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Testing for nonlinearity in time series:
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ABSTRACT

We describe a statistical approach for identifying nonlinearity in time series; in particular, we want to
avoid claims of chaos when simpler models (such as linearly correlated noise) can explain the data. The
method requires a careful statement of the null hypothesis which characterizes a candidate linear process,
the generation of an ensemble of “surrogate” data sets which are similar to the original time series but
consistent with the null hypothesis, and the computation of a discriminating statistic for the original and
for each of the surrogate data sets. The idea is to test the original time series agasnst the null hypothesis by
checking whether the discriminating statistic computed for the original time series differs significantly from
the statistics computed for each of the surrogate sets. We present algorithms for generating surrogate data
under various null hypotheses, and we show the results of numerical experimnents on artificial data using
correlation dimension, Lyapunov exponent, and forecasting error as discriminating statistics. Finally,
we consider a number of experimental time series — including sunspots, electroencephalogram (EEG)
signals, and fluid convection — and evaluate the statistical significance of the evidence for nonlinear
structure in each case.

1 Introduction

The inverse problem for a nonlinear system is to determine the nature of the underlying dynamics (is it chaos or
is it noise?) in the practical situation where all that is available is a time series of data. Algorithms are available
which can in principle make this distinction, but they are notoriously fussy, and usually involve considerable human
judgement. Particularly for experimental data sets, which are often short and noisy, simple autocorrelation can fool
dimension and Lyapunov exponent estimators into signalling chaos where there is none. Most authors agree that
the methods contain many pitfalls, but it is not always easy to avoid them. While some data sets very cleanly
exhibit low-dimensional chaos, there are many cases where the evidence is sketchy and difficult to evaluate. Indeed,
it is possible for one author to claim evidence for chaos, and for another to argue that the data is consistent with a
simpler explanation [1-4]. Our aim is to provide a framework within which claims of nonlinearity can be evaluatcd.
We describe our approach as first introduced in Ref. [5].

The problem is inherently statistical, for it is always possible for any finite length time series to be a particular
realization of a noise process, just as it is possible for an effectively random time series to come from a low-dimensional
deterministic process (witness the pseudorandom number generator). But the real complication arises because these
two extremes — chaos and noise — are not the only available alternatives. The erratic fluctuations that are observed
in an experimental time series owe their dynamical variation to a mix of various influences: chaos, nonchaotic but
still nonlinear determinism, linear correlations, and noise — always noise, both in the dynamics and in the measuring
apparatus. While we are motivated by the prospect of ultimately disentangling these influences, we take as a more
modest goal the detection of nonlinear structure in a time series. Detecting nonlinearity is easier than describing it;
we need not exhibit the underlying nonlinear dynamics, merely demonstrate the inadequacy of a linear model.

The hard way to detect low-dimensional behavior, for instance, is to attempt to estimate the dimension and then
see if this value is small. With a finite amount of data, and especially if the data are noisy, the dimension estimated
by the algorithm will at best be approximate — and at worst, wrong. One can guard against this by attempting to
identify the various sources of error (both systematic and statistical), and then putting error bars on the estimate



(see, for example, Refs. [6-12]). But this can be problematic for nonlinear algorithms like dimension estimators:
first, assignment of error bars requires some model of the underlying process, and that is exactly what is not known;
further, even if the underlying process were known, the computation of an error bar may be analytically difficult if
not intractatble.

Our approach, by contrast, is to determine the distribution of the quantity we are interested in (dimension, say)
for an ensemble of “surrogate” data sets which are just different realizations of the particular noise process that is
our null hypothesis. Then, nstead of putting error bars on the estimated dimension, we put error bars around the
value that we wish to distinguish it from (the value that noise gives). This can be done reliably because we know the
model of the null hypothesis, and furthermore we bypass the issue of analytic tractability by computing the error
bar nun:erically (from the standard deviation of all the numerically estimated dimensions of all the surrogate data
sets).

