
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

1

  
Abstract—Differential techniques are widely used in 

communication and sensor systems, as these techniques have 
been shown to improve the performance. This paper shows how 
differential sensing of permittivity can be conducted in a simple 
way. For that purpose, a microstrip line loaded with a pair of 
stepped impedance resonators is used in two different resonator 
connections: parallel and cascade. Each resonator is individually 
perturbed dielectrically so that: (i) when the two individual 
permittivities are identical, the structure exhibits a single 
resonance frequency; (ii) when the permittivies are different, 
resonance frequency splitting occurs, giving rise to two 
resonances (all these resonances are seen in the form of 
transmission zeros). The two sensing approaches are successfully 
validated through electromagnetic simulations and experiments. 
By virtue of a differential measurement, robustness against 
changing ambient factors that may produce sensor 
miscalibration is expected. 
 

Index Terms— differential measurement, dual-mode 
resonator, microstrip, microwave sensor, stepped-impedance 
resonator. 

I. INTRODUCTION 

ermittivity sensors are prominent electromagnetic sensors 
whose development begun in the mid-twentieth century  

[1],[2]. These sensors are highly versatile, as the measurand 
(the physical quantity of interest) can be either the permittivity 
or another physical variable directly related to it. 
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 Nowadays, there are multiple technologies available to 
implement permittivity sensors. Nevertheless, the focus here is 
restricted to sensors consisting of passive planar transmission 
lines and/or resonators. In the last few years, many planar 
resonator-based permittivity sensors, where frequency shift is 
typically the electrical sensing variable, have been reported. 
These permittivity sensors are aimed at many topics, including 
material characterization [3]-[5] (this is indeed the context of 
the sensors proposed in this work), analysis of organic tissue 
[6][7], microfluidics [8]-[11], biosensing [12]-[16], or 
environmental factors [17]. Other planar permittivity sensors 
implemented by means of artificial transmission-lines have 
also been proposed [18]-[20].  

A general drawback of resonance-based sensors is that, as 
permittivity depends on environmental conditions (e.g., 
temperature), the resonance frequency can be unintentionally 
shifted by spurious effects [2],[17]. As is well known, ideal 
sensors are designed to be linear or linear to some simple 
mathematical function with the measurand. However, sensors 
may be sensitive to other physical quantities, an effect 
designated as cross-sensitivity that entails measurement errors 
(miscalibration). Common cross-sensitivities are those derived 
from ambient factors; in sensor design, environmental stability 
is usually a key point and cannot be ignored [21],[22]. 
Regarding permittivity sensors, it can be argued that 
environmental drifts should be defined in terms of sensitivity 
rather than cross sensitivities. Nevertheless, if ambient factors 
are uncontrolled, the drifts should be indeed categorized into 
cross sensitivities. Additionally, the resonance frequency is 
generally dependent not only on the permittivity of interest, 
but also on the permittivity of the substrate/s necessary to 
support the resonant element [3]-[17]; this dependency is 
clearly a cross sensitivity.  

In order to prevent or reduce systematic errors due to cross 
sensitivities as much as possible, several strategies can be 
utilized, such as compensation techniques, or the use of 
environmentally stable materials. Another typical solution to 
deal with changing environmental factors is through 
differential measurements, the one considered here. 
Differential measurements are robust against variable ambient 
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conditions provided that these conditions perturb in the form 
of a common-mode stimulus. Generally, two sensors are used 
to construct a differential sensor, both of them being subjected 
to the same external factors [18]-[22]; an ideal sensor should 
be capable of conducting measurements regardless of the 
surrounding ambient factors. 

Depending on the application, differential measurements 
can be used with sensing or comparison purposes. A 
differential sensor measures the difference in permittivity (or 
one of the two permittivities, provided that the other one is 
known), whereas a comparator (differential by definition) can 
be used to inquire about whether two permittivities are the 
same or not. Permittivity comparators may be of interest, for 
instance, for the detection of defects or alteration of a SUT 
(sample under test) by comparing it to a well-known 
reference.  

A differential permittivity sensor based on amplitude levels 
by means of an interferometer setup was reported in [18]-[20]. 
In [23] the authors presented a differential sensor/comparator 
consisting of a transmission line loaded with a pair of identical 
shunt-connected stepped-impedance resonators (SIRs) 
connected to the same junction. Instead of duplicating and 
combining sensors in pairs to construct a differential sensor, 
pairs of resonators connected to a single signal interface (a 
single transmission line) were employed. Because of the SIR 
semi-lumped behavior, the size was compact, and electric 
energy was concentrated in a small region allowing for small 
SUTs and for low cross sensitivities (if present) related to 
substrate/s. Due to the SIR high Q-factor, high frequency 
discrimination was expected. The sensing principle, 
experimentally validated in the vicinity of 60 GHz, is based on 
resonance frequency splitting derived from symmetry 
perturbation [23]-[25]; there is one or two transmission zeros 
depending on whether the two permittivities are the same or 
not, respectively. However, the inter-resonator coupling was 
seen to degrade considerably the sensitivity and discrimination 
for small differential inputs. 

This work is aimed at expanding the preliminary research 
work conducted in [23], with a view to performing real-time 
differential permittivity measurements. Further analysis for the 
topology proposed in [23] is carried out, and an alternative 
topology based on a transmission line loaded with a cascade 
connection of SIRs to face with the drawback of the original 
topology is proposed. Equivalent circuit models are proposed 
and validated, from which the theoretical sensitivity is 
inferred. Experimental data applying material permittivity 
perturbation is reported to validate the potentiality of the 
proposed approaches. As will be proven, the new proposed 
structure exhibits significant benefits against the original one 
when the individual permittivities attain close values; higher 
sensitivity, higher discrimination, and narrower bandwidth of 
operation.  

This paper is organized as follows. Section II is devoted to 
show the two considered physical sensing topologies, and to 
their modeling by equivalent circuits. In Section III, the 
capabilities of these structures to operate as a differential 
sensor or a comparator are investigated by analyzing the 

sensitivity and the discrimination, respectively. Next, Section 
IV reports experimental verifications of the sensing 
approaches. Finally, the main conclusions are drawn in 
Section V.  

