Skip to main content

New Vacca-Type Rational Series for Euler’s Constant γ and Its “Alternating” Analog \(\ln \frac{4}{\pi }\)

  • Chapter
  • First Online:
Additive Number Theory
  • 1522 Accesses

Summary

We recall a pair of logarithmic series that reveals ln(4 ∕ π) to be an “alternating” analog of Euler’s constant γ. Using the binary expansion of an integer, we derive linear, quadratic, and cubic analogs for ln(4 ∕ π) of Vacca’s rational series for γ. Using a generalization of Vacca’s series to integer bases b ≥ 2, due in part to Ramanujan, we extend Addison’s cubic, rational, base 2 series for γ to faster base b series. Open problems on further extensions of the results are discussed, and a history of the formulas is given.

Mathematics Subject Classifications (2010). 11Y60, 65B10

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
CHF34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
CHF 24.95
Price includes VAT (Switzerland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
CHF 94.00
Price excludes VAT (Switzerland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
CHF 118.00
Price excludes VAT (Switzerland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
CHF 118.00
Price excludes VAT (Switzerland)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Addison, A.W.: A series representation for Euler’s constant. Am. Math. Mon. 74, 823–824 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allouche, J.-P., Shallit, J., Sondow, J.: Summation of series defined by counting blocks of digits, J. Number Theory 123, 133–143 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barrow, D.F.: Solution to Problem 4353, Am. Math. Mon. 58, 117 (1951)

    MathSciNet  Google Scholar 

  4. Behrmann, A.: Problem 5460, Am. Math. Mon. 74, 206 (1967)

    Article  MathSciNet  Google Scholar 

  5. Berndt, B.C., Bowman, D.C.: Ramanujan’s short unpublished manuscript on integrals and series related to Euler’s constant. In: Thera, M. (ed.) Constructive, Experimental and Nonlinear Analysis, pp. 19–27. American Mathematical Society, Providence (2000)

    Google Scholar 

  6. Carlitz, L.: Advanced Problem 5601, Am. Math. Mon. 75, 685 (1968)

    Article  Google Scholar 

  7. Franklin, F.: On an expression for Euler’s constant, J. Hopkins Circ. II, 143 (1883)

    Google Scholar 

  8. Gerst, L.: Some series for Euler’s constant, Am. Math. Mon. 76, 273–275 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  9. Harborth, H.: Solution to Problem 5601, Am. Math. Mon. 76, 568 (1969)

    Google Scholar 

  10. Jacobsthal, E.: Ueber die Eulersche Konstante, Math.-Naturwiss. Blätter 9, 153–154 (1906)

    Google Scholar 

  11. Krämer, S.: Die Eulersche Konstante γ und verwandte Zahlen. Diplomarbeit, Mathematisches Institut der Georg-August-Universität Göttingen (2005)

    Google Scholar 

  12. Nielsen, N.: Een Raekke for Euler’s Konstant, Nyt. Tidss. Math. 88, 10–12 (1897)

    Google Scholar 

  13. Pilehrood, K.H., Pilehrood, T.H.: Arithmetical properties of some series with logarithmic coefficients, Math. Z. 255, 117–131 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ramanujan, S.: The Lost Notebook and Other Unpublished Papers (Introduction by G.E. Andrews). Springer, Berlin; Narosa Publishing House, New Delhi (1988)

    Google Scholar 

  15. Rivoal, T.: Polynômes de type Legendre et approximations de la constante d’Euler (2005, unpublished notes); available at http://www-fourier.ujf-grenoble.fr/~rivoal/

  16. Sandham, H.F.: Advanced Problem 4353, Am. Math. Mon. 56, 414 (1949)

    Article  Google Scholar 

  17. Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences (2008); published at http://www.research.att.com/~njas/sequences/

  18. Sondow, J.: Double integrals for Euler’s constant and ln(4 ∕ π) and an analog of Hadjicostas’s formula, Am. Math. Mon. 112, 61–65 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sondow, J.: New Vacca-type rational series for Euler’s constant and its “alternating” analog ln(4 ∕ π) (2005, preprint); available at http://arXiv.org/abs/math/0508042v1

  20. Sondow, J., Hadjicostas, P.: The generalized-Euler-constant function γ(z) and a generalization of Somos’s quadratic recurrence constant, J. Math. Anal. Appl. 332, 292–314 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sondow, J., Zudilin, W.: Euler’s constant, q-logarithms, and formulas of Ramanujan and Gosper, Ramanujan J. 12, 225–244 (2006); expanded version available at http://arXiv.org/abs/math/0304021

  22. Vacca, G.: A new series for the Eulerian constant \(\gamma =.577\ldots \), Quart. J. Pure Appl. Math. 41, 363–364 (1910)

    MATH  Google Scholar 

  23. van Lint, J. H.: Solution to Problem 5460, Am. Math. Mon. 75, 202 (1968)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

I am grateful to Stefan Krämer and Wadim Zudilin for valuable comments, and to Tanguy Rivoal for sending me a draft of [15].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Sondow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sondow, J. (2010). New Vacca-Type Rational Series for Euler’s Constant γ and Its “Alternating” Analog \(\ln \frac{4}{\pi }\) . In: Chudnovsky, D., Chudnovsky, G. (eds) Additive Number Theory. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68361-4_23

Download citation

Publish with us

Policies and ethics

  NODES
eth 1
see 4
Story 1