In Section 2, we express the problem of detecting nonlinearity in terms of statistical hypothesis testing. We
introduce our measure of significance, develop various null hypotheses and discriminating statistics, and describe
algorithms for generating surrogate data. Section 3 demonstrates the technique for several computer-generated
examples; we investigate the method of surrogate data under a variety of conditions: large and small data sets,
high and low dimensional attractors, and various levels of observational and dynamical noise. We also argue that
“bleaching” a chaotic tirie series degrades the the utility of the test. In Section 4, we illustrate the application of the
method to several real data sets, including sunspots, electroencephalograms (EEG), and fluid dynamics data. With
real data, there is always room for human Judgement, and we argue that besides formally rejecting a null hypothesis,
the method of surrogate data can also be useful in an informal way, providing a benchmark, or control experiment,
against which the actual data can be compared.

2 Statistical Hypothesis Testing

The formal application of the method of surrogate data is expressed in the language of statistical hypothesis testing.
This involves two ingredients: a null hypothesis against which observations are tested, and a discriminating statistic.
The null hypothesis is the too-simple explanation that we seek to show is inadequate for explaining the data; and
the discriminating statistic is a number which quantifies some aspect of the time series. If this number is different
for the observed data than would be expected under the null hypothesis, then the null hypothesis can be rejected.

It is possible in some cases to derive analytically the distribution of a given statistic under a given null hypothesis,
and this approach is the basis of many conventional tests for nonlinearity (e.g., see Tong [13]). The method of
surrogate data estimates this distribution by direct Monte-Carlo simulation. An ensemble of surrogate data sets are
generated which share given properties of the observed time series (such as mean, variance, and Fourier spectrum)
but are otherwise random as specified by the null hypothesis. For each surrogate data set, the discriminating statistic
is computed, and from this ensemble of statistics, the distribution is approximated.

While this approach is computationally intensive, it avoids the analytical derivations which can be difficult if
not impossible. This leads to increased fiexibility in the choice of null hypotheses and discriminating statistics; in
particular, the hypothesis and statistic can be chosen independently of each other. Efron [14] has argued persuasively
in favor of computationally intensive statistics, permitting CPU time to take the place of simplifying assumptions
and asymptotic results that are inevitable with classical analytical statistics.

2.1 Computing significance

Let Qp denote the statistic computed for the original time series, and Qn, for the ith surrogate generated under the
null hypothesis. Let ug and o4 denote the (sample) mean and standard deviation of the distribution of the Qg,’s.

If multiple realizations are available for the observational data, then it may be possible to compare the two
distributions (observed data and surrogate) directly, using for instance the Kolmogorov-Smirnov statistic which
compares the full distributions, or possibly the Student-t statistic which only compares their means.

1'or our purposes, however, we consider that only one experimental data set is available (Of course, it is always
possible to create several realizations out of that single set by chopping up the data; we haven’t tried this approach,
but we suspect that the numerical algorithms we work with would be severely handicapped by such short data sets.)

We define our measure of “significance” by the difference between the original and the mean surrogate value of
the statistic, divided by the standard deviation of the surrogate values.
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The significance is properly a dimensionless quaatity, but it is natural to call the units of S “sigmas.” Thus, one might
speak of a two sigma effect as not especially significant, but ten sigmas as extremely significant. If the distribution
of statistic values is gaussian (and numerical experiments indicate that this is often a reasonable approximation),
then the p-value associated with a significance S is given by p = erfc[S/ V2); this is the probability of observing a
significance S or larger if the null hypothesis is true.

If computational effort really were not a consideration, then a more robust way to define significance would be
directly in terms of p-values with rank statistics. In particular, if the observed time series has a statistic which is in
the lower one percentile of all the surrogate statistics (and at least a hundred surrogates would be needed to make
this determination), then a (two-sided) p-value of p = 0.02 could be quoted.

2.2 Hierarchy of null hypotheses

The null hypothesis defines the nature of the candidate process which may or may not adequately explain the data.
Our null hypotheses usually specify that certain properties of the original data are preserved — such as mean and
variance — but that there is no further structure in the time series. The surrogate data is then generated to mimic
these preserved features but to otherwise be random. There is some latitude in choosing which features ought to be
preserved: certainly mean and variance, and possibly also the Fourier power spectrum. If the raw data is discretized
to integer values, then the surrogate data should be similarly discretized.