II. TOPOLOGIES AND EQUIVALENT CIRCUIT MODELS 

This section analyzes transmission lines loaded with a pair 
of shunt-connected stepped impedance resonators (SIRs) in 
two different topologies; one with the SIRs loaded at the same 
junction, and the other one by cascading the SIRs. Two SIRs 
are used to perform a real-time (i.e., through a single 
measurement) differential measurement. Furthermore, the two 
SIRs are identical with the purpose of rejecting as much as 
possible common-mode stimulus. Equivalent circuit models 
including independent and arbitrary capacitive variations in 
the SIRs are presented and validated. Without loss of 
generality, we use microstrip implementation. Losses are 
disregarded throughout this work, eligible approximation 
when dealing with low-loss substrates and SUTs. 
Nevertheless, a method to estimate the loss factor is included 
in the last section.  

A. Microstrip Line Loaded with a pair of parallel SIRs 

The SIR in Fig. 1(a), in shunt connection to a microstrip line 
section, is a semi-lumped resonator [26]. Provided that the two 
sections are electrically small, the behavior of a shunt-
connected SIR may be approximated to that of a shunt-
connected lumped LC resonator. The inductance/capacitance 
of the SIR is essentially determined by the 
inductance/capacitance of the high/low impedance section. 
Consequently, the circuit model depicted in Fig. 1(b) may 
describe accurately a microstrip line loaded with a single SIR. 
The inductance and capacitance of the main host transmission 
line are L and C, respectively, whereas the SIR inductance and 
capacitance are Ls and Cs, respectively. Additionally, for 
sensing purposes, the model takes into account a capacitive 
perturbation, ΔCs, applied to the SIR. According to the circuit 
model of Fig. 1(b), a transmission zero (or notch) appears at 
the angular resonance frequency given by 

 
 0

1
.

s s sL C C
 

 
 (1) 

 
 

      

Fig. 1. (a) Typical topology of a SIR-loaded microstrip line, where 
geometrical and electrical parameters are indicated. (b) Equivalent 
circuit model with a capacitive perturbation applied to the SIR.  

(a) 
(b) 
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As a case study a single SIR-loaded line with dimensions 
W = 1.83 mm, l = 6 mm, l1 = l2 = 2.6 mm, w1 = 5.5 mm, and 
w2 = 250 µm and substrate Rogers RO4003C with relative 
permittivity r = 3.38, thickness h = 812.8 µm, and loss 
tangent tan = 0.0021, was considered in [23]. The model was 
validated by circuit simulation of extracted parameters, 
inferred following the systematic procedure reported in [27], 
which is based on a mapping of the scattering parameters 
obtained from full-wave electromagnetic simulation, adapted 
to the considered circuit. The resulting circuit parameters, 
characteristic impedances and electrical lengths were found to 
be: Z0 = 50 Ω, Z1 = 23 Ω, and Z2 = 120 Ω, electrical lengths at 
f0 = 3.83 GHz were βl0 = 45°, βl1 = 21°, and βl2 = 18°, and the 
circuit elements were L = 1.81 nH, C = 0.57 pF, Ls = 2.45 nH, 
and Cs = 0.70 pF (ΔCs = 0). 

In order to verify the modeling of an alteration in the 
resonator capacitance, a shape perturbation was produced in 
[23]. Namely, the length of the wide section of the reference 
resonator was enlarged (+|Δl1|) or shortened (−|Δl1|), with 
Δl1 = ±0.5 mm = ±0.19l1, to increase (+|ΔCs|) or decrease 
(−|ΔCs|) its associated capacitance, respectively. The circuit 
values of these perturbations (±|ΔCs|), with 
ΔCs = ±0.11 pF = ±0.15Cs, were obtained from (1) and the 
transmission zero frequencies inferred from electromagnetic 
simulations. The transmission coefficient of these structures, 
confirmed that the circuit simulations were in good 
accordance with those inferred from electromagnetic solvers 
in [23].  

As expected from (1), any capacitive perturbation may be 
sensed by monitoring the change in the resonance frequency. 
However, a real-time differential measurement of two 
capacitive perturbations cannot be performed by loading a 
transmission line with a single SIR. Therefore, transmission 
lines loaded with pairs of SIRs are necessary. 

Fig. 2(a) shows a microstrip line loaded with a pair of 
identical shunt-connected SIRs placed at the same junction, 
and on opposite sides of the line (parallel configuration). In 
this topology, as was already considered in [23], it is assumed 
that both resonators are individually and simultaneously 
capacitively-perturbed by ΔCsi (i = 1, 2). The lumped element 
equivalent circuit model that was proposed in [23] is 
represented in Fig. 2(b). The SIRs are close together, and 
magnetic coupling between them is accounted for, such a 
coupling being negative since the currents in the mirrored 
SIRs flow in opposite directions (i.e., the currents are anti-
parallel at the junction of the SIRs). This coupling is 
accounted for by the mutual inductance −|M|, the magnetic 
coupling coefficient being [26]  

 .m
s

M
k

L
   (2) 

From the equivalent T-circuit model of a two-port network 
consisting of a pair of coupled inductors, the circuit model 
shown in Fig. 2(c) is inferred. If the capacitive perturbations 
are identical (ΔCs1 = ΔCs2 = ΔCs), the simpler circuit depicted 
in Fig. 2(d) results. 

For balanced (i.e., identical) perturbations, according to the 
circuit of Fig. 2(d), it can be readily noticed that the structure 
exhibits a single transmission zero at 

 
   
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.

1
e
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  (3) 

In the presence of coupling, the transmission zero simply 
shifts upwards. The resonance frequency in (3) is denoted by 
ωe, in agreement to the nomenclature used in [26] to 
emphasize the presence of an open circuit, under even mode 
excitation, at the symmetry plane of two identical coupled 
resonators.  

 

        
 

 

 
Fig. 2. (a) Microstrip line loaded with a pair of identical SIRs at the 
same junction and on opposite sides. (b) Equivalent circuit model 
with arbitrary capacitive perturbations in the two SIRs. (c) 
Transformed equivalent circuit model. (d) Transformed and 
simplified equivalent circuit model with balanced perturbations.  

In the case with different perturbations (ΔCs1 ≠ ΔCs2), the 
symmetry in the shunt branch of the circuit model is disrupted. 
Although the resulting circuit model is not as simple as with 
balanced perturbations, the resonance condition can be easily 
obtained by setting the shunt branch impedance to zero. This 
gives the resonance frequencies of a circuit network composed 
of two magnetically coupled resonators, given by [26]   
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 (4) 

 
where ωl and ωu denote the lower and upper resonance 
frequencies, respectively. Therefore, a jump discontinuity 
arises due to unbalanced perturbations giving rise to two split 
resonance frequencies. The most relevant aspect is the fact 
that, because of coupling, the two resonances depend on the 
two perturbations, i.e., ωl,u = f(ΔCs1, ΔCs2). Accordingly, each 
resonance frequency cannot be independently tuned by its 
corresponding perturbation. In other words, when one of the 
resonators is perturbed, the two resonance frequencies change 

(c) 
(d) 

(a) 

(b) 
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(the more similar the perturbations, the higher the cross-
dependence). It turns out that a parallel combination of shunt-
connected SIRs can be viewed as a dual-mode tri-section 
(wide-narrow-wide) SIR [28]-[32], where symmetry 
disruption is necessary to invoke the dual-mode behavior [33]. 
Note that multimode resonators are usually utilized to reduce 
the size of circuits, but in the present work a dual resonant 
behavior is used to conduct a differential measurement. 
 

