
Otočená křivka Descartesova listu

Často se znázorňuje o  otočená křivka. Její rovnice vypadají takto:

  • V pravoúhlém systému:
  kde  
  • Parametricky:
 
  • V polárních souřadnicích:
 


Externí odkazy

editovat
  NODES