Ultimately we envision a hierarchy (perhaps even a hierarchical tree) of null hypotheses against which time series
might be compared. Beginning with the simplest hypotheses, and increasing in generality, the following sections
outline some of the possibilities that we have considered.

2.2.1 Temporally uncorrelated noise

The null hypothesis of no temporal correlations is of particular interest in circumstances (e.g., stock market returns,
or outcomes on a roulette wheel) where any correlation at all can potentially be exploited for profit. The simplest
null hypothesis in this case is that the observed data is fully described by independent and identically distributed
(IID) gaussian random variables. Surrogate data in this case are readily generated from a standard pseudorandom
number generator, normalized to the mean and variance of the original data.

A clever extension of this approach was used by Scheinkman and LeBaron (15] in an analysis of stock market
returns. To test the hypothesis of IID noise with arbitrary amplitude distribution, they generated surrogate data by
shuffling the time-order the original time series. This more closely mimics the original data, but it destroys any
temporal correlations that may have been in the data.

2.2.2 Ornstein-Uhlenbeck noise

For most physical systems, it is usually obvious that there are tempora!l correlations, but the nature of these corre-
lations may not be so clear. The simplest case of non-IID noise is given by the Ornstein-Uhlenbeck process [16). For
a discrete time series, this can be produced by

Ty =G+ Q1241 + 08y (2.2)

where e, is uncorrelated gaussian noise of unit variance. The coefficients a,, a), and ¢ collectively determine the
mean, variance, and autocorrelation time of the time series. In fact, the autocorrelation function is exponential in
this case: .

2 :
A(r) = (rcx;-r) — (2 _ -l (2.3)
() = (z¢)
where () denotes an average over time ¢, and A = —log a;.
To make surrogate data sets, the mean yu, variance v, and first autocorrelation A(1) are estimated from the
original time series; from these the coefficients are fit: a; = A(1), a, = p(l — a1), and ¢2? = v(1 — a}). Finally, one

generates the surrogate data by iterating Eq. (2.2), using a pseudorandom number generator for the unit variance
saussian e;.




* 2.2.3 Linearly correlated noise

The null hypothesis of Ornstein-Uhlenbeck noise is arguably restrictive, and can readily be generalized to higher
order. This can be done by fitting coefficients ax and o to a process '

q
Te=a, + zaw‘-g + oey (2.4)
k=1

which mimics the original time series in terms of mean, variance, and the autocorrelation function for delays of
r=1,...,9. This is an auto-regressive (AR) model; a more general model includes a moving average (MA) of time
delayed noise terms as well, and the combination is called an ARMA model. For large enough ¢, the models are
equivalent. The null hypothesis in this case is that all the structure in the time series is given by the autocorrelation
function, or, equivalently, by the Fourier power spectrum. Using surrogate data based on this hypothesis has
previously been advocated in Refs. [10, 11, 17, 18].

One algorithm for generating surrogate data under this null hypothesis is again to iterate Eq. (2.4), where the
coefficients have been fit to the original data. An alternative algorithm is described in Section 2.4.1. This algorithm
does not directly employ Eq. (2.4), but the generated surrogate data is guaranteed to have the same Fourier spectrum
as the original data.

We remark that this is the null hypothesis that is associated with residual-based tests for nonlinearity; we argue
in Section 3.3 that it is generally preferable to use the method of surrogate data on the raw data directly, rather
than working with residuals.

2.2.4 Static nonlinear transform of linearly correlated noise

We have also considered a slightly more general null hypothesis, that the dynamics is linear, but the observation
function may be nonlinear. In particular, we suppose that there is an “underlying” time series {y;}, consistent with
the null hypothesis of linearly correlated noise, and an observed time series {z} given by

z: = h(w). (2.5)

Since z; depends only on the current value of y; and not on derivatives or past values, the filter k() is said to be
“static.” The null hypothesis further assumes that h() is an essentially invertible (monotonic suffices) function.

In Section 2.4.2, an algorithm for generating surrogate data corresponding to this null hypothesis is described.
It effectively shuffles the data but in such a way as to preserve the linear correlations of the underlying time series
¥t = h~!(z¢). An advantage of shuffling over, for example, a smooth fit to the function h(), is that any discretization
that was present in the original data wili be reflected in the surrogate data.