 
 

 

 

 
Fig. 3. (a) Photograph of the considered microstrip lines loaded with 
pairs of parallel SIRs. The lower SIR is perturbed by ±|ΔCs2|, whereas 
the upper SIR is unperturbed (ΔCs1 = 0). The dimensions and 
substrate are those indicated in the text in reference to the single SIR-
loaded line of [23] (except l = 15.9 mm to solder the connectors). (b) 
Magnitude of the transmission coefficient obtained from lossless 
electromagnetic and circuit simulations, and measurements. The 
circuit parameters are those indicated in the text for the single SIR-
loaded line of [23], with M = −0.31 nH (km = −0.13), as the additional 
host line length produces a phase shift only. The indicated resonance 
frequencies correspond to those obtained by simulation.  

In order to demonstrate the validity and usefulness of the 
models in Fig. 2, in [23] three different pairs of SIRs loading a 
microstrip line were considered, as can be seen in Fig. 3(a): a 
symmetric pair, an asymmetric pair derived by increasing l1 in 
one of the SIRs (+|ΔCs2|), and another asymmetric pair derived 
by decreasing l1 (−|ΔCs2|). These structures were already 
fabricated (using a drilling machine) and measured in [23], but 
some fabrication-related tolerances and uncertainties were 
observed. For this reason, we have fabricated them again 
(using a photo-etching process) to fit better the measurements 

with the simulations. As the considered structures are built up 
from those of single SIR loaded line, the only circuit 
parameter that needs to be obtained is the mutual inductance. 
This parameter has been obtained by curve fitting the circuit 
simulation to the electromagnetic simulation in the case of the 
host line loaded with symmetric SIRs. Analytically, (3) can be 
used alternatively. The extracted value is M = −0.31 nH 
(km = −0.13). As proven in Fig. 3(b), the circuit simulations 
are consistent with both electromagnetic simulations and 
measurements, verifying that losses omission is a reasonable 
approximation using low-loss substrates. 

It should be noted from Fig. 3 that the resonance frequency 
at fu resembles that at fe, while an additional narrowband lower 
resonance frequency at fl appears. When symmetry (in regard 
to the line axis) is broken, the bandwidth at fl is narrower than 
that at fu. The smaller the difference in the perturbations, the 
narrower the lower notch. As a result, the discrimination to 
detect small differences between the perturbations is expected 
to be degraded by losses.  

B. Microstrip Line Loaded with a Pair of Cascaded SIRs 

This subsection deals with an alternative topology presented 
in this paper to perform differential capacitive measurements 
in such a way that inter-resonator coupling is prevented. The 
proposed topology is illustrated in Fig. 4(a), and consists of a 
transmission line loaded with a cascade connection of two 
identical SIRs which are spaced apart by a transmission line 
section of length ls. If the SIRs are loaded on the same side of 
the line, as is considered, the resonators may be coupled not 
only magnetically, but also electrically. However, the 
resonators are placed sufficiently separated so that we may 
assume that the total coupling is negligible.  

The proposed circuit model is that represented in Fig. 4(b). 
Regardless of the length of the transmission line section 
between resonators, ls, the transmission zero frequencies are 
given by   

 
   1 2

1 1
min , ,l

s s s s s sL C C L C C

 
 
     

  (5a) 
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

 
 
     

 (5b) 

where ωl and ωu denote again the lower and upper resonance 
frequencies, respectively. According to the previous 
expressions, the two resonances can be shifted independently 
like using single SIRs, even for unbalanced perturbations. 
Clearly, the resonance frequency splitting phenomenon, which 
emerges from unbalanced perturbations, is of different nature 
in the two configurations under study. In cascaded SIRs, 
splitting occurs as a mere result of frequency shifting, whereas 
in parallel SIR there is a combination of frequency shifting 
and inter-resonator coupling. 

Let us now assume the particular case where the in-between 
transmission line section is half-wavelength long (ls = λ/2, 
where λ is the guided wavelength). As the input impedance of 
a load seen through a λ/2 line is unchanged, the circuit in Fig. 

(b) 

(a) 
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4(b) is equivalent to that shown in Fig. 4(c). Note that the 
SIRs are virtually connected at the same junction so that the 
structure behaves like if the SIRs were physically located at 
the same junction (due to periodicity, this holds at integer 
multiples of λ/2). Indeed, the latter circuit is the ideal one 
which we would like to implement. The problems to 
implement this idealized circuit are: (i) in parallel SIRs, there 
is inter-resonator coupling (Section II-B); (ii) in cascaded 
SIRs, ls = λ/2 is satisfied at one frequency only (this condition 
is designed to be satisfied at the resonance frequency of the 
unperturbed resonators). However, the latter issue is not 
dramatic, since the resonance frequencies in (5) do not depend 
on the inter-resonator distance (as long as inter-resonator 
coupling can be ignored). Therefore, the resonance 
frequencies of the model in Fig. 4(c) always coincide with 
those of the model in Fig. 4(b).  

The last simplification makes the assumption that the 
perturbations are identical (ωl = ωu = ω0). In this circumstance, 
the circuit in Fig. 4(c) derives to the one in Fig. 4(d), which is 
formally identical to that with parallel SIRs depicted in Fig. 
2(d).  

 

 
 

 

 

Fig. 4. (a) Microstrip line loaded with a pair of identical SIRs in 
cascade connection. (b) Equivalent hybrid circuit/TL model including 
arbitrary capacitive perturbations. (c) Simplified equivalent circuit 
model when the resonators are spaced half-wavelength apart, i.e., the 
in-between transmission line section has an electrical length of  
βls = 180°. (d) Simplified equivalent circuit model for βls = 180° in 
the case of balanced perturbations.  

