Allgemeiner definiert man für komplexe
s
{\displaystyle s}
mit
Re
(
s
)
>
1
{\displaystyle \operatorname {Re} (s)>1}
:
Cl
s
(
θ
)
=
∑
n
=
1
∞
sin
(
n
θ
)
n
s
=
sin
(
θ
)
+
sin
(
2
θ
)
2
s
+
sin
(
3
θ
)
3
s
+
sin
(
4
θ
)
4
s
+
⋯
{\displaystyle \operatorname {Cl} _{s}(\theta )=\sum _{n=1}^{\infty }{\frac {\sin(n\theta )}{n^{s}}}=\sin(\theta )+{\frac {\sin(2\theta )}{2^{s}}}+{\frac {\sin(3\theta )}{3^{s}}}+{\frac {\sin(4\theta )}{4^{s}}}+\cdots }
Diese Definition kann auf der gesamten komplexen Ebene analytisch fortgesetzt werden.
Die Clausen-Funktion steht in Beziehung zum Polylogarithmus :
Cl
s
(
θ
)
=
Im
(
Li
s
(
e
i
θ
)
)
{\displaystyle \operatorname {Cl} _{s}(\theta )=\operatorname {Im} (\operatorname {Li} _{s}(e^{i\theta }))}
.
Ernst Kummer und Rogers führen folgende für
0
≤
θ
≤
2
π
{\displaystyle 0\leq \theta \leq 2\pi }
gültige Beziehung an:
Li
2
(
e
i
θ
)
=
ζ
(
2
)
−
θ
(
2
π
−
θ
)
/
4
+
i
Cl
2
(
θ
)
{\displaystyle \operatorname {Li} _{2}(e^{i\theta })=\zeta (2)-\theta (2\pi -\theta )/4+i\operatorname {Cl} _{2}(\theta )}
Beziehung zu den Dirichlet L-Funktionen
Bearbeiten
Die Clausen-Funktion als eine Regularisierungs-Methode
Bearbeiten
Die Clausen-Funktion kann auch als Methode betrachtet werden, um folgenden divergenten Fourier-Reihen eine Bedeutung zu geben:
sin
(
θ
)
+
2
sin
(
2
θ
)
+
3
sin
(
3
θ
)
+
…
{\displaystyle \sin(\theta )+2\sin(2\theta )+3\sin(3\theta )+\dots }
was mit
Cl
−
1
(
θ
)
{\displaystyle \operatorname {Cl} _{-1}(\theta )}
bezeichnet werden kann. Durch Integration erhält man:
cos
(
θ
)
+
cos
(
2
θ
)
+
cos
(
3
θ
)
+
⋯
=
−
∫
d
θ
Cl
−
1
(
θ
)
{\displaystyle \cos(\theta )+\cos(2\theta )+\cos(3\theta )+\dots =-\int d{\theta }\operatorname {Cl} _{-1}(\theta )}
Dieses Ergebnis kann durch analytische Fortsetzung für alle negativen
s
{\displaystyle s}
verallgemeinert werden.
Einige Spezialfälle sind gegeben durch:[ 2]
S
1
(
θ
)
=
1
2
⋅
π
−
1
2
⋅
θ
S
3
(
θ
)
=
1
6
⋅
π
2
⋅
θ
−
1
4
⋅
π
⋅
θ
2
+
1
12
⋅
θ
3
S
5
(
θ
)
=
1
90
⋅
π
4
⋅
θ
−
1
36
⋅
π
2
⋅
θ
3
+
1
48
⋅
π
⋅
θ
4
−
1
240
⋅
θ
5
C
2
(
θ
)
=
1
6
⋅
π
2
⋅
θ
−
1
2
⋅
π
⋅
θ
+
1
4
⋅
θ
2
C
4
(
θ
)
=
1
90
⋅
π
4
⋅
θ
−
1
12
⋅
π
2
⋅
θ
2
+
1
12
⋅
π
⋅
θ
3
−
1
48
⋅
θ
4
{\displaystyle {\begin{aligned}\operatorname {S_{1}} \left(\theta \right)&={\frac {1}{2}}\cdot \pi -{\frac {1}{2}}\cdot \theta \\\operatorname {S_{3}} \left(\theta \right)&={\frac {1}{6}}\cdot \pi ^{2}\cdot \theta -{\frac {1}{4}}\cdot \pi \cdot \theta ^{2}+{\frac {1}{12}}\cdot \theta ^{3}\\\operatorname {S_{5}} \left(\theta \right)&={\frac {1}{90}}\cdot \pi ^{4}\cdot \theta -{\frac {1}{36}}\cdot \pi ^{2}\cdot \theta ^{3}+{\frac {1}{48}}\cdot \pi \cdot \theta ^{4}-{\frac {1}{240}}\cdot \theta ^{5}\\\operatorname {C_{2}} \left(\theta \right)&={\frac {1}{6}}\cdot \pi ^{2}\cdot \theta -{\frac {1}{2}}\cdot \pi \cdot \theta +{\frac {1}{4}}\cdot \theta ^{2}\\\operatorname {C_{4}} \left(\theta \right)&={\frac {1}{90}}\cdot \pi ^{4}\cdot \theta -{\frac {1}{12}}\cdot \pi ^{2}\cdot \theta ^{2}+{\frac {1}{12}}\cdot \pi \cdot \theta ^{3}-{\frac {1}{48}}\cdot \theta ^{4}\\\end{aligned}}}