Note that time series in this class are strictly speaking nonlinear, but that the nonlinearity is not in the dynamics.
Most conve=iional tests for nonlinearity would (correctly) conclude that the time series is nonlinear, but would not
indicate whether the nonlinearity was in the dynamics or in the amplitude distribution. By using surrogate data
that have been tailored to this specific null hypothesis, it becomes possible to make such fine distinctions about the
underlying dynamics.

2.2.5 More general null hypotheses

Ultimately, we would like to extend this list to include more general null hypotheses. Foremost in our minds is the
noisy limit cycle, which cannot be described by a linear process, even if viewed through a static nonlinear transform.
Yet it is often of great interest, particularly in systems driven by seasonal cycles, to determine the nature of the
inter-seasonal variation.

2.3 Battery of discriminating statistics

Since we are motivated by the possibility that the underlying dynamics may be chaotic, our first choices for discrim-
inating statistics are just the conventional discriminants of nonlinear dynamics: correlation dimension, Lyapunov
exponent, and forecasting error. Indeed, one of our eventual interests in this project is to outline the conditions in
which one or the other of these methods will be more effective.

But the method in principle can be used with any discriminating statistic. We have had some success using the
correlation integral (C(r) for some value of r) directly as a discriminating statistic, instead of the dimension. Also, we



Figure 1: The Wolfer sunspot numbers and some surrogates under various null hypotheses. Note that differences .~
often detectable by eye. The true series is in (a). The series in (b) and (c) are generated by Algorithm II. The series
in (d) and (e) are generated by Algorithm I. Surrogate data generated by Algorithm I have a gaussian distribution,
which is clearly distinguishable from the nongaussian amplitude distribution of the original data in (a).

have considered but not implemented two-sided forecasting — predicting the “present” z; from the “past” z;_,,...
and the “future” z.4,..., instead of the usual forecasting which seeks to predict the future from the past. In our
forecasting, we are careful to separate the “training” set from the “testing” set, to avoid overfitting; but this is not
really necessary. The in-sample fitting error may also suffice as a discriminating statistic. Other candidates which
we have not investigated include the embedding criterion of Liebert and Schuster [1J], and the dimension statistic
of Cenys and Pyragas [20]. The most exotic example we know is due to Brock, Lakonishok, and LeBaron [21], who
used technical trading rules as discriminating statistics for financial data.

Below, we describe how we used the three particular discriminating statistics that we chose for the numerical
experiments in this article. Ideally, dimension counts degrees of freedom, Lyapunov exponent quantifies the sensitivity
to initial conditions, and forecasting error tests for determinism. These are three different aspects of low-dimensional
chaotic systems. Now, we are not explicitly looking for low-dimensional chaos but just trying to detect nonlinearity,
so any nonlinear statistic is a viable candidate. But our choice of statistic is motivated by the notion that the
underlying process might be chaotic, and so (we hope) the statistics which characterize such processes might be most
adept at detecting them. In general, we advocate using a battery of statistics, not only to increase the opportunity
of rejecting the null hypothesis (since we expect some will be sensitive where others are not), but also to have some
qualitative notion of “how” the data set differs from the surrogates.

2.3.1 Correlation dimension, v

Dimension is an exponent which characterizes the scaling of some bulk measure with linear size. To compute a
dimension, it is necessary to choose some range of sizes over which the scaling is to be estimated. Algorithms
abound [11, 22] for estimating the dimension of an underlying strange attractor from a time series; we chose a
box-assisted variation (23] (see Grassberger [24] for an elegant alternative) of the Grassberger-Procaccia-Takens
algorithm [25-27] to compute a correlation integral, and the best estimator of Takens (8] for the dimension itself.
The Takens estimator requires an upper cutoff size; we used one-half of the rms variation in the time series for this
value. This is rather large if our aim is to make our best guess of the fractal dimension , but it gives us good values
for statistical significance.

2.3.2 Lyapunov exponent, A

Following Sano and Sawada [28] and Eckmann and Ruelle [29], we compute Lyapunov exponent by multiplying
Jaccbian matrices along a trajectory, with the matrices computed by local linear fits. We use the QR decomposition




* method of Eckmann et al. [30] to maintain orthogonality. For the results in this article, we consider only the largest
exponent.