To demonstrate the usefulness of the cascaded approach, we 
have considered the same three previous scenarios in line with 
the parallel connection [see Fig. 5(a)]. Accordingly, the same 
circuit elements have been used to validate the equivalent 
circuit models. As can be seen in Fig. 5(b), the agreement 
between the circuit/TL simulations, the electromagnetic 
simulations, and measurements is quite good. It deserves 
mentioning that a small ripple can be noticed from 

measurements in the symmetric structure, owing to the fact 
that the in-between transmission line is not exactly half-
wavelength at the corresponding resonance frequency. 
Importantly, the notch frequencies are the same as those using 
single SIRs. Another relevant result is that the bandwidth of 
both notches is not narrow by nature, in contrast to what 
occurs at the lower resonance frequency employing parallel 
SIRs.  

 
 

 

 
 

 

 

 
Fig. 5. (a) Photograph of the considered microstrip lines loaded with 
pairs of cascaded SIRs. The right SIR is perturbed by ±|ΔCs2|, 
whereas the left SIR is unperturbed (ΔCs1 = 0). The dimensions, 
substrate, and circuit parameters are those of the single SIR-loaded 
line (except ls = 23.9 mm and l = 35.9 mm). (b) Transmission 
coefficient magnitude obtained from lossless electromagnetic and 
circuit/TL simulations, and measurements. The indicated resonance 
frequencies correspond to simulations. 

C. Comparison between the Topologies 

To end this section, we compare the transmission zero 
frequencies given by the two considered configurations, 
namely, those depicted in Figs. 3(a) and 5(a).  

(a) 

(b) 

(c) (d) 

(b) 

(a) 
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The results for the three considered scenarios with different 
perturbations [Figs. 3(b) and 5(b), as well as the single SIR] 
are plotted in Fig. 6 for comparison purposes. In the light of 
this figure, it is clear that the two concerning topologies 
manifest a strongly different behavior caused by the presence 
or absence of inter-resonator coupling.  

 

 

 

 
Fig.6. Transmission coefficient magnitude (lossless electromagnetic 
simulation) of the considered microstrip lines loaded with parallel or 
cascaded SIRs for ΔCs1 = 0, and (a) ΔCs2 = 0, (b) +|ΔCs2|, and (c) 
−|ΔCs2|. For comparison purposes, the response using a single SIR 
[23] applying to it ΔCs2 is also plotted. 

 
Fig. 7. Resonance frequencies predicted by (3)−(4) and (5) versus a 
capacitive perturbation (ΔCs1 = 0 and −0.6 ≤ ΔCs2 / Cs ≤ 0.6) for the 
considered reference microstrip lines loaded with parallel and 
cascaded SIRs, respectively. The circuit parameters of the reference 
structures are: L = 1.81 nH, C = 0.57 pF, Ls = 2.45 nH, Cs = 0.70 pF, 
and M = −0.31 nH. The resonance frequencies of the three basic 
scenarios of Figs. 3 and 5, which correspond to particular 
perturbations, are mapped.  

Fig. 7 plots the resonance frequencies predicted by (3)−(4) 
and (5) in the case where a capacitive perturbation is applied 
to one of the SIRs (ΔCs1 = 0 and ΔCs2 ≠ 0). The considered 
circuit parameters of the unperturbed structures are those 
obtained previously. Additionally, the resonances for the 
particular perturbed structures are also mapped to the curves. 

It is especially visible that, when one of the resonators is 
perturbed (ΔCs2 ≠ 0), the frequency splitting in parallel SIRs is 
characterized by a shift in the two resonances. On the 
contrary, for cascaded SIRs only the resonance frequency of 
the perturbed resonator is shifted.  

In conclusion, it can be drawn that a cascade connection of 
SIRs provides a good solution to prevent coupling between 
them. Moreover, significant advantages arise, particularly, the 
resonances are independent to each other (enhancing the 
sensitivity, as will be shown in Subsection III-C), their 
bandwidth is moderately wide by nature (improving the 
discrimination), the spectral separation between the resonance 
frequencies is not enhanced by coupling (requiring a narrower 
bandwidth of operation), and unknown perturbations can be 
physically identified. As will be shown, these advantages hold 
as long as the perturbations are similar. 

III. SENSITIVITY ANALYSIS 

Thus far, capacitive perturbations have been produced by 
changing the physical dimensions of the resonators. Evidently, 
in practice, the capacitive perturbations in a permittivity 
sensor must be due to permittivity perturbations of samples 
under test (SUTs). We use the term sample in order not to lose 
generality, meaning that the sample can be a material, liquid, 
organic tissue, and so forth. Furthermore, the SUT may also 
refer to a functional layer that enhances the measurand-to-
permittivity relationship for sensing purposes (e.g., in 
environmental sensors based on functional layers, a material 
highly sensitive to the environmental factor of interest is 
used).   

This section evaluates the sensitivity in differential 
permittivity measurements, for both capacitive and 
permittivity perturbations. The study is conducted on the basis 
of the proposed equivalent circuit models, together with 
analytical expressions of capacitances, and on electromagnetic 
simulations.  

A. Analytical Sensitivity in terms of Capacitance 

With a view to performing differential sensing of 
capacitances in the considered approach based on frequency 
splitting, the differential input is the difference between the 
capacitances, that is 

 2 1.sd s sC C C   (6) 

The output electrical variable to be monitored is frequency, 
and the differential output is defined as the difference between 
the upper and lower resonance frequencies, that is 

 .d u lf f f   (7) 

Obviously, despite the fact that the resonance for balanced 
perturbations is denoted by fe or f0, when a single resonance is 
monitored, implicitly results fl = fu. The curve that relates the 
output and input quantities, namely fd(Csd), is named transfer 
function, whose slope is the sensitivity. Hence, the sensitivity 
is defined as the variation in the difference between the 
resonance frequencies divided by the variation in the 
difference between the capacitances.  Mathematically, the 
sensitivity can be written as 

(a) 

(b) 

(c) 
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 

  
           

(8) 

where ΔCsi (i = 1, 2) and Δfl,u stand for individual 
incremental/decremental changes in capacitance and 
resonance frequency, respectively. For simplicity, if one of the 
SIRs is not perturbed and considered to be a reference (so that 
ΔCs1 = 0) then (8) reduces to 

2 0
2 2

( )
lim .

s

d u l

C
s s

df f f
S

dC C 

 
 


                    

(9) 

In addition, in the cascade configuration, the magnitude of the 
analytical sensitivity for null perturbation (y-axis) becomes 

0

2

.
2 s

f
S

C
                   (10) 

The sensitivity should be as high as possible, and constant 
values of it are preferred. In order to gain insight into the 
sensitivity, instead of analyzing (9), that is cumbersome when 
the resonance frequencies are governed by (4), numerical 
solutions will be given. The resonance frequencies determined 
by (3)−(4) for two different coupling coefficients and by (5) 
are plotted in Fig. 8(a) assuming ΔCs1 = 0. It is evident that the 
output is null in the case of a perfect balance of perturbations 
(ΔCs1 = ΔCs2 = 0). On the other hand, unbalanced 
perturbations have been introduced by a capacitive variation in 
one of the SIRs (ΔCs1 = 0, ΔCs2 ≠ 0). As expected, when 
km ≠ 0, corresponding to the case with parallel SIRs, fu is more 
sensitive to −|ΔCs2| than fl, and complementarily fl is more 
sensitive to +|ΔCs2|. Both frequencies tend to the frequencies 
without coupling as the capacitive perturbation increases. 

