Summary
We recall a pair of logarithmic series that reveals ln(4 ∕ π) to be an “alternating” analog of Euler’s constant γ. Using the binary expansion of an integer, we derive linear, quadratic, and cubic analogs for ln(4 ∕ π) of Vacca’s rational series for γ. Using a generalization of Vacca’s series to integer bases b ≥ 2, due in part to Ramanujan, we extend Addison’s cubic, rational, base 2 series for γ to faster base b series. Open problems on further extensions of the results are discussed, and a history of the formulas is given.
Mathematics Subject Classifications (2010). 11Y60, 65B10
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Addison, A.W.: A series representation for Euler’s constant. Am. Math. Mon. 74, 823–824 (1967)
Allouche, J.-P., Shallit, J., Sondow, J.: Summation of series defined by counting blocks of digits, J. Number Theory 123, 133–143 (2007)
Barrow, D.F.: Solution to Problem 4353, Am. Math. Mon. 58, 117 (1951)
Behrmann, A.: Problem 5460, Am. Math. Mon. 74, 206 (1967)
Berndt, B.C., Bowman, D.C.: Ramanujan’s short unpublished manuscript on integrals and series related to Euler’s constant. In: Thera, M. (ed.) Constructive, Experimental and Nonlinear Analysis, pp. 19–27. American Mathematical Society, Providence (2000)
Carlitz, L.: Advanced Problem 5601, Am. Math. Mon. 75, 685 (1968)
Franklin, F.: On an expression for Euler’s constant, J. Hopkins Circ. II, 143 (1883)
Gerst, L.: Some series for Euler’s constant, Am. Math. Mon. 76, 273–275 (1969)
Harborth, H.: Solution to Problem 5601, Am. Math. Mon. 76, 568 (1969)
Jacobsthal, E.: Ueber die Eulersche Konstante, Math.-Naturwiss. Blätter 9, 153–154 (1906)
Krämer, S.: Die Eulersche Konstante γ und verwandte Zahlen. Diplomarbeit, Mathematisches Institut der Georg-August-Universität Göttingen (2005)
Nielsen, N.: Een Raekke for Euler’s Konstant, Nyt. Tidss. Math. 88, 10–12 (1897)
Pilehrood, K.H., Pilehrood, T.H.: Arithmetical properties of some series with logarithmic coefficients, Math. Z. 255, 117–131 (2007)
Ramanujan, S.: The Lost Notebook and Other Unpublished Papers (Introduction by G.E. Andrews). Springer, Berlin; Narosa Publishing House, New Delhi (1988)
Rivoal, T.: Polynômes de type Legendre et approximations de la constante d’Euler (2005, unpublished notes); available at http://www-fourier.ujf-grenoble.fr/~rivoal/
Sandham, H.F.: Advanced Problem 4353, Am. Math. Mon. 56, 414 (1949)
Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences (2008); published at http://www.research.att.com/~njas/sequences/
Sondow, J.: Double integrals for Euler’s constant and ln(4 ∕ π) and an analog of Hadjicostas’s formula, Am. Math. Mon. 112, 61–65 (2005)
Sondow, J.: New Vacca-type rational series for Euler’s constant and its “alternating” analog ln(4 ∕ π) (2005, preprint); available at http://arXiv.org/abs/math/0508042v1
Sondow, J., Hadjicostas, P.: The generalized-Euler-constant function γ(z) and a generalization of Somos’s quadratic recurrence constant, J. Math. Anal. Appl. 332, 292–314 (2007)
Sondow, J., Zudilin, W.: Euler’s constant, q-logarithms, and formulas of Ramanujan and Gosper, Ramanujan J. 12, 225–244 (2006); expanded version available at http://arXiv.org/abs/math/0304021
Vacca, G.: A new series for the Eulerian constant \(\gamma =.577\ldots \), Quart. J. Pure Appl. Math. 41, 363–364 (1910)
van Lint, J. H.: Solution to Problem 5460, Am. Math. Mon. 75, 202 (1968)
Acknowledgements
I am grateful to Stefan Krämer and Wadim Zudilin for valuable comments, and to Tanguy Rivoal for sending me a draft of [15].
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer Science+Business Media, LLC
About this chapter
Cite this chapter
Sondow, J. (2010). New Vacca-Type Rational Series for Euler’s Constant γ and Its “Alternating” Analog \(\ln \frac{4}{\pi }\) . In: Chudnovsky, D., Chudnovsky, G. (eds) Additive Number Theory. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68361-4_23
Download citation
DOI: https://doi.org/10.1007/978-0-387-68361-4_23
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-0-387-37029-3
Online ISBN: 978-0-387-68361-4
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)