We have found that numerical estimation of Lyapunov exponents in the presence of noise can be problematic.
Indeed, for our surrogate data sets, for which the linear dynamics is contracting, we often obtain positive Lyapunov
exponents. It may be possible to remedy this by using more neighbors in the local fits, but remember that it is not
the best estimate of the Lyapunov exponent itself that we are seeking, but only a statistic which distinguishes the
original data from surrogate data. We would prefer to use a discriminating statistic which correctly quantifies some
feature of the dynamics, as this provides more qualitative information, but the method of surrogatc data does not
formally require this.

2.3.3 Forecasting error, ¢

A direct test for determinism comes from quantifying the forecasting errors obtained from nonlinear modeling. The
method we use entails first splitting the time series into a fitting set of length N ', and a testing set of length N,,
with Ny + Ni = N, the length of the time series; then fitting a local linear model [31] to the fitting set, locality given
by the number of neighbors k; and finally, using this model to forecast the values in the testing set, and comparing
them with the actual values.

If e = z; — 2; is the difference between the actual value of z and the predicted value, £, then we define our
discriminating statistic as the mean log absolute prediction error.

Ny+N,

1
= > logled. (2.6)
t=Ny41

Several modeling parameters must be chosen, including the partitioning of the data set into fitting (N +) and
testing (N¢) segments, the number of steps ahead to predict (T'), and number of neighbors (k) used in the loca! Yinear
fit. We arbitrarily chose to divide the fitting and testing sets equally, with N y = Ny = N/2, and to predict one step
ahead, so T = 1. More important is the choice of k. For the results in this article, we set k to 1.5 times the minimum
number needed for a fit, but we note that this is often not optimal. Indeed, Casdagli [32,33] has advocated sweeping
the parameter k in a local linear forecaster as an exploratory method to look for nonlinearity in the first place. For
few neighbors, this models noise-free low-dimensional determinism; for many neighbors, the forecasting method is
effectively a global linear predictor. When the optimal k is some intermediate value, this indicates nonlinearity with
noise. :

2.4 Algorithms for generating surrogate data

In this section, we describe two algorithms we use for generating surrogate data. The first is consistent with the
hypothesis of linearly correlated noise described in Section 2.2.3, and the second considers the possibility of a static
nonlinear transform as discussed in Section 2.2.4.

2.4.1 Algorithm I

The first algorithm is based on the null hypothesis that the data come from a linear stochastic process; the assumption
is that there is no nonlinearity either in the dynamics or in the observation of the data. The surrogate data are
designed to have the same Fourier spectra as the raw data.

1. Input the original data into an array y[t], t=0,...,¥-1

2. Compute 'the Discrete Fourier Transform:
-1 ;
z[n] = Ygog 2 0t/Myle].
Note z[n] has real and imaginary components.

3. Randomize the phases: z'[n] = z[n]e'*¢®]
Here, ¢[n] is uniformly distributed between 0 and 2x.

4. Symmetrize the phases:
Re z”"[n] = Re( z'[n] + 2'(N-1-n] )/2
Im z'[n] = Im( 2'[n] - 2'[H-1-n] )/2



5. Invert the Discrege Fourier Transform:
y'[t] = (1/M) Zn;é e—2ri nf./lzu (n]. ' . .
Note that because of the symmetry of the phases, the resulting time series y'[t] is real; this is the surrogate
data.

2.4.2 Algorithm II

The second a'zorithm creates data that are realizations of the null hypothesis that the observed time series is a
nonlinear static transformation of a linear stochastic process. Our approach is first to rescale values of the original
time ser.es so that they are gaussian, then to use the first algorithm to create a surrogate time series which has
the same Fourier spectrum as the rescaled original. This surrogate is then rescaled to have the same values as the
original time series.

1. Input the original data into an array x[t], t=0,... ,N-1
2. Sort the array Sx[k], k=0,...,K~-1

3. Make ranked time series Rx[t], defined to satisfy Sx[Rx[t]] = x[t].
Note Sx[k] is a monotonic function with a well-defined inverse; so Rx[t] = Sx~![t] is a static rescaling of

x[t].
4. Create a random gaussian data set g[t], t=0,...,N-1
5. Sort the gaussian random numbers Sg{x], k=0,...,N-1

6. Define new time series: y[t] = Sg[ Rx[t] ]
The new time series is a static rescaling of x[t] with the property that the amplitude distribution is gaussian.