Fig. 8(b) shows the corresponding transfer function from 
which it is apparent that, as |km| increases, the frequency 
splitting, fd, strengthens. It turns out that the sensitivity, shown 
in Fig. 8(c), worsens as |km| increases. Indeed, the maximum 
sensitivity corresponds to the case of (uncoupled) cascaded 
SIRs, and is given by (10). Specifically, a significant 
degradation in the sensitivity results for small perturbations. 
As was stressed earlier, even for loose coupling coefficients, 
coupling cannot be neglected for similar perturbations. 
Nevertheless, the parallel configuration can be useful when the 
perturbations differ from each other significantly. In these 
situations, coupling plays an insignificant role.  

 The results in Fig. 8 were already published in [23], where 
using parallel SIRs with km = 0 was assumed to be fictitious. 
Here, km = 0 is no longer fictitious, as is implemented 
employing cascaded SIRs. For small inputs, since the inter-
resonator coupling in parallel SIRs decreases the sensitivity, 
parallel-connected SIRs are apparently not much appropriate 
to properly operate as a sensor. Additionally, this topology 
working as a comparator between two capacitively-perturbed 
SIRs is not much promising. As mentioned before, the 
discrimination for small differential inputs is expected to be 
rather limited due to the narrowband nature of the lower 
resonance. Conversely, SIRs in cascade connection are 
expected to achieve high sensitivities and discriminations.  

 

 
 

 
Fig. 8. (a) Resonance frequencies given by (3)−(4) for different km 
and (5) normalized to the constant resonance frequency of the non-
perturbed uncoupled SIR determined by (5). The capacitive 
perturbations are ΔCs1 = 0 and −0.6 ≤ ΔCs2 / Cs ≤ 0.6. (b) Normalized 
transfer function. (c) Sensitivity magnitude normalized to the case of 
balanced perturbations (ΔCs2 = 0) in the cascaded configuration. For 
the parallel arrangement, sensitivity is calculated using (4) solely, 
disregarding (3) in order not to calculate the sensitivity across the 
jump discontinuity. 

It should be mentioned that the dynamic range of 
measurement is not limited to the considered one 
(|ΔCs2| ≤ 0.6Cs). This relatively small dynamic range, 
however, allows for illustrating properly the handicap of the 
parallel configuration, i.e., low performance under small 
inputs. Finally, it is also important to highlight that the 
sensitivity is not constant due to the fact that the transfer 
function is not linear [this is indeed evident from the simplest 
form of the sensitivity given by (10)]. Moreover, sensitivity is 

(a) 

(c) 

(b) 
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not a symmetric function with respect to the y-axis, i.e., 
S(+|ΔCsd|) ≠ S(−|ΔCsd|). Instead, the sensitivity magnitude 
increases or decreases as the input capacitance is increasingly 
lower or higher, respectively. 

B. Analytical Sensitivity in terms of Permittivity  

In the previous subsection we considered a capacitive input 
as a generalization. Capacitive variations can be produced by 
several means, e.g., by changing the physical dimensions of 
the resonators (i.e., shape perturbation as done in Section II) or 
by changing dielectric properties (i.e., material perturbation, as 
it must be in practice). Therefore, in a real sensor the 
differential input is the difference in the relative permittivity 
of the SUTs, defined here as 

 2 1.rd r r     (11) 

It should be noted that the sensor measures a difference 
between two permittivities. Provided that one of the two 
permittivites is known, the other permittivity can be inferred.   

The sensitivity in terms of the relative permittivity becomes 

2 1 0
2 1

lim ,
r r

d u l

rd r r

f f f
S

  

   
 
      

              

(12) 

where Δεri (i = 1, 2) stands for changes in relative permittivity. 
The partial derivatives indicate that the output differential 
frequency may be influenced by other physical variables 
related to cross sensitivities, as will be illustrated before 
ending this subsection. By assuming a linear dependence of 
the capacitance with the permittivity (with proportionality 
constant k), and letting Δεr1 = 0 and km = 0 once again, the 
sensitivity magnitude becomes  

0

2

.
2 r

f
S 


              

(13) 

To establish analytically the transfer function and sensitivity 
above, the SIR capacitance was approximated by the parallel-
plate capacitance of its wide section, namely 

0 2 1 1
2

r
p r

w l
C k

h
 
   ,        (14) 

where ε0 is the vacuum permittivity. In (14), the substrate in 
the vicinity of the wide section is supposed to be replaced with 
one SUT. The most relevant aspect in this approximation is 
that the SIR capacitance is linearly dependent on the 
permittivity. The corresponding capacitance for the reference 
SIR is Cp = 0.53 pF. However, (14) must be considered as a 
first-order approximation as mentioned above, where l1, w1 >> 
h are required for accurate results. Likewise, Cs is neither 
exactly proportional to l1; Δl1 = ±0.19l1 produces 
ΔCs = ±0.15Cs.  