(für
0
≤
θ
≤
2
⋅
π
{\displaystyle 0\leq \theta \leq 2\cdot \pi }
)
Weitere Spezialfälle sind:
S
n
(
θ
)
=
i
2
⋅
[
L
i
n
(
exp
(
−
θ
⋅
i
)
)
−
L
i
n
(
exp
(
θ
⋅
i
)
)
]
C
n
(
θ
)
=
1
2
⋅
[
L
i
n
(
exp
(
−
θ
⋅
i
)
)
+
L
i
n
(
exp
(
θ
⋅
i
)
)
]
{\displaystyle {\begin{aligned}\operatorname {S_{n}} \left(\theta \right)&={\frac {i}{2}}\cdot \left[\operatorname {Li_{n}} \left(\exp \left(-\theta \cdot i\right)\right)-\operatorname {Li_{n}} \left(\exp \left(\theta \cdot i\right)\right)\right]\\\operatorname {C_{n}} \left(\theta \right)&={\frac {1}{2}}\cdot \left[\operatorname {Li_{n}} \left(\exp \left(-\theta \cdot i\right)\right)+\operatorname {Li_{n}} \left(\exp \left(\theta \cdot i\right)\right)\right]\\\end{aligned}}}
wobei
L
i
n
{\displaystyle \operatorname {Li_{n}} }
der Polylogarithmus ist,
T
i
2
(
tan
(
θ
)
)
=
θ
⋅
log
(
tan
(
θ
)
)
+
1
2
⋅
C
l
2
(
2
⋅
θ
)
+
1
2
⋅
C
l
2
(
π
−
2
⋅
θ
)
{\displaystyle \operatorname {Ti_{2}} \left(\tan \left(\theta \right)\right)=\theta \cdot \log \left(\tan \left(\theta \right)\right)+{\frac {1}{2}}\cdot \operatorname {Cl_{2}} \left(2\cdot \theta \right)+{\frac {1}{2}}\cdot \operatorname {Cl_{2}} \left(\pi -2\cdot \theta \right)}
für
0
≤
tan
(
θ
)
≤
1
{\displaystyle 0\leq \tan \left(\theta \right)\leq 1}
wobei
T
i
2
{\displaystyle \operatorname {Ti_{2}} }
das Arkustangensintegral ist,
Cl
2
(
2
π
z
)
=
2
π
log
(
G
(
1
−
z
)
G
(
1
+
z
)
)
+
2
π
z
log
(
π
sin
π
z
)
{\displaystyle \operatorname {Cl} _{2}(2\pi z)=2\pi \log \left({\frac {G(1-z)}{G(1+z)}}\right)+2\pi z\log \left({\frac {\pi }{\sin \pi z}}\right)}
Cl
2
(
2
π
z
)
=
2
π
log
(
G
(
1
−
z
)
G
(
z
)
)
−
2
π
log
Γ
(
z
)
+
2
π
z
log
(
π
sin
π
z
)
{\displaystyle \operatorname {Cl} _{2}(2\pi z)=2\pi \log \left({\frac {G(1-z)}{G(z)}}\right)-2\pi \log \Gamma (z)+2\pi z\log \left({\frac {\pi }{\sin \pi z}}\right)}
wobei
G
{\displaystyle G}
Barnessche G-Funktion und
Γ
{\displaystyle \Gamma }
die Gammafunktion ist,
Cl
2
(
θ
)
=
L
s
2
0
(
θ
)
{\displaystyle \operatorname {Cl} _{2}(\theta )={\mathcal {L}}s_{2}^{0}(\theta )}
[ 3] ,
wobei
L
s
2
0
{\displaystyle {\mathcal {L}}s_{2}^{0}}
der verallgemeinerte Logsinus
L
s
n
m
(
θ
)
=
−
∫
0
θ
x
m
log
n
−
m
−
1
|
2
sin
x
2
|
d
x
{\displaystyle {\displaystyle {\mathcal {L}}s_{n}^{m}(\theta )=-\int _{0}^{\theta }x^{m}\log ^{n-m-1}\left|2\sin {\frac {x}{2}}\right|\,dx}}
ist
Cl
s
(
π
2
)
=
β
(
s
)
{\displaystyle \operatorname {Cl} _{s}\left({\frac {\pi }{2}}\right)=\beta (s)}
wobei
β
(
s
)
{\displaystyle \beta (s)}
die dirichletsche Beta-Funktion ist.