7. Use Algorithm I to make a surrogate of this gaussian time series: y’[t].
8. Make a ranked time series for y'[t], call it Ry’ [¢].

9. The surrogate time series is then given by x'[t] = Sx[ Ry’'[t] ].

Note that the surrogate time series x’[t] is just a shuffling of the original time series x[t], so it obviously has
the same amplitude distribution.

3 Numerical Experiments

To properly gauge the utility of surrogate data will eventually require many tests with data from real laboratory
experiments. To give a sense of Liow this approach ought to work in practice, however, we begin with some numerical
examples.

First, we note that a time series which actually is generated by a linear process should by construction give a
negative result (that is, the null hypothesis should not be rejected); this we checked and found to be the case.

The results presented in this section sed Algorithm I for generating the surrogate data. Some of the experiments
were repeated with Algorithm II; the significancc was reduced slightly, but the qualitative effects remained.

3.1 Variation with number of data points and complexity of attractor

The significance with which nonlinearity can be detected in a chactic time series increases with the number of points
in the time series, and in general decreases with the complexity of the time series. This is shown in Fig. 2 for
the attractor of Hénon [34], using dimension and forecasting error as the discriminating statistic. Here ‘Hen-n’
corresponds to the sum of n independent trajectories of the Hénon map; thus it is a time series whose underlying
strange attractor will have dimension nv where v & 1.25 is the dimension of a single Hénon trajectory.
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Figure 2: Significance as a function of the number N of data points for time series generated by adding n independent
trajectories of the Hénon map. The discriminating statistic is (a) correlation dimension, and (b) forecasting error.
Note that significance tncreases with number of data points and decreases with the complezity of the system.

3.2 Effect of observational and dynamical noise

To test whether nonlinear determinism can be detected even when it is mixed with noise, we added both dynamical
(n) and observational (¢) noise to the cosine map: y; = A cos(®y—1)+n¢; z¢ = ¥ +€:. In Fig. 3, we plot significance
as a function of noise level for both dynamical and observational noise. As expected, significance decreases with
increasing noise level, though we remark that the nonlinearity is still observable even with considerable noise. In the
absence of noise, the rms amplitude of the signal is 0.36; thus we are able to detect significant nonlinearity even with
a signal to noise ratio of one, using a time series of length N = 512.
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Figure 3: Effect of noise on significance for a time series of N = 512 points, derived from the cosine map with
A = 2.8: (a) observational noise; (b) dynamical noise.

3.3 Don’t bleach chaotic data

A common approach to testing for nonlinearity involves first “subtracting out” the linear component, and then
working with what is left, the “residuals.” For instance, see Tong [13] for a review of conventional tests for nonlinearity,
or Brock, Dechert, and Scheinkman [35] for a more recently proposed statistic based on the correlation integral. Given
: time series z;, the residuals are given by



x(t+1)

Figure 4: Residuals of the Hénon map, as fitted with Eq. (3.1). As q increases, the determinisiic nature of the map
becomes less evident.

q '
€ =Ty — [a, + Zakzg_k] . (3.1)

=1

where the coefficients a; are chosen to minimize the sample variance 3, €7/N of the residuals. Here g is the order
of the linear model.

Because the residuals €; are spectrally white (equal power at all frequencies), the process of determining residuals
is sometimes called “pre-whitening” or “bleaching.” However, linear filtering of chaotic data is not without its pitfalls.
While the fit is based on the best auto-regressive (AR) model, the linear map that takes z; to e; in Eq. 3.1)is a
moving-average (MA) filter, and will not formally change the structure of the attractor for finite g. For example, if
z; lies on a low-dimensional attractor, then ¢; will lie on an attractor of the same dimension. However, in practice,
the distortion induced by the linear map can drastically affect the appearance of the attractor and can likewise affect
estimates of its dimension. The effect of linear filtering on the Hénon attractor is shown in Fig. 4. The determinism
which is obvious in the unfiltered data ceases to be so obvious in the filtered case.