Finally, to illustrate the robustness of differential 
measurements against cross sensitivities, let us assume that we 
compare two identical materials (ΔCs = ΔCs1 = ΔCs2). Using a 
two-step process with a single SIR, the resulting resonance 
frequencies are 

 
 0

1
.

s s sL C C



  (15) 

Let us now introduce a spurious change in the capacitance 
related to a cross sensitivity, denoted by ΔCxi (i = 1,2). As the 

effect of cross sensitivities may change over time, one may 
assume ΔCx1 ≠ ΔCx2 (neither a compensation technique nor 
recalibration is considered). Hence, in the presence of cross 
sensitivities, the different drifts shift the resonance frequencies 
to 

 01

1

1
,

s s s xL C C C


 
     (16a) 

 02

2

1
.

s s s xL C C C


 
     (16b) 

Therefore, fd ≠ 0 and the readout is going to be wrong. By 
contrast, performing the proposed real-time differential 
measurement, using the cascaded configuration, the resulting 
single resonance frequency is  

 
 0

1
.l u

s s sL C C
  


    (17) 

Since the two materials are the same and affected by cross 
sensitivities at the same time, it is reasonable to assume that 
ΔCx = ΔCx1 = ΔCx2, so that 

 0

1
.l u

s s s xL C C C
  

 
       (18) 

Consequently, fd = 0, indicating that there is no difference 
between the materials. Note, however, that a comparison 
between identical materials is the most favorable case to reject 
cross sensitivities, this case being theoretically totally immune 
to them, as indicated by (18). In a differential sensing, some 
degree of robustness is expected, as different materials may 
respond in a different way to the same stimulus. Particularly, 
if we compare fd for different materials (characterized by 
ΔCs1 = 0, ΔCs2 = ΔCs), and the same quantity under the 
presence of a common mode stimulus fd’, the difference is 
found to be: 

' .
2( ) 2

x x
d d u l

s

C C
f f f f

C C C

 
   


                (19)                

i.e., not exactly null if Cx  0, but small (and identical to zero 
if Cs = 0). 

C. Simulated Sensitivity in terms of Permittivity   

It is apparent that the optimum position (i.e., the most 
sensitive region) where the SUTs must be loaded depends on 
the technology of implementation. In microstrip technology, 
as is well known, most of the electric field is concentrated in 
the substrate. Therefore, the SUTs should be located between 
the SIR and the ground plane, like filling a parallel-plate 
structure. Otherwise, the sensitivity will be decreased. Figure 
9 shows a 2D cut of the electric field amplitude simulated with 
CST Microwave Studio, confirming that most of the electric 
field confinement lies below the wide section of the SIR (i.e., 
the electric field is dominated by the capacitance effect of the 
resonator). Moreover, since the field is roughly uniformly 
distributed, the wide section behaves approximately like a 
parallel-plate capacitance. 
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Fig. 9. Electric field amplitude at the SIR resonance frequency of the 
reference structure (single SIR) over the mid-plane between the SIR 
and the ground plane. The SUT height is set to h−2t where t = 35 μm, 
and its length and width extend 1 mm beyond the wide section of the 
SIR, as depicted. The SUT size is 4.6 mm x 7.5 mm x 812.8 μm.  

In order to characterize the sensitivity in terms of 
permittivity perturbations, we have considered the same 
reference structures as in Section II [Figs. 3(a) and 5(a)], and 
we have introduced a bulk dielectric SUT in one of the SIRs 
as illustrated in Fig. 9. The structures have been simulated 
with different values of the SUT relative permittivity, εr2, and 
the resulting resonance frequencies are plotted in Fig. 10. The 
resulting sensitivity derived from the results in Fig. 10 is 
plotted in Fig. 11. Clearly, for small perturbations, the 
sensitivity in cascaded SIRs is superior to that obtained using 
parallel SIRs. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
Fig. 10. Resonance frequencies for parallel and cascaded SIRs, 
obtained by electromagnetic simulation, versus a perturbation in the 
relative permittivity of a SUT loaded to one of the SIRs. The relative 
permittivity is perturbed by steps of ±10% so that 1.352 ≤ εr2 ≤ 5.408 
(−0.6 ≤ Δεr2/εr ≤ 0.6) where εr = 3.38. Losses are considered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.11. Magnitude of the sensitivity derived from Fig. 10  by steps of 
Δεr2/εr = ±0.1 (±10%). The sensitivity in the jump discontinuity of the 
parallel configuration is not calculated. As stated by (13), the 
sensitivity and the perturbation have the same sign.  

It can be observed that the results in Fig. 10 are similar to 
those in Fig. 7. More specifically, the sensitivity to a 
permittivity perturbation (∆εr2/∆εr) is a bit smaller than that to 
a capacitive perturbation (∆Cs2/∆Cs) with the same amount of 
relative perturbation. This verifies again that the capacitance is 
not exactly proportional to the permittivity.  

 
Fig. 12. Transmission coefficient obtained by electromagnetic 
simulations for small differential permittivity perturbations in (a) 
parallel and (b) cascaded SIRs. The perturbations are those necessary 
to obtain two −3-dB notches: Δεr2/εr = ±0.06 and ±0.02 (6% and 2%), 
respectively. 

The discrimination for small differential inputs, εrd, is of 
relevant importance in comparators. To gain insight into the 
performance of the considered topologies to operate as 
comparators, the discrimination from balanced to unbalanced 
perturbations should be defined as the minimum εrd necessary 
to produce a discriminable doubly notched response. It is 
assumed that two −3-dB notches suffice for reasonable 
accurate discrimination. For the considered topologies, these 
values are about ±6% and ±2% in the parallel and cascaded 
configurations. The transmission coefficients for these inputs 
are plotted in Fig. 12. Therefore, the cascade configuration 
exhibits higher discrimination than the parallel one, and it is 
an appropriate means to enhance the capability of detecting 

(a) 

(b) 

Max. 0 
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inputs as small as possible (i.e., to enhance the 
discrimination). As was expected, wideband notches are 
required. Otherwise losses may mask the notches, as occurs in 
the lower notch for parallel SIRs when the input differential 
permittivity is close to zero. In summary, the discrimination is 
better with the cascaded configuration, where both notches are 
wide. 

 
On the other hand, in the case of large perturbations and as 

proven in Fig. 13, the parallel and cascaded configuration have 
similar resonance frequencies and, in turn, sensitivities. 

 

 
Fig.  13. Transmission coefficient obtained by electromagnetic 
simulations for a large differential permittivity perturbation: 
εr1 = 3.38 and εr2 = 11.2 resulting in Δεr2/εr = +2.3 (+230%). 

IV. EXPERIMENTAL VALIDATION OF THE SENSING 

APPROACHES AND DISCUSSION 

In this section, permittivity perturbations are experimentally 
validated. To do so, the reference structures in Figs. 3 and 5 
are considered again. In order to apply both positive and 
negative differential permittivity perturbations, the substrate in 
the vicinity of one of the SIRs is removed using a drilling 
machine, creating a cavity. Next, the cavity is either unfilled 
(−|∆εr2|) or filled with a Rogers RO3010 substrate εr = 11.2 
(+|∆εr2|), and covered with a metallic adhesive tape to act as 
the ground plane etched from the microstrip structure. Figure 
14 shows different photographs to illustrate the cavities, and 
their filling and covering. Note that the effects of the air-gap 
present between the cavity and the SUT can be minimized by 
putting some pressure to the structure, as we have done in the 
measurements with the Rogers slab (in [5] a systematic 
method to eliminate the effects of the air gap is reported). 
 
