In der Mathematik und ihren Anwendungen bezeichnet asymptotische Analyse (auch asymptotische Analysis) einerseits eine Methode, um das Grenzverhalten von Funktionen oder Folgen zu klassifizieren, indem man nur den wesentlichen Trend des Grenzverhaltens beschreibt, andererseits aber auch die zugrundeliegende Theorie als Ganzes.

Asymptotische Resultate hängen im Wesentlichen davon ab, welche Parameter konvergieren bzw. divergieren und welche Region man betrachtet.

Beschreibung des asymptotischen Verhaltens

Bearbeiten

Das asymptotische Verhalten von Funktionen lässt sich mit einer Äquivalenzrelation beschreiben. Seien   und   reellwertige Funktionen natürlicher Zahlen   so lässt sich eine Äquivalenzrelation definieren durch:

 

Die Äquivalenzklasse von   besteht aus allen Funktionen  , bei denen der relative Fehler   zu   beim Grenzübergang   gegen   strebt. Diese Definition lässt sich unmittelbar auf Funktionen einer reellen oder komplexen Veränderlichen   übertragen sowie auf den Fall  , wobei die Annäherung an   oft nur über eine Teilmenge erfolgt, z. B. im Reellen von links oder von rechts, bzw. im Komplexen in einem Winkelbereich, oder über eine vorgegebene diskrete Menge. Des Weiteren lässt sich diese Definition auch auf mehrere laufende Parameter ausdehnen.

Einige Beispiele für asymptotische Resultate

Bearbeiten
  • Der Primzahlsatz der Zahlentheorie besagt, dass die Anzahl von Primzahlen kleiner   für große   sich asymptotisch verhält wie  .
  • Die Stirling-Formel beschreibt das asymptotische Verhalten der Fakultäten.
  • Vier elementare Beispiele sind  ,  ,   und   mit dem asymptotischen Verhalten  ,  ,   bzw.   für  

Landau-Notation

Bearbeiten

Eine nützliche Notation zur Beschreibung der Wachstumsklassen ist die Landau-Notation, die ursprünglich von Paul Bachmann stammt, aber durch Edmund Landau bekannt gemacht wurde. Eine wichtige Anwendung der Landau-Notation ist die Komplexitätstheorie, in der asymptotische Laufzeit und Speicherverbrauch eines Algorithmus untersucht werden.

Die einfachste Art, diese Symbole zu definieren, ist:   und   sind Klassen von Funktionen mit den folgenden Eigenschaften:

  •  
  •  

Der Punkt   wird in der Regel aus dem Kontext klar. Weiters schreibt man oft auch   statt  .

Asymptotische Entwicklung

Bearbeiten

Unter einer asymptotischen Entwicklung einer Funktion   versteht man die Darstellung der Funktion als formale Potenzreihe – also als nicht notwendigerweise konvergente Reihe. Dabei kann nach Abbruch der Reihe nach einem endlichen Glied die Größe das Fehlergliedes kontrolliert werden, wodurch die asymptotische Entwicklung eine gute Näherung in der Nähe von   für den Funktionswert   liefert.[1] Ein bekanntes Beispiel einer asymptotischen Entwicklung ist die Stirlingsche Reihe als asymptotische Entwicklung für die Fakultät. Definieren lässt sich eine solche Entwicklung mit Hilfe einer asymptotischen Folge   als

 

mit  .

Falls die asymptotische Entwicklung nicht konvergiert, gibt es für jedes Funktionsargument   einen Index  , für den der Approximationsfehler

 

betragsmäßig am kleinsten wird; das Hinzufügen weiterer Terme verschlechtert die Approximation. Der Index   der besten Approximation wird bei asymptotischen Entwicklungen aber umso größer, je näher   bei   liegt.

Asymptotische Entwicklungen treten insbesondere bei der Approximation gewisser Integrale auf, beispielsweise mittels der Sattelpunktmethode. Das asymptotische Verhalten von Reihen lässt sich darauf oft mit Hilfe der eulerschen Summenformel zurückführen.

Klassische Methoden

Bearbeiten

Literatur

Bearbeiten
  • A. Erdélyi: Asymptotic Expansions. Dover Books on Mathematics, New York 1987, ISBN 0-486-60318-0.
  • L. Berg: Asymptotische Darstellungen und Entwicklungen. Deutscher Verlag der Wissenschaften, Berlin 1968, DNB 750308605.

Einzelnachweise

Bearbeiten
  1. Asymptotische Entwicklung einer Funktion. In: Guido Walz (Hrsg.): Lexikon der Mathematik. 1. Auflage. Spektrum Akademischer Verlag, Mannheim/Heidelberg 2000, ISBN 3-8274-0439-8.
  NODES