We computed the significance of the nonlinearity in time series obtained from the Hénon map and then bleached
with ever larger values of g. We show in Fig. 5 a decrease in significance, as quantified by the method of surrogate
data, computed with statistics based on dimension, forecasting, and Lyapunov exponent. However, this result may
only hold for chaotic data. Townshend [36] has described a situation with data from human speech in which nonlinear
predictions of linearly filtered data were superior to direct nonlinear predictions of the original time series.

Following a suggestion of Brock (personal communication), we considered a time series generated by AR filtering
the Hénon time series, and treating this time series as our raw data. We found in this case that a mild amount of
MA fltering did improve the significance. The optimal value of ¢ was never larger than 3, however. For larger values
of ¢, the significance again decreased. In general, we do not recommend statistical tests for nonlinearity that are
based on best estimates of the residuals, as these usually require high order (large ¢) filtering.
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Figure 5: Effect of bleaching on significance for a time series of length N = 1024 derived from the Hénon map. For
q =0, the raw data are used. For ¢ >0, the q-th order residuals (as computed by Eq. (3.1)) are used. It is apparent
that attempting to “subtract out” the linear component only decreases the power of the test. The discriminating
statistic is (a) correlation dimension, (b) largest Lyapunov czponent, and (c) forecasting error.

4 Real data

We report preliminary results on some experimental time series from various sources. These results should be taken
as anecdotal, and not necessarily typical of the class which they represent (the sunspot time series is an exception,
of course). In particular, we have not yet attempted to “normalize” our findings with others that have previously
appeared in the literature. Unless otherwise noted, the surrogate data for the results in this section were generated
by Algorithm II, which corresponcs to a static nonlinear filter of a linear time series.

4.1 Superfluid convection

Data from a superfluid ccnvection cell [37] provides an example vhere the evidence for low-dimensional chaos is quite
clear. Using discriminating statistics of dimension and forecasting error, we obtain about fifteen and forty sigmas of
significance, respectively. This data was also analyzed by Farmer and Sidorowich [31], who found sizable increases
in predictability using nonlinear rather than linear predictors.

4.2 Electroencephalogram (EEG)

That the brain should exhibit chaos is an idea that some authors have been unable to resist. Our own investigations
so far have been mixed; some data sets exhibit nonlinear structure and some do not. A more systematic survey is
clearly in order. In the meantime, we present two results, one positive and one negative. The two time series are
from the same individual, eyes closed and resting; one is from a probe at the left occipital (O1), and the other from
the left central (C3) part of the skull. The sampling rate is 150 Hz, and N = 2048 time samples are taken. The two
time series are not necessarily contemporaneous. Using the dimension statistic, the first data set shows no significant
evidence for nonlinearity, but the second data set exhibits about eight sigmas. Even in the significant case, we do
not see any evidence that the time series is in fact low-dimensional (the correlatiocn dimension v does not converge
with increasing embedding dimension m). We are formally able to reject the null hypothesis that the data arise from
a linear stochastic process, but by comparing the surrogate data to the real data, we see no reason to expect that
the “cignificant” data arises from a low-dimensional chaotic attractor.

4.3 Sunspots

The sunspot cycle has attracted perhaps more attention than any other time series, due to its interesting mixture of
regularity and irregularity [38-43,33].

Using both dimension and forecasting error, we can quite confidently reject the null hypothesis that the time series
itself is linear stochastic; this is in agreement with the numerous authors [39-43, 33) who obtained better agreement
using nonlinear models instead of linear models. However, when we expand the null hypothesis to include a static
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Figure 8: Significance of nonlinearity in the Wolfer sunspot series. (a) using correlation dimension, and (b) using
forecasting error. As with all the ezperimental time series reported here, Algorithm II was used to generate the
surrogate data.

nonlinear observation of an underlying linear stochastic process, the evidence (for dynamical nonlinear structure)
is less dramatic. Using the dimension statistic, there is virtually no significance (of order one sigma). Using a
forecasting algorithm, on the other hand, we do see significantly more predictability in the sunspot data than in
surrogates, at about the five sigma level. This illustrates the advantage of having a battery of tests: the kind of
nonlinear structure that one statistic is not sensitive to, another statistic may quit = efficiently find.