(a) 

 
(b) 

 

 

(c) 

 

Fig. 14. Photograph of the reference structures composed of 
microstrip lines loaded with pairs of (a) parallel and (b) cascaded 
SIRs. From left to right: (i) cavity in one of the SIRs; (ii) filled cavity 
with Rogers RO3010 with εr2 = 11.2; (iii) cavity covered with a 
metallic tape. The photograph of the experimental set-up for 
measurement is shown in (c), including the Agilent N5221 network 
analyzer, cables, connectors and sensing system. 

(a) 

 
(b) 

 
Fig.  15. Measured transmission coefficient magnitude for the (a) 
parallel and (b) cascaded topologies under dielectric loading. Three 
scenarios are considered: (i) without cavity (∆εr2 = 0); (ii) unfilled 
cavity so that εr2 = 1 (−|∆εr2|); (iii) filled cavity with Rogers RO3010 
with εr2 = 11.2 (+|∆εr2|). No perturbation is applied to the other SIR 
(∆εr1 = 0). 

A. Determining the dielectric constant of the SUT 

The measured results of the positive/negative perturbations, 
plotted in Fig. 15 together with those with no perturbation, are 
in accordance with theory. Even though the cavity dimensions 
cannot be controlled very accurately with the in-house drilling, 
these experiments validate the sensing principle under 
permittivity perturbation. Nevertheless, inspection of Fig. 15 
reveals that the difference in notch frequencies is somehow 
smaller than the results of Fig. 10 for the considered dielectric 
constant values (1 for the unfilled cavity, and 11.2 for the 
filled cavity with the considered Rogers material). The reason 
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is that the cavity has been implemented by milling, and we 
have not completely removed all the substrate material, since 
the SIR needs some material for mechanical stability. 
Therefore, the unfilled cavity, including the remaining 
substrate layer, has an effective dielectric constant larger than 
1, and the cavity filled with the Rogers substrate (dielectric 
constant 11.2) has actually an effective dielectric constant 
smaller than 11.2. In other words, the measurement provides 
the effective dielectric constant of the structure below the SIR, 
including not only the SUT but also the presence of a narrow 
dielectric layer of relative permittivity 3.38. Moreover, the 
thickness of the whole structure, layer on top the cavity plus 
SUT, is not necessarily the same as the thickness of the 
substrate. In the simulations that have been carried out to 
obtain the results of Fig. 10, we have not considered this 
substrate layer between the SIR metal level and the SUT. In 
practice, it is very difficult for us to precisely control the 
thickness of the remaining substrate between the SIR patch 
and the cavity. For this main reason such layer has not been 
considered in the simulations. However, note that with a more 
sophisticated fabrication technology (e.g., micromachining), 
such control would not be a problem.  

Nevertheless, we have proposed a method to determine this 
thickness that subsequently allows us to obtain the dielectric 
constant of the SUT once the reference permittivity (the one of 
the substrate, i.e., r1) and the thickness of the SUT are known. 
Let us consider that h1 and hc are the thicknesses of the 
substrate layer on top of the cavity and cavity, respectively, so 
that h1 + hc = h, the substrate thickness. Moreover let us 
assume that the SUT corresponds to a material with well-
known dielectric constant, r2, and thickness, h2 (see Fig. 16). 
The method is based on the fact that the effective dielectric 
constant of the composite formed by the substrate layer on top 
of the cavity plus the SUT, eff, is related to the respective 
dielectric constants by 

1 2

1 2

1 2

1 2

.

r r

eff

r r

ε ε
 

ε h h
ε εh
h h






                                (20)                                            

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 16. Sketch (not drawn to scale) of the top and cross sectional 
view of the SIR and cavity loaded with the SUT. 

From the previous expression, the dielectric constant of the 
SUT can be isolated: 

1 2
2

1 1

,eff r
r

r eff

 ε ε h
ε

ε h ε h



                            (21)                   

eff can be inferred from the split in frequency of the SUT and 
the curve of Fig. 10 corresponding to the cascade connection. 
Thus, if r2 and h2 are known, h1 can be obtained from (21). 
For the SUT corresponding to the Rogers substrate with r2 = 
11.2 and h2 = 635 m, and taking into account that the notch 
frequencies of Fig. 15(b) provide eff = 4.9, according to Fig. 
10, the resulting thickness of the layer on top of the cavity is 
found to be h1 = 369 m. To verify the validity of this result, 
we have considered the curve of Fig. 15(b) corresponding to 
the unfilled cavity (εr2 = 1). By introducing the corresponding 
effective dielectric constant eff = 1.69 in (21), and h1 = 369 
m, the air thickness is found to be h2 = 371 m, which is in 
reasonable agreement with the thickness of the cavity (note 
however that the metallic tape is somehow flexible and hence 
may reduce the effective value of the cavity thickness). 

Once h1 is known, we have calculated the dielectric constant 
of another SUT, an Arlon slab with r2 = 2.43 and h2 = 490 
m. The measured transmission coefficient for the cascaded 
configuration is depicted in Fig. 17. The effective dielectric 
constant that results from Fig. 10 is eff = 2.70, and using (21), 
the dielectric permittivity is found to be r2 = 2.50, very close 
to the nominal value (2.43). 

 
 

 

 

 

 

Fig. 17. Measured transmission coefficient magnitude for the 
cascaded topology with the cavity filled by an Arlon substrate with 
characteristics indicated in the text. 

It is interesting to analyze expression (21), and the 
dependence of the dielectric constant of the SUT with the 
different parameters. Particularly, it depends linearly on the 
thickness of the SUT, h2. Therefore, uncertainties in this 
parameter are directly translated to the dielectric constant. The 
dependence with the other geometrical parameters, h and h1, 
can be appreciated in expression (21) as well. The thickness of 
the substrate, h, is typically known with good accuracy. On the 
other hand, the dependence on h1 is modulated by eff, and the 
effects of the uncertainty with this parameter are minimized in 
samples with small dielectric constant (and hence small eff). 
In view of (21), and taking into account that eff is roughly 
proportional to r1, namely,  

1 2 1 1 1
0

2 ,eff r r r r r

f f
ε ε ε ε ε ε

S f

 
                  (22)                   
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it follows that r2 is proportional to r1 (see 21) and hence the 
uncertainties in the dielectric constant of the reference 
material are (roughly) directly translated to the one of the 
measured material.  