Einige spezielle Werte sind:
Cl
2
(
π
2
)
=
K
{\displaystyle \operatorname {Cl} _{2}\left({\frac {\pi }{2}}\right)=K}
,
Cl
2
(
π
3
)
=
3
π
log
(
G
(
2
3
)
G
(
1
3
)
)
−
3
π
log
Γ
(
1
3
)
+
π
log
(
2
π
3
)
{\displaystyle \operatorname {Cl} _{2}\left({\frac {\pi }{3}}\right)=3\pi \log \left({\frac {G\left({\frac {2}{3}}\right)}{G\left({\frac {1}{3}}\right)}}\right)-3\pi \log \Gamma \left({\frac {1}{3}}\right)+\pi \log \left({\frac {2\pi }{\sqrt {3}}}\right)}
,
Cl
2
(
2
π
3
)
=
2
π
log
(
G
(
2
3
)
G
(
1
3
)
)
−
2
π
log
Γ
(
1
3
)
+
2
π
3
log
(
2
π
3
)
{\displaystyle \operatorname {Cl} _{2}\left({\frac {2\pi }{3}}\right)=2\pi \log \left({\frac {G\left({\frac {2}{3}}\right)}{G\left({\frac {1}{3}}\right)}}\right)-2\pi \log \Gamma \left({\frac {1}{3}}\right)+{\frac {2\pi }{3}}\log \left({\frac {2\pi }{\sqrt {3}}}\right)}
,
Cl
2
(
π
4
)
=
2
π
log
(
G
(
7
8
)
G
(
1
8
)
)
−
2
π
log
Γ
(
1
8
)
+
π
4
log
(
2
π
2
−
2
)
{\displaystyle \operatorname {Cl} _{2}\left({\frac {\pi }{4}}\right)=2\pi \log \left({\frac {G\left({\frac {7}{8}}\right)}{G\left({\frac {1}{8}}\right)}}\right)-2\pi \log \Gamma \left({\frac {1}{8}}\right)+{\frac {\pi }{4}}\log \left({\frac {2\pi }{\sqrt {2-{\sqrt {2}}}}}\right)}
,
Cl
2
(
3
π
4
)
=
2
π
log
(
G
(
5
8
)
G
(
3
8
)
)
−
2
π
log
Γ
(
3
8
)
+
3
π
4
log
(
2
π
2
+
2
)
{\displaystyle \operatorname {Cl} _{2}\left({\frac {3\pi }{4}}\right)=2\pi \log \left({\frac {G\left({\frac {5}{8}}\right)}{G\left({\frac {3}{8}}\right)}}\right)-2\pi \log \Gamma \left({\frac {3}{8}}\right)+{\frac {3\pi }{4}}\log \left({\frac {2\pi }{\sqrt {2+{\sqrt {2}}}}}\right)}
,
Cl
2
(
π
6
)
=
2
π
log
(
G
(
11
12
)
G
(
1
12
)
)
−
2
π
log
Γ
(
1
12
)
+
π
6
log
(
2
π
2
3
−
1
)
{\displaystyle \operatorname {Cl} _{2}\left({\frac {\pi }{6}}\right)=2\pi \log \left({\frac {G\left({\frac {11}{12}}\right)}{G\left({\frac {1}{12}}\right)}}\right)-2\pi \log \Gamma \left({\frac {1}{12}}\right)+{\frac {\pi }{6}}\log \left({\frac {2\pi {\sqrt {2}}}{{\sqrt {3}}-1}}\right)}
und
Cl
2
(
5
π
6
)
=
2
π
log
(
G
(
7
12
)
G
(
5
12
)
)
−
2
π
log
Γ
(
5
12
)
+
5
π
6
log
(
2
π
2
3
+
1
)
{\displaystyle \operatorname {Cl} _{2}\left({\frac {5\pi }{6}}\right)=2\pi \log \left({\frac {G\left({\frac {7}{12}}\right)}{G\left({\frac {5}{12}}\right)}}\right)-2\pi \log \Gamma \left({\frac {5}{12}}\right)+{\frac {5\pi }{6}}\log \left({\frac {2\pi {\sqrt {2}}}{{\sqrt {3}}+1}}\right)}
wobei K die catalansche Konstante ist.
Leonard Lewin (Hrsg.): Structural Properties of Polylogarithms . American Mathematical Society, Providence (RI) 1991, ISBN 0-8218-4532-2 (englisch).
Jonathan M. Borwein, David M. Bradley, Richard E. Crandall: Computational Strategies for the Riemann Zeta Function . In: J. Comp. App. Math . Band 121 , 2000, S. 11 (englisch, maths.ex.ac.uk [PDF; 526 kB ]).