5 Comparison to other work

Numerous authors have carefully compared their dimension estimates for real data against similar estimates for white
noise. A few have extended this informal control to other forms of correlated noise; noteworthy are Grassberger (2],
who showed that a reported dimension for climate data could be reproduced with data from an Ornstein-Uhlenbeck
process; Kaplan and Cohen [17], who argued that fibrillation was not usefully described as chaotic, since data
generated by randomizing the phases of the Fourier transform gave similar dimensions; and Ellner [44], who showed
that a variety of “plausible alternatives” might adequately explain measles and chickenpox data, despite eatlier claims
of chaos.

Brock and coworkers in particular [21,35,45-47}, and the economics community in general [15,48-51], have been
extremely active in the develonment of statistical tools for time series analysis. While the choice of null hypotheses
for financial time series tends to be different than for more physical time series, the overall methodologies are quite
similar. Classical statisticians sre becoming increasingly aware of low-dimensional chaos (just as physicists are
becoming increasingly aware of the importance of the statistical approach), and we cite Tong [13] as the review which
most neatly and comprehensively ties these two fields together.

A slightly different approach, but with a very similar flavor, was applied by Chervin and Schneider [52] in assessing
the statistical significance of predictions based on global climate models.

6 Conclusion
In this article, we have provided a framework for evaluating the statistical significance of evidence for nonlinearity

in a stationary time series. (We do not seek to characterize non-stationary time series — see Refs. [53-56] for a
discussion of some of the problems arising in the estimation of nonlinear statistics from nonstationary data.)

12



The test properly fails to find nonlinear structure in linear stochastic systems, and correctly identifies nonlinearity
in several well-known examples of low-dimensional chaotic time series, even when contaminated with considerable
noise. Our experiments with chaotic data found that using linear pre-processing to “bleach” out the linear correlations
decreases the power of the test to detect nonlinearity. Consequently, we advocate a direct application of the method
of surrogate data to the raw time series, instead of to a time series of residuals.

Finally, we illustrated the method with several experimental data sets, and confirmed the evidence for nonlincar
structure in some systems, while failing to see such structure in other time series.

6.1 Discussion

We have described the method of surrogate data as a formal test for quantifying the statistical significance of the
rejection of a particular null hypothesis. It is useful, however, to take a more irformal approach, and view <urrogate
data as a coutrol experiment. Having exhibited that some data gives a certain dimension, say, it is wise to compute
the dimension for surrogate data as well, to make sure that the estimator is not being fooled by some feature (such
as linear autocorrelation) that is also present in the random surrogate data.

In this case, there is some room for human judgement. For example, if the estimated dimension for the original
data and the surrogate data are approximately equal and both small (or worse yet, if the surrogate data exhibit a
lower dimension than the original data), then the conclusion that the data arises from low-dimensional dynamics is
doubtful. It may be that the data is significantly nonlinear in the formal sense, so that the particular null hypothesis
can be positively rejected, but that does not automatically imply low-dimensional chaos. In general, we advocate
using a battery of statistical tests, not only to increase the chances of rejecting the null hypothesis, but to provide
some intuitive insight into the nature of the nonlinearity. Eventually reducing the role of human judgement will
require the development of more general null hypotheses, and the associated algorithms for generating surrogate
data.

Any test which fails to reject the null hypothesis is strictly speaking inconclusive. Just because the original and
surrogate time series have the same value for the discriminating statistic, that does not imply that they have the
same underlying dynamics. On the other hand, if one observes evidence of low fractal dimension, but surrogate data
shows the same low dimension, then claims based on the original evidence can be dismissed as not well-founded.

Considerable work remains to make the method of surrogate data a powerful and flexible tool for nonlinear anal-
ysis. In particular, we hope to expand the hierarchy of null hypotheses and to broaden the battery of discriminating
statistics. The algorithms should also be extended to deal with multivariate time series and input-output systems.
Further investigation of the effectiveness of various statistics for different null hypotheses in different situations will
be valuable not only for increasing our ability to reject null hypotheses, but also for the more qualitative task of
characterizing the nature of the nonlinearity that might be evidenced by one statistic but not another.
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