Comparison of the proposed differential sensor with other 
permittivity sensors based on microstrip technology, such as 
those sensors based on CSRRs [3]-[5] is not easy. 
Nevertheless, the fact that the proposed sensors are differential 
represents advantages in several aspects. As comparators, 
common-mode stimuli are minimized by means of a 
differential-mode approach, as discussed before, and small 
changes between two (apparently identical) samples can be 
detected. Comparators based on this approach can be of 
interest to determine defects or abnormalities in a sample, as 
compared to a well known reference, as well as soft 
permittivity changes in circuits manufactured on microwave 
laminates. In a real scenario, two identical cavities must be 
present, each one below the corresponding SIR patch. 

Concerning sensitivity, the capacitance of the SIR is 
broadside and hence very sensitive to the permittivity, as 
compared to the case of edge capacitances (such as the one of 
CSRRs). The sensitivity that can be inferred from the sensors 
reported in [3]-[5] is very reasonable but not as good as the 
one reported here [of the order of 0.6 GHz for small 
perturbations, according to Fig. 10 and expression (13) –note 
that we have considered the relative permittivity, i.e., 
dimensionless, in the denominator of (13)]. Note that 
according to expression (13), such sensitivity can be 
modulated by means of the SIR dimensions, which provide the 
resonance frequency for the unperturbed state. 

B. Loss tangent estimation 

Even though this paper is focused on low-loss substrates 
and SUTs (as mentioned before), let us discuss a procedure to 
estimate the loss tangent. It is based on the depth of the notch 
(similar to [4],[5]), and for this reason a structure with a single 
SIR is preferred (i.e., non differential). Otherwise, the 
presence of closed notches (as results in cases with small 
differential permittivities) may obscure the results. The initial 
assumption is that the substrate material below the SIRs is 
completely removed and replaced with the SUT. Let us 
consider two causes of losses, i.e., metallic losses, mainly 
associated to the narrow inductive strip of the SIR, and 
dielectric losses, related to the SUT. The model of the SIR-
loaded line with losses included is the one of Fig. 1(b), but 
including a resistance, RM, in series with the inductance Ls, 
plus a resistance, RD, parallel connected to the capacitance Cs. 
The impedance of this shunt branch is 















222

2

222 11 


 sD

sD
s

sD

D
Min CR

CR
Lj

CR

R
RZ  ,      (23)                             

and this expression can be approximated by 
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where it has been assumed that RD
2Cs

22 >> 1, corresponding 
to SUTs with moderate or low-loss levels (note that in an ideal 
lossless SUT, RD = ). At the notch frequency, the reactive 
part of Zin nulls, and the resulting resistance can be expressed 
as 

Ds
MLOSS QC

RR

1

  ,                           (25)                   

where QD is the SUT quality factor. Such resistance is related 
to the magnitude of the transmission coefficient at the notch 
frequency by 
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and therefore it can be inferred from the measured frequency 
response. On the other hand,  

11
tan  D

sD

Q
CR 

  .                         (27)                   

If RM is known, (25) gives QD and hence tan can be 
inferred from (27). To determine the contribution of the 
metallic losses, RM, a possible procedure is to consider a 
reference SUT (or substrate) with a well-known tan (and 
hence QD). From (25), RM can be isolated, and used 
subsequently for the determination of the loss tangent of the 
SUT (it is assumed that RM does not vary with the SUT). 

The previous procedure cannot be directly applied in 
general to our proof-of-concept cascaded SIR based sensor 
since it is based on two SIRs, and, moreover, there is a 
remaining substrate layer on top of the cavity. However, for 
the considered SUT, the Arlon slab with nominal permittivity 
and thickness r2 = 2.43 and h2 = 490 m, the frequency 
response shows quite uncoupled notches and, therefore, we 
can modify the procedure and at least make an estimation of 
the tan. By introducing the SUT into the cavity, expression 
(25) can be re-written as  

2211
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QCQC
RR MLOSS 

 ,                        (28)                  

where the sub-index 1 and 2 refer to the layer on top of the 
cavity and SUT, respectively. By identifying the last two 
terms with the loss contribution of the composite, (CeqQeq)-1, 
it follows that 

2211

2121 )(

CQCQ

QQCC
Qeq 


  .                            (29)                   

This expression depends on the ratio C2/C1, which can be 
determined from the thickness of the layer and SUT and from 
the dielectric constants. Using (25) with Cs = Ceq and QD = Qeq 
and with RLOSS inferred from (26), where S21 is obtained from 
the depth of the second notch in Fig. 17, we can determine 
Qeq, which is found to be Qeq = 366. Since Q1 is known (Q1 = 
tan)-1 = 476, we can isolate Q2 from (29), and the resulting 
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value is found to be Q2 = 353, which gives tan = 0.0028 (in 
reasonable agreement with the nominal value of 0.0020). Note 
that we cannot expect an accurate value of the loss factor with 
the considered in-house measurement system, necessarily 
affected by additional losses such as those derived from the 
connectors, soldering, metallic adhesive tape, etc. 
Nevertheless, a procedure to estimate the tan of the SUT has 
been reported. 

V. CONCLUSIONS 

This paper analyzes two simple strategies to conduct 
differential measurements of permittivity. These strategies are 
based on loading pairs of stepped impedance resonators 
(SIRs), in either parallel or cascade connection, to a microstrip 
line. It has been shown that, although the most canonical 
symmetric configuration to perform a differential 
measurement is the one where the SIRs are parallel-connected, 
such a structure exhibits lower performance for small 
differential permittivities due to inter-resonator coupling, and 
hence the cascade connection is preferred in these situations. 
The differential technique is simple, as a transmission line is 
driven with a single-ended RF/microwave signal, and the SIRs 
are simply simultaneously and individually loaded with 
dielectric materials. The sensing principle is based on 
resonance frequency splitting, so that when the permittivities 
of the two dielectric materials are identical the sensor exhibits 
a single resonance frequency, whereas two resonances are 
present if such permittivities are different. The sensing 
principle has been experimentally validated by both shape and 
material perturbations. This main focus in this work has been 
on the differential measurement. A method to determine the 
dielectric constant of a certain sample under test (SUT), 
provided the one of the reference is known, has been 
proposed. Finally, in spite that the analysis of the present work 
has been carried out by excluding losses, a method to estimate 
the loss tangent of the SUT has been also reported. As is well 
known, changing environmental factors may change the 
permittivity and, therefore, miscalibrate. By virtue of a 
differential measurement, sensing and comparison with some 
degree of immunity to these external factors is expected. 
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